点集拓扑学授课人林寿共35页
- 格式:ppt
- 大小:3.66 MB
- 文档页数:35
第四章连通性P123 习题2.设A1,A2,B1,B2都是拓扑空间X的子集,证明:集合A1⋃A2和B1⋃B2是隔离子集当且仅当对于任何i,j∈{1,2},集合Ai ,Bj是隔离的。
证:由于[(A1⋃A2)⋂(21BB⋃]⋃[(B1⋃B2)⋂(21AA⋃)]=}2,1{,)]()[(∈⋂⋃⋂j iijjiABBA由隔离子集的定义立即得证3.设A,B是拓扑空间X的隔离子集,证明:如果A⋃B是开集(闭集),则A,B是开集(闭集)。
证明:由于A,B是X的隔离子集,则X1=A⋃B是X中不连通子集。
由定理4.1.1知,A,B 为X1的非空开子集,也为非空闭子集。
若X1=A⋃B为开(闭)子空间,则A,B必为开(闭)集。
4.有限补空间和可数补空间何时是连通的?何时不是连通的?给出结论和证明。
解:设X为有限补空间,Y为可数补空间,若X为有限集,则X中每个开集同时为闭集,由定理4.1.1此时X为不连通的。
若Y为可数集,则Y中每个开集同时为闭集,由定理4.1.1此时Y为不连通的。
5.设J和I是X的两个拓扑,I⊂J,证明:若(X,J)是连通的,则(X,I)也是连通的。
证:设i:(X,J)→(X,I)为恒同映射。
由I⊂J,则i为连续的,由定理4.1.8立即得结论。
6.设A是拓扑空间X的一个连通子集,B是X的一个既开又闭的集合。
证明:如果A⋂B≠φ,则A⊂B证明:若B=X,则证毕若B⊂X,则X=B⋃(X\B),从而X不是连通空间。
A=A⋂X=(A⋂B)⋃[A⋂(X\B)]由A为连通子集,A⋂B≠φ,必有A⋂(X\B)≠φ所以 A ⊂B9.设Y 是拓扑空间X 的一个子集,证明:Y 是X 的一个不连通子集当且仅当X 中存在两个非空集合A 和B 使得Y ⊂ A ⋃B ,φ≠⋂B A ,Y ⋂A φ≠,Y ⋂B φ≠成立。
证:⇐显然⇒由Y 不连通,则存在X 的隔离子集A ,B ,使得Y ⊂Y =A ⋃B=B A ⋃=B A ⋃, 所以A =A ⋂Y =A ⋂(A ⋃B )=A ⋃(A ⋂B )=A 所以A 为闭集,同理B 为闭集 所以B A ⋂=A ⋂B φ=若Y ⋂A φ=则Y ⊂B ,所以Y ⊂B =B 所以Y ⋂A=B ⋂A φ=,矛盾 所以Y ⋂A φ≠ ,同理Y ⋂B φ≠。
《点集拓扑》课件一、教学内容本节课的教学内容来自于教材《数学分析》的第十章第二节,主要内容包括点集拓扑的基本概念、拓扑空间的定义及其性质、以及一些常见的拓扑空间。
具体内容包括:1. 点集拓扑的基本概念:邻域、开集、闭集、连通性等。
2. 拓扑空间的定义及其性质:拓扑空间是一个集合及其上的一组开放集的系统。
3. 常见的拓扑空间:欧几里得空间、度量空间、范数空间等。
二、教学目标1. 理解点集拓扑的基本概念,能够熟练运用拓扑空间的概念描述集合的性质。
2. 掌握拓扑空间的定义及其性质,能够判断给定的集合是否构成拓扑空间。
3. 熟悉常见的拓扑空间,能够理解不同拓扑空间之间的联系和区别。
三、教学难点与重点1. 教学难点:拓扑空间的定义及其性质,特别是连通性的理解。
2. 教学重点:点集拓扑的基本概念,以及常见拓扑空间的理解。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材《数学分析》、笔记本、文具。
五、教学过程1. 实践情景引入:通过生活中的实例,如房间内的家具布局,引出点集拓扑的基本概念。
2. 点集拓扑的基本概念:介绍邻域、开集、闭集、连通性等概念,并通过图形和实例进行解释。
3. 拓扑空间的定义及其性质:引导学生理解拓扑空间的定义,并通过实例说明拓扑空间的特点。
4. 常见的拓扑空间:介绍欧几里得空间、度量空间、范数空间等常见的拓扑空间,并通过图形和实例进行解释。
5. 课堂练习:给出一些具体的例子,让学生判断是否构成拓扑空间,以及识别给定的集合的拓扑性质。
六、板书设计1. 点集拓扑的基本概念:邻域、开集、闭集、连通性。
2. 拓扑空间的定义及其性质:拓扑空间是一个集合及其上的一组开放集的系统。
3. 常见的拓扑空间:欧几里得空间、度量空间、范数空间。
七、作业设计(1)集合R上的二元组(x,y)构成的集合。
(2)集合N上的自然数构成的集合。
答案:(1)构成拓扑空间,拓扑由所有形如(∞,a)∪(a,+∞)的开集构成。
河北师大点集拓扑优质课件 1[1]0一、教学内容本节课我们将学习《点集拓扑》教材的第一章“拓扑空间与连续性”的第3节“紧致性”。
具体内容包括:理解紧致性的概念、探讨紧致空间的性质、掌握闭区间上的连续函数的属性以及探讨紧致性与有限覆盖定理之间的关系。
二、教学目标1. 让学生理解并掌握紧致性的定义,能够识别常见的紧致空间。
2. 培养学生运用紧致性解决实际问题的能力,理解紧致性在拓扑空间中的重要性。
3. 让学生掌握闭区间上连续函数的性质,并能运用这些性质解决相关问题。
三、教学难点与重点重点:紧致性的定义及性质,闭区间上连续函数的性质。
难点:理解紧致性与其他拓扑性质之间的关系,运用紧致性解决实际问题。
四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 实践情景引入:通过展示地球仪上的紧致集合(如大陆),引导学生思考紧致性在实际生活中的应用。
2. 知识讲解:(1) 紧致性的定义:介绍紧致性的概念,通过示例让学生理解并掌握紧致集合的特点。
(2) 紧致空间的性质:讲解紧致空间的性质,如闭集、有限覆盖定理等。
(3) 闭区间上连续函数的性质:介绍闭区间上连续函数的性质,如有界性、最大值最小值定理等。
3. 例题讲解:讲解典型例题,引导学生运用所学知识解决实际问题。
4. 随堂练习:布置相关练习题,让学生巩固所学知识。
六、板书设计1. 紧致性的定义2. 紧致空间的性质3. 闭区间上连续函数的性质4. 典型例题及解题方法七、作业设计1. 作业题目:(2) 设f(x)在闭区间[0,1]上连续,证明f(x)在[0,1]上有界。
2. 答案:(1) A为紧致集合,B不为紧致集合。
(2) 证明:由于闭区间[0,1]为紧致集合,根据闭区间上连续函数的性质,f(x)在[0,1]上有界。
八、课后反思及拓展延伸1. 反思:本节课学生对紧致性的理解程度,以及对闭区间上连续函数性质的掌握情况。
河北师大点集拓扑课件第五章一、教学内容本节课我们将学习《点集拓扑》教材第五章的内容,主要涉及拓扑空间的连通性及其性质。
具体包括连通性的定义、性质及其应用,本章的目的是让学生理解并掌握连通性的概念,学会判断不同拓扑空间连通性的方法。
二、教学目标1. 让学生理解并掌握连通性的定义,能够正确运用到实际问题中。
2. 培养学生运用连通性的性质分析、解决拓扑空间问题的能力。
3. 培养学生的空间想象力和逻辑思维能力。
三、教学难点与重点1. 教学难点:连通性的性质及其应用。
