地球化学LA-ICP-MS元素分析技术
- 格式:ppt
- 大小:41.46 MB
- 文档页数:89
电感耦合等离子体质谱(icp-ms)电感耦合等离子体质谱(ICP-MS)简介电感耦合等离子体质谱(ICP-MS)是一种分析化学技术,采用高温等离子体将样品离解,从而分析样品中的元素。
采用ICP-MS技术可以在单个分析中检测多种元素、低浓度下的元素、分子异构体等。
ICP-MS常被用于研究化学以及生物医学领域的元素分析。
ICP-MS步骤ICP-MS主要包括四个步骤:样品制备、样品进样、等离子体产生和测量。
样品制备:样品制备步骤通常需要根据不同实验目的采取不同的方法。
例如,对于土壤或岩石样品,需要先进行湿燥并研磨成粉末;对于生物样品,需要使用有机溶剂提取目标元素。
因此,样品制备是ICP-MS分析的关键步骤之一。
样品进样:样品进样有两种方式:液体进样和固体进样。
液体进样主要是通过取样器将待测液体进入ICP。
固体进样需要将样品先通过转化成气态或液态的方式,并通过雾化器达到液体态,进入高温等离子体中。
等离子体产生:产生等离子体可采用两种方式:射频感应和直流放电。
射频感应通过在射频电场中通过高频驱动电势,生成高温等离子体。
而直流放电则是通过加热、高电压电弧作用、激光加热等方式,将样品蒸发、溅射成气态,并与气态惰性气体混合后,通过喷雾头进入高温等离子体中。
测量:测量步骤通常与其他仪器相结合,例如,ICP-MS可以与气质谱计(GC-ICP-MS)或液相色谱计(LC-ICP-MS)结合进行气/液样品的分析。
ICP-MS的测量步骤产生的是离子信号,通过质谱扫描方式进行质谱谱图测量。
在测量信号强度与目标元素数量之间会有一定的关联性,因此需要通过标准样本的建立,建立信号强度与元素数量之间的关联性。
1. 应用于环境科学领域:ICP-MS可以用于水、土壤和空气等环境样品中的痕量元素测定,且可以同时测定多种元素。
2. 应用于材料科学领域:ICP-MS技术可以分析材料中的有毒元素、金属元素及其化合物含量,以及其他重要元素和分子的含量。
激光剥蚀电感耦合等离子体质谱法测定高纯金中杂质元素摘要:本文探究了激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)测定高纯金中的杂质元素。
起首,通过样品前处理、ICP-OES 和XRF等技术,确定了高纯金样品中的杂质元素含量。
然后,使用LA-ICP-MS法对样品进行测量,并使用外标校正法进行结果修正。
结果表明,该方法具有高准确性、高灵敏度和较低的检出限,可用于高纯金中微量元素的精确测定。
关键词:激光剥蚀;电感耦合等离子体质谱法;高纯金;杂质元素;外标校正法引言:高纯金是一种重要的材料,广泛应用于电子、半导体和高温超导等领域。
由于其高纯度,通常状况下仅允许少许杂质元素存在。
因此,准确测定高纯金中杂质元素的含量是分外重要的。
传统的测量方法通常使用ICP-OES、ICP-MS和XRF等技术,但这些方法通常需要破坏样品结构或需要复杂的前处理过程。
近年来,激光剥蚀电感耦合等离子体质谱法(LA-ICP-MS)已经成为测定高纯金中杂质元素含量的一种新方法。
与传统方法相比,LA-ICP-MS具有分外好的灵敏度和准确性,而且不需要破坏样品结构。
本文旨在探究LA-ICP-MS测定高纯金中杂质元素的适用性和精度。
试验与方法:试验接受电感耦合等离子体质谱仪(Agilent 8800),激光系统为NewWave Research UP193FX,激光参数如下:重复频率1 Hz,能量密度100 mJ/cm2,脉冲宽度20 ns。
为了减小激光剥蚀造成的影响,使用了2 mm的方形钨丝放置在样品底部,使样品与钨丝成短距离的垂直距离。
样品前处理接受洛氏硫酸提取法和预处理程序(Agilent Technologies)。
ICP-OES和XRF测量接受扫描电子显微镜(SEM)和能谱分析仪(EDS)协作实现。
结果与谈论:通过样品前处理、ICP-OES和XRF等技术,确定了高纯金样品中的杂质元素含量。
结果表明,高纯金样品中主要杂质元素为铁、镍、银、钴和铬等,其含量均低于10 ppm。
第41卷 第2期2024年4月WORLD NUCLEAR GEOSCIENCE世界核地质科学Vol.41 No.2April 2024熊超,郭冬发,李伯平,等. 基于LA-ICP-MS 表面原位分析技术测定热电离质谱仪灯丝支架上铀的沉积分布[J].世界核地质科学,2024,41(2):376-385.doi :10.3969/j.issn.1672-0636.2024.02.014XIONG Chao ,GUO Dongfa ,LI Boping ,et al. Determination of uranium deposition distribution on filament support of TIMS based on LA-ICP-MS surface in-situ analysis technology[J].World Nuclear Geoscience ,2024,41(2):376-385 (in Chinese).基于LA-ICP-MS 表面原位分析技术测定热电离质谱仪灯丝支架上铀的沉积分布熊超,郭冬发,李伯平,汤书婷,刘桂方,刘瑞萍,王娅楠,乔麓伊核工业北京地质研究院,北京 100029摘要 热电离质谱法(Thermal ionization mass spectrometry ,简称TIMS )是一种测量同位素丰度比的经典分析方法,在地质学和核工业领域得到广泛应用。