2. 教学重点:连通性的定义、判断方法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:教材、笔记本、铅笔。
五、教学过程1. 实践情景引入(5分钟)利用多媒体课件展示一些具有连通性的实际例子,如地球表面的地图、电路图等,引导学生思考这些例子中的共同特征。
2. 理论知识讲解(10分钟)讲解连通性的定义、性质,通过例题讲解,让学生理解并掌握连通性的判断方法。
3. 例题讲解(10分钟)出示例题,引导学生运用连通性的定义和性质进行分析,讲解解题思路和步骤。
4. 随堂练习(5分钟)出示与例题相似的问题,让学生独立完成,巩固所学知识。
5. 互动讨论(5分钟)学生之间相互讨论解题思路,教师巡回指导,解答学生的疑问。
7. 作业布置(5分钟)布置课后作业,强调作业的重要性,要求学生按时完成。
六、板书设计1. 连通性的定义2. 连通性的性质3. 判断连通性的方法4. 例题及解题步骤七、作业设计1. 作业题目:(2)证明:若X是连通的,Y是连通的,则X×Y也是连通的。
2. 答案:(1)①连通;②不连通。
(2)略。
八、课后反思及拓展延伸1. 课后反思:本节课学生对连通性的理解和应用方面有所提高,但在判断连通性的方法上还存在一定困难,需要在今后的教学中加强训练。
2. 拓展延伸:鼓励学生课后阅读教材相关章节,了解连通性的其他性质和应用,提高自身拓扑空间思维能力。
《点集拓扑学》教学大纲课程名称:《点集拓扑学》Point Set Topology课程性质:数学与应用数学专业必修课学时数:36教材:《点集拓扑讲义》熊金城编著.高等教育出版社, 2011年12月第4版.主要参考书:《点集拓扑学》徐森林编著,高等教育出版社,2007年7月第1版.《基础拓扑学》胡适耕编著,华中科技大学出版社,2007年8月第1版.《基础拓扑学讲义》尤承业编著,北京大学出版社,1997年11月第1版.《拓扑学》 [美] 芒克里斯编著,熊金城等翻译,机械工业出版社,2006年4月第1版. 授课方式:课堂讲授为主所属院系:数学学院数学与应用数学系课程基础:《数学分析》、《实变函数论》一、课程简介拓扑学是近代数学的三大基础之一,是研究抽象空间的理论的一门学科,它具有高度的概括性和抽象性.点集拓扑学产生于19世纪.G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果.1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始.泛函分析的兴起,希尔伯特空间和巴拿赫空间的建立,促进了把点集当作空间来研究.数学分析研究的中心问题是极限,而收敛与连续又是极限的基本问题.为把收敛与连续的研究推广到一般集合上,需要在一般集合上描述与点或与集合“邻近”的概念.如何描述“邻近”,可以用“距离”,但“距离”与“邻近”并无必然的联系.1914年F.豪斯道夫开始考虑用“开集”来定义拓扑.对一个非空集合X,规定X的每点有一个包含此点的子集作成的子集族,满足一组开集公理(即仿照欧几里得空间邻域所具特性给出的一组性质).该子集族中的每个集合称为这点的一个邻域,这就给出了X的一个拓扑结构,X连同此拓扑结构称为一个拓扑空间.X的每点有邻域,故可研究一点的邻近,由此可仿照微积分的方法定义两个拓扑空间之间的连续映射的概念.若一个映射连续,且存在逆映射,逆映射也连续,则称此映射为同胚映射.具有同胚映射的两个拓扑空间称为同胚的(直观地说即两个空间相应的图形从一个可连续地形变为另一个).要证明两个空间同胚,只要找到它们之间的同胚映射即可.在欧几里得直线上,作为子空间,两个任意的闭区间同胚;任意两开区间同胚;半开半闭的区间[c,d)与[a,b)同胚;二维球面挖去一个点S2-p与欧几里得平面K2同胚.要证明两个拓扑空间不同胚,需证明它们之间不存在同胚映射.方法是找同胚不变量或拓扑不变性(即在同胚映射下保持不变的性质);第一个空间具有某同胚不变量,另一个空间不具有,则此二空间不同胚.一般拓扑学中常见的拓扑不变性有连通性、道路连通性、紧性、列紧性、分离性等.在历史上F.豪斯多夫提出了分离空间;弗雷歇看出了紧性与列紧性有密切关系;帕维尔·萨穆伊洛维奇·乌雷松对紧空间进行了系统研究,且在拓扑空间可否变量化的问题上作出了贡献;1937年H.嘉当引进了“滤子”的概念,能进一步刻画一致收敛,使收敛的更本质的属性揭示了出来;维数的问题是E.嘉当在研究皮亚诺曲线(一种可填满整个正方形的“曲线”)时提出的,1912年H.庞加莱给出定义,由乌雷松等人加以改进.二、教学目的点集拓扑近代数学的三大基础之一,是研究抽象空间的理论的一门学科.该课程从点集拓扑学的发展简史出发,深入浅出地阐述了点集拓扑学的基本理论、基本问题和基本方法.内容包括:点集拓扑基础、拓扑空间与连续映射、子空间、积空间、商空间及有关可数性的公理等.其中各部分主题鲜明,逻辑性强,通过对各部分内容由浅入深的讲解,使学生透彻地理解基本概念,努力将每个知识点与中学数学的知识及已经学过的大学其它数学课程(例如实变函数论)联系起来,便于学生比较理解,增加对知识背景的认识.三、教学要求本课程研究点集拓扑学的基本理论和基本方法。
点集拓扑学教案为开设数学专业本科自学考试及宁德师专数学系数学教育专业“点集拓扑”课程,按熊金城《点集拓扑讲义》(第三版,北京:高等教育出版社,2003)第一至七章编写的教案。
自考生授课30学时,专科生授课45学时。
教学内容与进度安排如下。
章节自考生授课主要内容时数1朴素集合论22.1-2.3度量空间、拓扑空间、连续映射、邻域42.4-2.7闭集闭包、内部、边界、基、序列43子空间、积空间、商空间34连通、连通分支、局部连通、道路连通35第一、二可数性、可分性、Lindelöf性36.1-6.4各种分离性公理T0-T436.5-6.6分离公理的运算保持、Urysohn度量化定理27.1-7.3紧致性、分离性及R n中的紧致子集37.4-7.5各种紧致性、度量空间中的紧致性27.6局部紧致空间、仿紧致空间1章节专科生授课主要内容时数备注拓扑学的起源1一朴素集合论5习题课时11.1集合、映射与关系21.2无限集、选择公理2二拓扑空间与连续映射14习题课时22.1度量空间与连续映射3不讲附录2.2拓扑空间与连续映射22.3邻域与邻域系1不讲定理2.3.32.4导集、闭集、闭包3不讲例2.4.4,定理2.4.8 2.5内部、边界12.6基与子基1部分证明定理 2.6.3,邻域基及相关内容在5.1中介绍2.7拓扑空间中的序列1三子空间、有限积空间、商空间5习题课时13.1子空间 1.5嵌入在6.6中介绍3.2积空间 1.53.3商空间1例3.3.3起不讲四连通性6习题课时14.1连通空间24.2连通性的某些简单应用14.3连通分支0.54.4局部连通空间14.5道路连通空间0.5道路连通分支不讲五有关可数性的公理5习题课时15.1第一与第二可数性公理25.2可分空间1定理5.2.1不讲5.3Lindelöf空间1六分离性公理8习题课时26.1T0、T1、Hausdorff空间 1.56.2正则、正规、T3、T4空间1例6.2.2讲部分6.3Urysohn引理和Tietze扩张定理0.5不讲定理6.3.1,6.3.4的证明6.4完全正则空间,Tychonoff空间16.5分离性公理与子空间、积空间和商空间16.6可度量化空间1定理6.6.1讲部分七紧致性10习题课时3(含总复习)7.1紧致性 2.5定理7.1.6讲部分7.2紧致性与分离性公理0.5引理7.3.2用分析中的结论7.3n维欧氏空间R n中的紧致子集0.57.4几种紧致性以及其间的关系 1.57.5度量空间中的紧致性17.6局部紧致空间,仿紧致空间1定理7.6.8不讲第一章朴素集合论点集拓扑学(Point-set Topology)现称一般拓扑学(General Topology),它的起源与出发点都是集合论.作为基本的点集拓扑学知识,所需的只是一些朴素集合论的预备知识.本章介绍本书中要用到的一些集合论内容,主要涉及集合及集族的运算、等价关系、映射、可数集、选择公理等.作为一教材,讲义对各部分内容均有较系统的论述,作为授课,我们只强调一些基本内容,而对已有过了解的知识不提或少提.记号:Z,Z+,R,Q分别表示整数集,正整数集,实数集和有理数集.一.集合的运算幂集P(X),交∩、并∪、差-(补,余CA,A').运算律:De Morgan律:(1)A-(B∪C)=(A-B)∩(A-C)(2)A-(B∩C)=(A-B)∪(A-C)利用集合的包含关系证明(1).类似可定义任意有限个集的交或并,如记A i.A1∪A2∪…∪A n=(A1∪…∪A n-1)∪A n=∪i≤n A i=∪ni=1规定0个集之并是∅,不用0个集之交.二.关系R是集合X的一个关系,即R⊂X×X,(x,y)∈R记为xRy,称x与y是R相关的.R称为自反的,若∀x∈X,xRx;R称为对称的,若xRy,则yRx;R称为传递的,若xRy,yRz,则xRz.等价关系:自反、对称、传递的关系.如, Δ(X)={(x, x)|x∈X},恒同关系,它是等价关系;{(x,y)|x,y∈R,x<y},小于关系,它是传递的,但不是对称的、不是自反的.设R是X上等价关系,∀x∈X,x的R等价类或等价类[x]R或[x]为{y∈X|xRy},[x]R的元称为[x]R的代表元;商集X/R={[x]R|x∈X}.定理1.4.1设R是非空集合X的等价关系,则(1)∀x∈X,x∈[x]R;(2)∀x,y∈X,或者[x]R=[y]R,或者[x]R∩[y]R=∅.证(2).设z∈[x]R∩[y]R,则zRx,zRy,于是[x]R⊂[y]R且[y]R⊂[x]R,于是[x]R=[y]R.三.映射函数f: X→Y. ∀A⊂X,f(A)={f(x)|x∈A}像;∀B⊂Y,f-1(B)={x∈X|f(x)∈B}原像.满射、单射、一一映射(双射)、可逆映射、常值映射、恒同映射i X、限制f|A、扩张、内射i X|A: A→X.X i={(x1,…,x n)|x i∈X i,i≤n}到第i个坐标集集合X i,i≤n,笛卡儿积X1×X2×…×X n= Пi≤n X i=Пni=1X i的投射p i:X→X i定义为p(x)=x i,其中x=(x1,…,x n).对等价关系R,集合X到商集X/R的自然投射p:X→X/R定义为p(x)=[x]R.四.集族数列{x n}={x n}n∈Z+,有标集族{Aγ}γ∈Γ,指标集Γ,与{Aγ|γ∈Γ}不同,可记有标集族A={A}A∈A;类似地,定义其并∪γ∈ΓAγ(或∪A)、交∩γ∈ΓAγ(或∩A),不定义0个集的交.与有限集族有相同的运算律,如De Morgan律A-(∪γ∈ΓAγ)=∩γ∈Γ(A-Aγ),A-(∩γ∈ΓAγ)=∪γ∈Γ(A-Aγ).映射对应的集族性质:f(∪γ∈ΓAγ)=∪γ∈Γf(Aγ),f(∩γ∈ΓAγ)⊂∩γ∈Γf(Aγ),f-1(∪γ∈ΓBγ)=∪γ∈Γf-1(Bγ),f-1(∩γ∈ΓBγ)=∩γ∈Γf-1(Bγ).五.无限集通过一一映射来确定两集合的个数的多少.有限集(∅或与某{1,2,…,n}有一一映射),无限集,可数集(∅或存在X到Z+的单射),不可数集.易验证:有限集是可数集,可数集的子集是可数集,可数集的映像是可数集.定理1.7.3X是可数集⇔X是Z+的映像.由此,Q是可数集,两可数集的笛卡儿积集是可数集,可数个可数集之并集是可数集.定理1.7.8R是不可数集.利用Cantor对角线法证明开区间(0,1)中的实数不可数.直观上,集合A中元素的个数称为该集合的基数,记为card A,或|A|.|Z+|=ℵ0,|R|=ℵ.若存在从集合A到集合B的单射,则定义|A|≤|B|.连续统假设:不存在基数α,使得ℵ0<α<ℵ.选择公理:若A是由非空集构成的集族,则∀A∈A,可取定ε(A)∈A.由选择公理可证明,若α,β是基数,则下述三式中有且仅有一成立:α<β,α=β,α>β.第二章拓扑空间与连续映射本章是点集拓扑学基础中之基础,从度量空间及其连续映射导入一般拓扑学中最基本的两个概念:拓扑空间、连续映射,分析了拓扑空间中的开集、邻域、聚点、闭集、闭包、内部、边界、基与子基的性质,各几种不同的角度生成拓扑空间,及刻画拓扑空间上的连续性.§2.1度量空间与连续映射在R 上,|x-y|表示点x 与y 之间的距离.绝对值是一非负函数,具有三条重要性质.定义2.1.1设X 是一集合,ρ:X ⨯X →R .如果ρ满足正定性、对称性和三角不等式,则称ρ是X 的一个度量.(X,ρ)称为度量空间,ρ(x,y)表示两点x,y 之间的距离.例2.1.1实数空间R .ρ(x,y)=|x-y|,R 的通常度量.例2.1.2n 维欧氏空间R n =R ⨯R ⨯…⨯R .对于x ∈R n,记x=(x i ).定义ρ(x,y)=∑=n1i 2i i )y -(x ,R n 的通常度量,n 维欧氏空间.R 2称为欧氏平面或平面.例2.1.3Hilbert 空间H .H ={x=(x 1,x 2,…)|x i ∈R ,i ∈Z +;∑∞=1i 2ix <∞}.定义ρ(x,y)=∑∞=1i 2i i )y -(x ,则度量空间(H ,ρ)称为Hilbert 空间.例2.1.4离散度量空间.度量空间(X,ρ)称为离散的,若∀x ∈X,∃δx >0,使得不存在X 中的点y ≠x,满足ρ(x,y)<δx .如对集合X,按如下方式定义ρ:X ⨯X →R 是X 上的离散度量:⎩⎨⎧≠==y.x 1,y,x 0,y)(x,ρ定义2.1.2设(X,ρ)是度量空间.B(x,ε)={y ∈X |ρ(x,y)<ε}称为以x 为心,ε为半径的球形邻域,或ε邻域,或球形邻域.对(R ,|.|),B(x,ε)=(x-ε,x+ε).定理2.1.1度量空间(X,ρ)的球形邻域具有性质:(1)∀x ∈X,ε>0,x ∈B(x,ε);(2)∀x ∈X,ε1,ε2>0,∃ε>0,使B(x,ε)⊂B(x,ε1)∩B(x,ε2);(3)若y ∈B(x,ε),∃δ>0使B(y,δ)⊂B(x,ε).