热电离质谱法测铀同位素丰度比时一般采用三带结构,由于铀的第一电离能较高,需要较高的电离温度,长时间测试蒸发出铀化合物或电离出的铀离子在灯丝支架上沉积,影响灯丝支架上悬浮高压与源电压间的绝缘电阻,降低两者之间的电压差,导致绝大部分离子因动能不足无法进入离子透镜,最终影响离子流的稳定性,引起测试时信号产生波动。
针对热电离质谱仪灯丝支架铀沉积导致的灯丝支架绝缘失效问题,采用激光剥蚀电感耦合等离子体质谱法(Laser ablation inductively coupled plasma mass spectrometry ,简称LA-ICP-MS )对灯丝支架铀沉积分布进行了分析,取得以下结果:建立了LA-ICP-MS 原位表面分析技术,其最佳激光频率为10 Hz ,能量密度为6 J·cm -2,束斑直径为60 μm 。
第五章微量元素分析-单矿物微量元素分析(LA-ICP-MS)内容一LA-ICP-MS概况二激光剥蚀器系统结构三激光器类型四元素分馏效应五LA-ICP-MS的应用广州地球化学研究所LA-ICP-MS一LA-ICP-MS 概况中国地质大学(武汉)国家重点实验室LA-ICP-MS 分室Agilent 7500a ICP-MSExcimer LaserL aser A blation (C oupled P lasma简称:LA-ICP-MS, LAM-ICP-MSLA-ICPMS, LAM-ICPMSz制样简单z高灵敏度z低背景z谱图简单z低检出限L i B e B N aM g A l P kC aS c T i V C rM n F eC o N iC u Z n 0.0010.010.1L i m i t o f dMajor methods of microanalysisElectron microprobe(EMP):>0.1% Ion probe including SHRIMP、Cameca:Expensive and slowLA-ICP-MS: Less expensive, fast其基本原理是将激光微束聚焦于样品表面使之熔蚀气化,由载气将剥蚀下来的微粒载入到等离子体中电离,再经质谱系统分析检测。
激光剥蚀是把固体裂解为蒸气和微小颗粒物的物理过程。
Mo LaCe PrNd Sm Th UK Ca Sc Ti VCr Mn Fe Ge As Se CsBa Hf Ta WReRb Sr YZr Nb Mo Ru Sb Te二激光剥蚀器系统结构该系统主要由光束传输光学系统、样品池(剥蚀室)和观察系统组成。
光束传输光学系统是由一个或更多的介电反射镜组成,其作用是把光束反射至聚焦物镜上。
光束传输系统可以通过聚焦或散焦作用,改变和控制剥蚀孔径的大小。
样品池是一个带有光学窗口的石英或光学的玻璃室,玻璃室中有一个样品固定台,不用在空气中打开样品室就可以旋转或在X-Y方向移动。
ICP-MS基本原理ICP-MS(Inductively Coupled Plasma Mass Spectrometry)是一种高灵敏度、高选择性和高分辨率的元素分析技术,广泛应用于环境监测、食品安全、地质矿产、生物医药等领域。
其基本原理是利用高温感应耦合等离子体(ICP)产生的离子流,经过质谱仪的分析,实现对样品中元素的快速、准确检测和定量分析。
ICP-MS的基本原理可以分为三个主要步骤,样品进样与离子化、离子分离与检测、数据分析与结果输出。
首先,样品经过适当的预处理后,以气体或液体的形式进入ICP。
在高温的感应耦合等离子体中,样品中的元素被离子化,并形成带电荷的离子。
这些离子随后被引入质谱仪中进行分析。
其次,离子进入质谱仪后,首先经过离子分离装置进行分离。
在质谱仪中,离子根据其质量/电荷比(m/z)被分离并聚焦成一个离子束。
然后,这些离子被分别加速、偏转和聚焦,最终击中检测器。
检测器接收到的离子信号被转换为电信号,并经过放大、数字化处理后,形成质谱图。
最后,通过数据分析软件对质谱图进行处理,得到各个元素的相对丰度和绝对含量。
同时,ICP-MS还可以进行同位素比值的测定,以实现更加精确的元素定量分析。
这些数据可以用于研究样品的成分、污染物含量、地球化学特征等方面。
总的来说,ICP-MS技术基于高温等离子体和质谱仪的联合应用,能够实现对样品中元素的高灵敏度、高选择性和高分辨率的分析。
其在环境监测、食品安全、地质矿产、生物医药等领域具有重要的应用价值。
随着技术的不断进步,ICP-MS在元素分析领域的地位将会更加突出,为人类的健康和环境保护提供更加可靠的技术支持。
地球化学分析方法微量元素和同位素地球化学的飞速发展,主要得益于基础科学理论的渗透和现代测试技术的充分应用。
地质样品的元素和同位素地球化学分析主要考量三个方面:准确度、精确度和仪器检测限。