证(2)0<ε<min{ε1,ε2};(3)δ=ε-ρ(x,y),则B(y,δ)⊂B(x,ε).定义2.1.3X的子集A称为(X,ρ)的开集,若∀a∈A,∃ε>0,使B(a,ε)⊂A.每一球形邻域是开集.例2.1.5R中的开区间是开集.∀x∈(a,b),让ε=min{x-a,b-x},则B(x,ε)⊂(a,b).同样可证,无限开区也是开集.闭区间[a,b]不是开集.定理2.1.2度量空间的开集具有以下性质:(1)X,∅是开集;(2)两开集的交是开集;(3)任意开集族之并是开集.证(1)由定理2.1.1(1);(2),(3)由定理2.1.1(2).定义2.1.4设X是度量空间,x∈X,U⊂X.U称为x的邻域,若∃开集V,使x∈V⊂U.定理2.1.3U是X中点x的邻域⇔∃ε>0,使B(x,ε)⊂U.定义2.1.5设X,Y是两度量空间.f:X→Y, x0∈X,称f在x0连续,若∀f(x0)的球形邻域B(f(x0),ε)(∀ε>0),∃x0的球形邻域B(x0,δ)(∃δ>0),使f(B(x0,δ))⊂B(f(x0),ε)(当ρX(x,x0)<δ时,ρY(y,f(x0))<ε).称f在X连续,若f在X的每一点连续.定理2.1.4设X,Y是两度量空间.f:X→Y, x0∈X,那么(1)f在x0连续⇔若U是f(x0)的邻域,则f–1(U)是x0的邻域;(2)f在X连续⇔若U是Y的开集,则f–1(U)是X的开集.证(1)利用定义2.1.5,2.1.4.(2)“⇒”f–1(U)是每一点的邻域.“⇐”证每一点连续,利用(1).由此可见,度量空间的连续只与邻域或开集有关.它导入建立比度量空间更一般的拓扑空间的概念及其连续性.§2.2拓扑空间与连续映射定义2.2.1设T是集合X的子集族,若T满足:(1)X,∅∈T;(2)∀A,B∈T⇒A∩B∈T;(3)∀T1⊂T,∪T1∈T;称T是X的一个拓扑.(X,T)是拓扑空间,T的元称为X的开集.空间X的拓扑是X的全体开集的族.定义2.2.2(X,ρ)度量空间.Tρ由X的所有开集构成的族.(X,Tρ)称为由度量ρ诱导出的拓扑空间.简称Tρ为度量拓扑.度量空间⇒拓扑空间.例2.2.1平庸拓扑T={X,∅}.平庸空间.例2.2.2离散拓扑T=P(X).离散空间.X的每一子集是开集.由离散度量空间导出的拓扑是离散拓扑.∪∅}.例2.2.4有限补拓扑T={U⊂X|U'是X的有限子集}{验证T是X上的拓扑.(1)显然.(2)∀A,B⊂X,讨论A∩B时分两种情形,一是A,B中有一是∅,二是A,B都不是∅.(3)设T1⊂T,不妨设∃∅≠A0∈T1,利用De Morgan律.有限补空间.∪∅}.例2.2.5可数补拓扑T={U⊂X|U'是X的可数子集}{定义2.2.3可度量化空间.离散空间是可度量化空间.多于一点的平庸空间不是可度量化空间.度量化问题是点集拓扑学研究的中心问题之一.本书将在§6.6中给出该问题的一个经典的解.定义2.2.4X,Y是两拓扑空间.f:X→Y.称f连续,若Y中每一开集U的原象f-1(U)是X中的开集.定理2.2.1恒同映射连续.连续函数的复合是连续的.定义2.2.5f:X→Y称为同胚或同胚映射,若f是一一映射且f及f-1均连续.定义2.2.6称两空间X与Y同胚,或X同胚于Y,若存在从X到Y的同胚.定理2.2.2(2.2.3)恒同映射同胚(X与X同胚);f同胚⇒f-1同胚(若X与Y同胚,则Y与X同胚);同胚的复合是同胚(若X与Y同胚,且Y与Z同胚,则X与Z同胚).空间的同胚关系是等价关系.拓扑学的中心任务:研究拓扑不变性质.抽象化过程:欧氏空间→度量空间→拓扑空间;点距离→度量→开集.§2.3邻域定义2.3.1设(X,T)是拓扑空间.x∈X,U⊂X称为x的邻域,如果存在V∈T使x∈V⊂U;若U 是开的,U称为x的开邻域.定理2.3.1设U⊂X.U是X的开集⇔U是它的每一点的邻域.证由定义得“⇒”;利用开集之并为开得“⇐”.x在X的所有邻域构成的族称为x的邻域系,记为U x.定理2.3.2U x的性质:(1)X∈U x;∀U∈U x,x∈U;(2)U,V∈U x⇒U∩V∈U x;(3)U∈U x且U⊂V⇒V∈U x;(4)U∈U x⇒∃V∈U x使V⊂U且∀y∈V,V∈U y.证由定义2.3.1得(1);由开集的交是开集得(2);由定义2.3.1得(3);取V为满足x∈V⊂U的开集.由邻域系出发可建立拓扑空间的理论,显得自然,但不流行.利用邻域与开集的关系(定理2.3.1)导出开集,从U x(∀x∈X)具有定理2.3.2的性质的(1)-(4)出发,定义T={U⊂X|∀x∈U,U∈U x},则(X,T)是拓扑空间,且这空间中每一点x的邻域系恰是U x.详见定理2.3.3.定义2.3.2(点连续)映射f:X→Y称为在点x∈X连续,如果U是f(x)在Y中的邻域,则f-1(U)是x在X中的邻域.定理2.1.4保证了在度量空间中点的连续性与由度量导出的拓扑空间中的点的连续性的一致.另一方面,关于点的连续性,易验证(定理 2.3.4),恒等映射在每一点连续,两点连续的函数之复合仍是点连续的.定义2.2.4与定义2.3.2所定义的“整体”连续与每一“点”连续是一致的.定理2.3.5设f:X→Y. 则f连续⇔f在每一x∈X连续.证“⇒”若U是f(x)的邻域,∃开集V使f(x)∈V⊂U,x∈f-1(V)⊂f-1(U).“⇐”若U是Y的开集,∀x∈f-1(U),U是f(x)的邻域,f-1(U)是x的邻域,所以f-1(U)在X中开.§2.4导集、闭集、闭包定义2.4.1设A⊂X.x称为A的聚点(凝聚点,极限点),如果x的每一邻域U中有A中异于x 的点,即U∩(A-{x})≠∅.A的全体聚点之集称为A的导集,记为d(A).x称为A的孤立点,若x不是A的聚点,即存在x的邻域U使U∩(A-{x})=∅,即U∩A⊂{x}.例2.4.1X是离散空间.若A⊂X,则d(A)=∅.∀x∈X,取U={x},则U∩A⊂{x},所以x∉d(A).例 2.4.2X是平庸空间,A⊂X.若A=∅,则d(A)=∅;若|A|=1,则d(A)=X-A;若|A|>1,则d(A)=X.对于x∈X,若U是x的邻域,则U=X,于是U∩(A-{x})≠∅⇔A-{x}≠∅⇔A⊄{x},由此,易计算d(A).定理2.4.1A,B⊂X,则(1)d(∅)=∅;(2)A⊂B⇒d(A)⊂d(B);∪∪;(3)d(A B)=d(A)d(B)(4)d(d(A))⊂A d(A).∪证由定义2.4.1得(1)和(2).∪分别存在x的邻域U,V使得关于(3).由(2)得d(A)∪d(B)⊂d(A B)∪.设x∉d(A)d(B),∪)⊂{x}.U∩A⊂{x},V∩B⊂{x},令D=U∩V,则D∩(A B∪存在x的邻域U,使得U∩A⊂{x},取x的开邻域V⊂U,则V∩A=∅,关于(4).设x∉A d(A),∀y∈V,V∩(A-{y})=∅,y∉d(A),V∩d(A)=∅,x∉d(d(A)).定义2.4.2A⊂X称为X的闭集,如果d(A)⊂A.定理2.4.2A闭⇔A'开.证“⇒”∀x∈A',由于d(A)⊂A,存在x的邻域U使U∩A=∅,于是U⊂A'.“⇐”∀x∈A',A'∩A=∅, x∉d(A),所以d(A)⊂A.例2.4.3R的闭区间是闭集.∪+∞)开集.(a,b)不是闭集,因为a是聚点.[a,b]'=(-∞,a)(b,定理2.4.3记F是空间X的全部闭集族,则(1)X,∅∈F;(2)A,B∈F⇒A B∪∈F;(3)∅≠H⊂F⇒∩H∈H H∈F.证利用De Morgan定律及拓扑的定义.F={U'|U∈T}.直接验证可得(1)、(2).(3)令U={H'∣H∈H}.则∪H∈H H'∈T,从而∩H∈H H=∩H∈H H''=(∪H∈H H')'∈F.Cantor集(例2.4.4)是集合论、点集拓扑或实变函数论中是具有特别意义的例子,它说明R中的闭集可以是很复杂的,在此不介绍.∪称为A的闭包,记为A,A-或c(A).定义2.4.3A d(A)定理2.4.5对A,B⊂X,有(1)∅-=∅;(2)A⊂A-;(3)(A∪B)-=A-∪B-;(4)(A-)-=A-.∪∪∪∪∪∪A-∪B-.证(3)(A∪B)-=A B d(A B)=A d(A)B d(B)=(4)(A-)-=(A∪d(A))-=A-∪d(A)-=A d(A)d(d(∪∪A))=A-.上述4条确定了闭包运算,称为Kuratowski闭包公理,由此可建立拓扑空间的概念.事实上,记此运算为c(A),定义T={U⊂X|c(U')=U'},则(X,T)是拓扑空间,且这空间中每一c(A)=A-,详见定理2.4.8.关于闭包的几个相关结果:(1)x∈A-⇔对x的任一邻域有U∩A≠∅.(定义2.4.3后)(2)d(A)=(A-{x})-.(3)A闭⇔d(A)⊂A⇔A=A-.(定理2.4.4)(4)A-是闭集.(定理2.4.6)(5)A-是包含A的所有闭集之交,是包含A的最小闭集.(定理2.4.7:设F是包含A的所有闭集之交,则A⊂F⊂A-,A-⊂F,所以F=A-.)定义2.4.5(X,ρ)是度量空间.对非空的A⊂X,x∈X,定义ρ(x,A)=inf{ρ(x,y)|y∈A}.定理2.4.9对度量空间(X,ρ)的非空子集A,(1)x∈A-⇔ρ(x,A)=0;(2)x∈d(A)⇔ρ(x,A-{x})=0.证ρ(x,A)=0⇔∀ε>0,∃y∈A,ρ(x,y)<ε⇔B(x,ε)∩A≠∅⇔∀U∈U x, U∩A≠∅⇔x∈A-.定理2.4.10设f:X→Y,则下述等价(1)f连续;(2)若B闭于Y,则f-1(B)闭于X;(3)∀A⊂X,f(A-)⊂f(A)-.证(1)⇒(2)B是Y的闭集,B'是Y的开集,f-1(B')=f-1(B)'是X的开集,f-1(B)是X的闭集.(2)⇒(3)f(A)⊂f(A)-,A⊂f-1(f(A)-),A-⊂f-1(f(A)-),f(A-)⊂f(A)-.(3)⇒(1)设U是Y的开集,U'是Y的闭集且f(f-1(U')-)⊂f(f-1(U'))-⊂U'-=U',f-1(U')-⊂f-1(U'), f-1(U')=f-1(U)'是闭,f-1(U)是开.§2.5内部、边界定义2.5.1若A是x的邻域,则称x是A的内点.A的所有内点的集合称为A的内部,记为A︒.定理2.5.1对A⊂X,A︒=A'-',A-=A'︒'.证x∈A︒,由于A∩A'=∅,于是x∉A'-,从而x∈A'-'.反之,x∈A'-',x∉A'-,∃x的邻域V∩A'=∅, V⊂A,x∈A︒.因此,A︒=A'-'.从而A'︒=A''-'=A-',A︒-=A'︒'.定理2.5.3对A,B⊂X,有(1)X︒=X;(2)A︒⊂A;(3)(A∩B)︒=A︒∩B︒;(4)A︒︒=A︒.证(1)、(2)是显然的.(A∩B)︒=(A'∪B')-'=A'-'∩B'-'=A︒∩B︒.而A︒︒=A'-''-'=A'-'=A︒.关于内部的几个相关结果:(1)A是x的邻域⇔x∈A︒.(2)A︒是开集.(定理2.5.4)(3)A是开集⇔A=A︒.(定理2.5.2)(4)A︒是A所包含的所有开集之并,是含于A内的最大开集.(定理2.5.5)证(2)A︒=A'-'是开集.(3)A开⇔A'闭⇔A'=A'-⇔A=A'-'=A︒.(4)设O是含于A内的所有开集之并,A︒⊂O⊂A,O⊂A︒,所以O=A︒.定义2.5.2x称为A的边界点,若x的每一邻域,既含有A中的点又有A'中的点.A的边界点之集称为边界,记为∂A.定理2.5.6对A⊂X,有(1)∂A=A-∩A'-=∂(A');(2)A-=A︒∪∂A;(3)A︒=A--∂A.∪︒-)=A-.∪'-)=A-∩(A︒A∪-)∩(A︒A∪-∩A'-)=(A︒A证(2)A︒∪∂A=A︒(A(3)A--∂A=A--(A-∩A'-)=A--A'-=A-∩A'-'=A︒.§2.6基与子基度量空间→球形邻域→开集→拓扑.在度量空间中球形邻域的作用就是拓扑空间中基的作用.定义2.6.1设T是空间X的拓扑,B⊂T,如果T中每一元是B中某子集族之并,称B是X的基.所有单点集的族是离散空间的基.定理2.6.2设B⊂T.B为X的基⇔∀x∈X及x的邻域U x,∃V x∈B使x∈V x⊂U x.证“⇒”∃开集W x使得x∈W x⊂U x,∃B1⊂B使得W x=∪B1,∃V x∈B1⊂B使x∈V x⊂U x.“⇐”设U∈T,∀x∈U,∃V x∈B使x∈V x⊂U,从而{V x|x∈U}⊂B且U=∪x∈U V x.在度量空间中,所有球形邻域的族是度量拓扑的基(定理2.6.1).所有开区间的族是R的基.定理2.6.3拓扑空间X的基B满足:(i)∪B=X;(ii)∀B1,B2∈B,x∈B1∩B2,∃B3∈B使x∈B3⊂B1∩B2.反之,若集合X的子集族B满足(1)、(2),定义T={∪B1|B1⊂B},则T是X的以B作为基的唯一拓扑.证验证T是X的拓扑.(1)∅=∪∅.(2)先设B1,B2∈B,∀x∈B1∩B2,∃W x∈B使x∈W x⊂B1∩B2,于是B1∩B2=∪{W x|x∈B1∩B2}∈T.如果A1,A2∈T,设A1=∪B1,A2=∪B2,则A1∩A2=∪{B1∩B2| B1∈B1,B2∈B2}∈T.(3)设T1⊂T,∀A∈T1,∃B A⊂B,使得A=∪B A,那么∪T1=∪(∪{B A|A∈T1}).较强于(ii)且易于验证的条件是(ii')∀B1,B2∈B,B1∩B2∈B.例2.6.1实数下限拓扑空间.令B={[a,b)|a,b∈R,a<b},则B为R上一拓扑的基.这空间称为实数下限拓扑空间,记为R l.开区间是R l中的开集,因为(a,b)=∪i∈Z+[a+1/i,b).定义2.6.2设(X,T)是拓扑空间,S⊂T.若S的元之所有有限交构成的族是T的基,则称S是T的子基.S的元之有限交构成的族{S1∩S2∩…∩S n S∣i∈S,i≤n∈Z+}.显然,空间X的基是子基.∪-∞,b)b∣∈R}是R的子基.