准确度是指测量值和真实值之间的接近程度;精确度是指分析测试的可靠性,也即测试结果的可重复性;检测限是指能够被所使用测试方法检测到的最低浓度。
事实上,尽管可以参考标准样品的推荐值来检测分析样品的值,但确定样品的真实值非常困难。
所以从某种程度上来说,精确度比准确度更为重要,因为对于一套由同一实验室分析的数据,成分的相对差异可以用来推断地球化学过程。
下面简要介绍一下在岩石地球化学研究中常用的几种分析测试方法。
(一)X射线荧光光谱X射线荧光光谱(XRF)的原理是基于用X射线激发样品,使之产生二次x射线,而每个元素都有特征二次x射线波长,因此,加入校正标准,通过测不同元素特征二次X射线的强度就可以用来确定元素的浓度。
典型岩石样品的XRF分析有两种不同形式的样品制备方法。
一种是将均匀的样品粉末压片来分析微量元素;另外一种是由岩石粉末与亚硼酸锂或者四方硼酸盐混合并熔融制成玻璃片来分析主量元素。
XRF分析是目前用于分析硅酸盐全岩样品最常用的方法,在微量元素分析上也有应用。
该方法的适用性广、分析快速,能够分析80多种元素,检测限可以达到几个ppm。
XRF分析方法的主要缺陷是不能分析比钠(原子序数一11)轻的元素。
(二)电子探针分析电子探针分析(EMPA)的原理与XRF十分相似,只是前者用的是电子束而不是X射线来激发样品而已。
通过分析激发的二次x射线的波长,相对于标样记录峰的面积,用适当的模型进行校正,可以将峰的强度转化为浓度。
电子探针主要用于矿物的主量元素分析,也可扩大束斑直径对隐晶质岩石或岩石熔融而成的玻璃进行主量元素分析。
另外,利用长的计数时间和精确的背景测量,电子探针的检测限也可延伸到微量元素的范围,满足分析部分微量元素的要求。
化学化工C hemical EngineeringICP-MS法测定地矿样品中高低含量稀土元素邓长生(核工业二一六大队 核工业新疆理化分析测试中心,新疆 乌鲁木齐 830011) 摘 要:针对地矿样品中的不同含量的稀土元素测定,本文采用两种前处理方式:敞开酸溶和碱熔法,通过选择合适的内标元素和测定同位素后经ICP-MS进行准确测定。
酸溶法采用加入1毫升硫酸以达到样品完全分解的目的。
对于稀土含量不高的样品,酸溶法的检出限在0.02g/g~0.3g/g之间,相对偏差在5%以内,相对标准偏差在1.99%~5.05%之间。
对于高含量稀土矿石样品,碱熔法的结果优于酸溶法。
关键词:ICP-MS;地矿样品;稀土元素;酸溶;碱熔中图分类号:P575 文献标识码:A 文章编号:1002-5065(2018)05-0216-2Determination of Rare Earth Elements with High and Low Contents in the Mineral Samples by ICP-MSDENG Chang-sheng(Geology Party No.216, CNNC, Physical and Chemistry Analysis Institute of Xinjiang Nuclear Industry Urumqi ,Urumqi 830011,China)Abstract: In view of the determination of high and low rare-earth elements in mineral samples, this paper uses two kinds of pretreatment methods: open acid solution and alkali fusion method. By selecting appropriate internal standard elements and measuring isotopes, the results can be measured accurately by ICP-MS. The sample can be completely decomposed by adding 1 ml of sulfuric acid in Acid soluble. For samples with low rare-earth content, acid solution was appropriate ,because it’s detection limit was (0.02~0.3) g/g and relative deviation was within 5% and relative standard deviation is between 1.99% ~5.05%. For high content rare earth ore samples, the result of alkali fusion is better than that of acid dissolution.Keywords: ICP-MS; Mineral samples; Rare earth element; Acid solution; alkali melting稀土元素传统分析方法主要有重量法、滴定法、分光光度法、荧光光度法、原子吸收法、发射光谱法等。