∣∈R}{(例2.6.2S={(a,+∞)a对照定理2.6.3,集合X的子集族S要作为子基生成X上的拓扑的充要条件是∪S=X.(定理2.6.4)映射的连续性可用基、子基来刻画或验证.定理2.6.5设X,Y是两拓扑空间,f:X→Y,下述等价:(1)f连续;(2)Y基B,使得B中每一元的原像在X中开;(3)Y有子基S,使得S中每一元的原像在X中开.证(3)⇒(2)设B是S的元之所有有限交构成的族,则B满足(2).(2)⇒(1)设U在Y中开,则U=∪B1,于是f-1(U)=∪{f-1(B)|B∈B1}在X中开.类似地,可定义点的邻域基与邻域子基的概念,同时用它们来验证映射的连续性等.在第五章中定义第一可数性时再介绍这些概念.§2.7拓扑空间中的序列可以与R中一样地定义序列、常值序列、子序列,见定义2.7.1,2.7.3.定义2.7.2X中序列x i→x.极限,收敛序列.平庸空间中任意序列收敛于空间中的任一点.数学分析中的一些收敛性质还是保留的,如常值序列收敛,收敛序列的子序列也收敛.(定理2.7.1)定理2.7.2A-{x}中序列x i→x⇒x∈d(A).证∀x的邻域U,U∩(A-{x})≠∅,所以x∈d(A).定理2.7.3f在x0连续且x i→x0⇒f(x i)→f(x0).证设U是f(x0)的邻域,则f-1(U)是x0的邻域,∃n∈Z+,当i>n时有x i∈f-1(U),从而f(x i)∈U.上述两定理的逆命题均不成立.例2.7.1设X是不可数集赋予可数补拓扑,则(1)在X中x i→x⇔∃n∈Z+,当i>n时有x i=x;(2)若A是X的不可数子集,则d(A)=X.证(1)的必要性.令D={x i|x i≠x,i∈Z+},则D'是x的邻域,∃n∈Z+,当i>n时有x i∈D',即x i=x.证(2)∀x的邻域U,A-{x}⊄U'(可数集),所以U∩(A-{x})≠∅,x∈d(A).定理2.7.2的逆命题不真.如例2.7.1,取定x0∈X,让A=X-{x0},则x0∈d(A),但A中没有序列收敛于x0.定理2.7.3的逆命题不真.取X是实数集赋予可数补拓扑,让i:X→R是恒等映射,若在X中x i→x,则在R中f(x i)→f(x),但i在x不连续,因为x在R的开邻域(x-1,x+1)的原像i-1((x-1, x+1))=(x-1,x+1)在X中不是开的.定理2.7.4设{x i}是度量空间(X,ρ)中的序列,则x i→x⇔ρ(x i,x)→0.证x i→x⇔∀x的邻域U,∃n∈Z+,当i>n时有x i∈U⇔∀ε>0,∃n∈Z+,当i>n时有x i∈B(x,ε)⇔∀ε>0,∃n∈Z+,当i>n时有ρ(x i,x)<ε⇔ρ(x i,x)→0.第三章子空间、积空间、商空间介绍三种从原有的拓扑空间或拓扑空间族构造新空间的经典方法,引入遗传性、可积性、可商性等概念,这些是研究拓扑性质的基本构架.§3.1子空间对于空间X的子集族A及Y⊂X,A在Y上的限制A|Y={A∩Y|A∈A}.(定义3.1.2)引理3.1.2设Y是空间(X,T)的子集,则T|Y是Y上的拓扑.证按拓扑的三个条件逐一验证.如,设T1⊂T|Y,∀A∈T1,∃B A∈T,使得A=B A∩Y,于是∪T1=∪{B A∩Y|A∈T1}=(∪{B A|A∈T1})∩Y∈T|Y.定义3.1.3对Y⊂X,(Y,T|Y)称为(X,T)的子空间,T|Y称为相对拓扑.“子空间”=“子集”+“相对拓扑”.易验证,若Z是Y的子空间,且Y是X的子空间,则Z是X的子空间.(定理3.1.4)定理3.1.5(3.1.7)设Y是X的子空间,y∈Y,则(1)若T,T*分别为X,Y的拓扑,则T*=T|Y;(2)若F,F*分别为X,Y的全体闭集族,则F*=F|Y;(3)若U y,U y*分别为y在X,Y中的邻域系,则U y*=U y|Y;(4)若B是X的基,则B|Y是Y的基.证(2)F*∈F*⇔Y-F*∈T|Y⇔Y-F*=U∩Y,U∈T⇔F*=(X-U)∩Y,U∈T⇔F*∈T|Y.(4)∀U开于Y,∃X的开集V,使得U=V∩Y,∃B1⊂B,满足V=∪B1,则U=∪(B1|Y).在R的子空间(0,+∞)中(0,1]是闭集.定理3.1.6设Y是X的子空间,A⊂Y,则(1)d Y(A)=d X(A)∩Y;(2)c Y(A)=c X(A)∩Y.证(1)y∈d Y(A),∀y在X中的邻域U,U∩(A-{y})⊃(U∩Y)∩(A-{y})≠∅,所以y∈d X(A)∩Y.反之,设y∈d X(A)∩Y,∀y在Y中的邻域V,∃y在X中的邻域U使V=U∩Y,于是V∩(A-{y})=(U∩(A-{y}))∩Y=U∩(A-{y})≠∅,所以y∈d Y(A).∪X(A)∩Y)=(A d∪c X(A)∩Y.∪X(A))∩(A Y)=∪Y(A)=A(d(2)c Y(A)=A d§3.2有限积空间就平面的球形邻域B d(x,ε)而言,我们知道球形邻域内含有方形邻域,方形邻域内含有球形邻域.从基的角度而言,形如B1(x1,ε1)⨯B2(x2,ε2)的集合就是平面拓扑的基了.对于两个拓扑空间X,Y,在笛卡儿积集X⨯Y中可考虑形如U⨯V的集合之全体,其中U,V分别是X,Y的开集.对于有限个空间X1,X2,…,X n,可考虑形如U1⨯U2⨯…⨯U n的集合.定理3.2.2设(X i,T i)(i≤n)是n个拓扑空间,则X=X1⨯X2⨯…⨯X n有唯一的拓扑,以X的子集族B={U1⨯U2⨯…⨯U n|U i∈T i,i≤n}为它的一个基.证验证B满足定理2.6.3的条件(i),(ii').(1)X=X1⨯X2⨯…⨯X n∈B,∪B=X;(2)若U1⨯U2⨯…⨯U n, V1⨯V2⨯…⨯V n∈B,则(U1⨯U2⨯…⨯U n)∩(V1⨯V2⨯…⨯V n)=(U1∩V1)⨯…⨯(U n∩V n)∈B.定义3.2.2以定理3.2.2中B为基生成X1⨯X2⨯…⨯X n上的唯一拓扑,称为拓扑T1,T2,…,T n的积拓扑.(X,T)称为(X1,T1),…,(X n,T n)的(有限)积空间.定理3.2.4设X=X1⨯X2⨯…⨯X n是积空间,B i是X i的基,则B*={B1⨯B2⨯…⨯B n|B i∈B i,i≤n}是积拓扑T的基.证利用定理2.6.2.设x ∈U ∈T ,∃U i ∈T i 使x ∈U 1⨯U 2⨯…⨯U n ⊂U,∃B i ∈B i 使x i ∈B i ⊂U i ,那么x ∈B 1⨯B 2⨯…⨯B n ⊂U 1⨯U 2⨯…⨯U n ⊂U.例3.2.1形如(a 1,b 1)⨯(a 2,b 2)⨯…⨯(a n ,b n )的集合构成 n 的基.设(X 1,ρ1),(X 2,ρ2)是两个度量空间.令ρ(x,y)=22222211)y ,x ()y ,x (ρρ+,则ρ是X 1⨯X 2上的度量,导出X 上的度量拓扑T .对于n 个度量空间之积可类似地定义.(定义3.2.1)定理3.2.1度量空间的有限积:积拓扑与度量拓扑一致.验证n=2的情形.易验证B 1(x 1,ε/2)⨯B 2(x 2,ε/2)⊂B(x,ε)⊂B 1(x 1,ε)⨯B 2(x 2,ε),于是每一B(x,ε)是积拓扑的开集,且每一B 1(x 1,ε)⨯B 2(x 2,ε)是度量拓扑的开集,所以导出相同的拓扑.定理3.2.5有限积空间X=X 1⨯X 2⨯…⨯X n 以S ={p -1i (U i )|U i ∈T i ,i ≤n}为子基,其中T i 是X i 的拓扑,p i :X →X i 是投射.仅证n=2的情形.p -11(U 1)=U 1⨯X 2,p -12(U 2)=X 1⨯U 2,所以p -11(U 1)∩p -12(U 2)=U 1⨯U 2∈B .定义3.2.3f:X →Y 称为开(闭)映射,若U 开(闭)于X,则f(U)开(闭)于Y .定理3.2.6p i :X →X i 是满、连续、开映射,未必是闭映射.由于p -1i (U i )=X 1⨯X 2⨯…⨯U i ⨯…⨯X n ,所以p i 连续.由于p i (U 1⨯U 2⨯…⨯U n )=U i ,所以p i 是开的.但是p 1:R 2→R 不是闭的.定理3.2.7设映射f:Y →X,其中X 是积空间X 1⨯X 2⨯…⨯X n .则f 连续⇔∀i ≤n,p i ◦f:Y →X i 连续.证充分性.对X 的子基S ={p -1i (U i )|i ≤n,U i ∈T i },f -1(p -1i (U i ))=(p i ◦f)-1(U i )开于Y .多元函数连续当且仅当它的每一分量连续.定理3.2.8积拓扑是使每一投射都连续的最小拓扑.即设T 是积空间X=X 1⨯X 2⨯…⨯X n 的积拓扑,若集合X 的拓扑T *满足:每一投射p i :(X,T *)→X i 连续,则T ⊂T *.证由于{p -1i (U i )|U i ∈T i ,i ≤n}⊂T *,所以T ⊂T *.§3.3商空间回忆,商集X/R,及自然投射p:X →X/R 定义为p(x)=[x]R .问题:设X 是拓扑空间,要在X/R 上定义拓扑,使p 连续的最大的拓扑.讨论更一般的情形,设(X,T )是拓扑空间且f:X →Y 是满射.赋予集合Y 什么拓扑,使f 连续的最大的拓扑.若f连续,且U是Y的开集,则f-1(U)是X的开集.让T1={U⊂Y|f-1(U)∈T},易验证T1是Y上的拓扑.定义3.3.1(3.3.2)称T1是Y的相对于满射f而言的商拓扑,f:(X,T)→(Y,T1)称为商映射.这时,U在Y中开⇔f-1(U)在X中开;F在Y中闭⇔f-1(F)在X中闭.定理3.3.1商拓扑是使f连续的最大拓扑.证设f:(X,T)→(Y,T1)是商映射.显然,f是连续的.如果T2是Y的拓扑使f:(X,T)→(Y,T2)连续,则∀U∈T2,f-1(U)∈T,于是U∈T1,即T2⊂T1,所以T1是使f连续的最大拓扑.定理3.3.2设f:X→Y是商映射.对于空间Z,映射g:Y→Z连续⇔映射g◦f:X→Z连续.证设g◦f:X→Z连续,∀W开于Z,(g◦f)-1(W)=f-1(g-1(W))开于X,由于f是商映射,所以g-1(W)开于Y,故g连续.定理3.3.3连续,满开(闭)映射⇒商映射.证设f:(X,T X)→(Y,T Y)是连续的满开(闭)映射,T1是Y的相对于f而言的商拓扑,要证T Y= T1.由定理3.3.1,T Y⊂T1.反之,∀V∈T1,f-1(V)∈T X.对于开映射的情形,V=f(f–1(V))∈T Y;对于闭映射的情形,V=Y-f(X-f–1(V))∈T Y,所以总有T1⊂T Y.定义3.3.3设R是空间(X,T)的等价关系,由自然投射p:X→X/R确定了X/R的商拓扑T R,称(X/R,T R)为商空间,这时p:X→X/R是商映射.例3.3.1在R中定义等价关系~:∀x,y∈R,x~y⇔或者x,y∈Q,或者x,y∉Q.商空间R/~是由两点组成的平庸空间.由于Q在R中既是开集,也不是闭集,所以单点集[Q]在R/~中既不是开集,也不是闭集.习惯上,把R/~说成是在R中将所有有理点和所有无理点分别粘合为一点所得到的商空间.例3.3.2在[0,1]上定义等价关系~:∀x,y∈[0,1],x~y⇔或者x=y,或者{x,y}={0,1}.[0,1]/~是在[0,1]中粘合0,1两点所得到的商空间,这商空间同胚于单位圆周S1.第四章连通性本章起的四章介绍4类重要的拓扑不变性质.本章讨论连通性、道路连通性、局部连通性及其在实分析中的一些简单的应用.§4.1连通空间在拓扑中怎样定义连通,分隔区间(0,1),(1,2)的关系与(0,1),[1,2)的关系不同,虽然他们都不相交,但相连的程度不一样.定义4.1.1设A,B⊂X,若A∩B-=A-∩B=∅,则称A,B是隔离的.区间(0,1)与(1,2)隔离,但区间(0,1)与[1,2)不隔离.几个基本事实:(1)两不交的开集是隔离的;(2)两不交的闭集是隔离的;(3)隔离子集的子集是隔离的.定义4.1.2X称为不连通的,若X中有非空的隔离子集A,B使X=A∪B,即X可表为两非空隔离集之并.否则X称为连通的.包含多于一个点的离散空间不连通,平庸空间是连通的.定理4.1.1对空间X,下述等价:(1)X是不连通的;(2)X可表为两非空不交闭集之并;(3)X可表为两非空不交开集之并;(4)X存在既开又闭的非空真子集.证(1)⇒(2)设隔离集A,B之并是X,B-=B-∩(A∪B)=(B-∩A)∪(B-∩B)=B.同理,A也是闭的.(2)⇒(3)设X是两非空不交闭集A,B之并,则X是两非空不交开集A',B'之并.(3)⇒(4)设X是两非空不交开集A,B之并,则A,B都是X的既开又闭的非空真子集.(4)⇒(1)若A是X的开闭集,则A,X-A隔离.例4.1.1Q不是R的连通子空间,因为Q=(Q∩(-∞,π))∪(Q∩(π,+∞)).定理4.1.2R是连通的.证若R不连通,则R是两非空不交Array闭集A,B之并.取定a∈A,b∈B,不妨设a<b.令A*=[a,b]∩A,B=[a,b]∩B,则A*,B*是R两非空不交闭集且[a,b]=A*∪B*.让c=supA*.因A*是闭的,c∈A*,c<b,(c,b]⊂B*.因B*是闭的,c∈B*,从而A*∩B*≠∅,矛盾.定义4.1.3若X的子空间Y是连通的,则称Y为连通子集,否则,称为不连通子集.定理4.1.3设A,B⊂Y⊂X,则A,B是Y的隔离集⇔A,B是X的隔离集.证c Y(A)∩B=c X(A)∩Y∩B=c X(A)∩B;同理,c Y(B)∩A=c X(B)∩A.定理4.1.4设Y是X的连通子集.如果X有隔离子集A,B,使Y⊂A∪B,则Y⊂A或Y⊂B.证A∩Y,B∩Y是Y的隔离集,所以A∩Y=∅,或B∩Y=∅,于是Y⊂B或Y⊂A.定理4.1.5若Y是X的连通子集且Y⊂Z⊂Y-,则Z是连通的.证若Z不连通,∃X的非空隔离集A,B使Z=A∪B⊃Y,于是Y⊂A或Y⊂B,不妨设Y⊂A,那么Z⊂Y-⊂A-,于是B=Z∩B=∅,矛盾.定理4.1.6设{Yγ}γ∈Γ是空间X的连通子集族.如果∩γ∈ΓYγ≠∅,则∪γ∈ΓYγ连通.证若∪γ∈ΓYγ是X中隔离集A,B之并,取定x∈∩γ∈ΓYγ,不妨设x∈A,则∀γ∈Γ,Yγ⊂A,所以∪γ∈ΓYγ⊂A,于是B=∅.定理4.1.7设Y⊂X.若∀x,y∈Y,∃X的连通子集Y xy使x,y∈Y xy⊂Y,则Y连通.证设Y≠∅.取定a∈Y,则Y=∪y∈Y Y ay且a∈∩y∈Y Y ay,所以Y连通.定理4.1.8(连续映射保持)设f:X→Y连续.若X连通,则f(X)连通.证若f(X)不连通,则f(X)含有非空的开闭真子集A.由于f:X→f(X)连续,于是f-1(A)是X的非空开闭真子集.连续映射保持性⇒可商性⇒拓扑不变性.有限可积性.对于拓扑性质P,要证有限可积性,因为X1⨯X2⨯…⨯X n同胚于(X1⨯…⨯X n-1)⨯X n,所以只须证:若X,Y具性质P,则X⨯Y具有性质P.定理4.1.9(有限可积性)设X1,X2,…,X n连通,则X1⨯X2⨯…⨯X n连通.证仅证若X,Y连通,则X⨯Y连通.取定(a, Array b)∈X⨯Y.∀(x,y)∈X⨯Y,令S xy=(X⨯{y})∪({a}⨯Y),由于X⨯{y}同胚于X,{a}⨯Y同胚于Y,所以X⨯{y},{a}⨯Y都连通且(a,y)∈(X⨯{y})∩({a}⨯Y),由定理4.1.6,S xy连通且(x,y)∈S xy,再由定理 4.1.7,X⨯Y=∪{S xy|(x,y)∈X⨯Y}连通.§4.2连通性的应用利用R连通性的证明(定理4.1.2)知,区间都是连通的.区间有9类:无限区间5类:(-∞,+∞),(a,+∞),[a,+∞),(-∞,a),(-∞,a].有限区间4类:(a,b),[a,b),(a,b],[a,b].定理4.2.1设E⊂R,则E连通⇔E是区间.证若E不是区间,∃a<c<b,使a,b∈E但c∉E.令A=(-∞,c)∩E,B=(c,+∞)∩E,则E是不交的非空开集A,B之并.定理4.2.2设X连通,f:X→R连续,则f(X)是R的一个区间.注∀x,y∈X,如果t介于f(x)与f(y)之间,则∃z∈X,使f(z)=t.事实上,不妨设f(x)≤t≤f(y),则t∈[f(x),f(y)]⊂f(X),所以∃z∈X,使f(z)=t.定理4.2.3(介值定理)设f:[a,b]→R连续,若r介于f(a)与f(b)之间,则∃z∈[a,b]使f(z)=r.定理4.2.4(不动点定理)设f:[0,1]→[0,1]连续,则∃z∈[0,1]使f(z)=z.证不妨设0<f(0),f(1)<1.定义F:[0,1]→R使F(x)=x-f(x),则F连续且F(0)<0<F(1),∃z∈[0,1]使得F(z)=0,即f(z)=z.定义f:R→R2为f(t)=(cos2πt,sin2πt),则f连续且f(R)=S1,于是S1是连通的.对x=(x1,x2)∈S1, -x=(-x1,-x2)∈S1称为x的对径点,映射r:S1→S1定义为r(x)=-x称为对径映射,则r连续.定理4.2.5(Borsuk-Ulam定理)设f:S1→R连续,则∃x∈S1,使得f(x)=f(-x).证定义F:S1→R为F(x)=f(x)-f(-x),则F连续.若∃a∈S1,使得f(a)≠f(-a),则F(a)⋅F(-a)<0,由定理4.2.2,∃z∈S1,使得F(z)=0,即f(z)=f(-z).定理4.2.6R n-{0}连通,其中n>1,0=(0,0,⋯,0)∈R n.证只证n=2的情形.令A=[0,+∞)⨯R-{0},B=(-∞,0]⨯R-{0},则A∪B=R2-{0},A∩B≠∅.由于(0,+∞)⨯R⊂A⊂c((0,+∞)⨯R),所以A连通.同理,B连通,从而A∪B连通.定理4.2.7R2与R不同胚.证若∃同胚f:R2→R,令g=f|R2-{0}:R2-{0}→R,则g连续,从而g(R2-{0})=R-{f(0)}连通,矛盾.§4.3连通分支将不连通集分解为一些“最大”连通子集(“连通分支”)之并.定义4.3.1x,y∈X称为连通的,若∃X的连通子集同时含x,y,记为x~y.点的连通关系~是等价关系:(1)x~x;(2)x~y⇒y~x;(3)x~y,y~z⇒x~z.定义4.3.2空间X关于点的连通关系的每一等价类称为X的一个连通分支.x~y⇔x,y属于X的同一连通分支.X是X的全体连通分支的互不相交并.定理4.3.1设C是空间X的连通分支,则(1)若Y是X的连通子集且Y∩C≠∅,则Y⊂C;(2)C是连通的闭集.证(1)取定x∈Y∩C,∀y∈Y,则x~y,所以y∈C.(2)取定c∈C.∀x∈C,∃X的连通集Y x∍c,x,由于Y x∩C≠∅,Y x⊂C,于是C=∪{Y x|x∈C}且c∈∩{Y x|x∈C},所以C是连通的.从而C-连通且C-∩C≠∅,于是C-⊂C,故C闭.以上说明:连通分支是最大的连通子集.连通分支可以不是开集.Q的连通分支都是单点集,不是Q的开子集.∀x,y∈Q,由定理4.2.1,不存在Q的连通子集同时含有x,y,所以Q的连通分支都是单点集.§4.4局部连通空间例4.4.1(拓扑学家的正弦曲线)令S={(x,sin(1/x))|x∈(0,1]},T={0}⨯[-1,1],S1=S∪T,则S-=S1,于是S,S1连通.在S1中,S中点与T中点的“较小的”邻域表现出不同的连通性.定义4.4.1设x∈X.若x的每一邻域U中都含有x的某一连通的邻域V,称X在x是局部连通的.空间X称为局部连通的,若X在每一点是局部连通的.S1是连通,非局部连通的.多于一点的离散空间是局部连通,非连通的.定理4.4.1对空间X,下述等价:(1)X是局部连通;(2)X的任一开集的任一连通分支是开集;(3)X有一个基,每一元是连通的.证(1)⇒(2)设C是X的开集U的连通分支.∀x∈C,∃x的连通的邻域V⊂U,于是V∩C≠∅, V⊂C,所以C是x的邻域,故C开.(2)⇒(3)令B={C⊂X|C是X的开集U的连通分支},则B是X的基.(3)⇒(1)设U是x的邻域,∃开集V使x∈V⊂U,∃连通开集C使x∈C⊂V⊂U,所以X局部连通.定理4.4.2设f:X→Y是连续开映射.若X局部连通,则f(X)局部连通.证∀y∈f(X),及y在f(X)中的邻域U,取x∈f-1(y),则f-1(U)是x的邻域,∃X的连通开集V使x∈V⊂f-1(U),于是y=f(x)∈f(V)⊂U.定理4.4.3局部连通性是有限可积性,即设X1,X2,…,X n局部连通,则X1⨯X2⨯…⨯X n局部连通.证仅证若X1,X2局部连通,则X1⨯X2局部连通.设B1,B2分别是X1,X2的由连通开集组成的基,则{B1⨯B2|B1∈B1,B2∈B2}是X1⨯X2的由连通开集组成的基(定理3.2.4).。
点集拓扑学合肥工业大学数学学院预备知识1.点集拓扑的定义《点集拓扑学》课程是一门现代数学基础课程,属数学与应用数学专业的理论课。
是数学与应用数学专业的主干课。
点集拓扑学(Point Set Topology),有时也被称为一般拓扑学(General Topology),是数学的拓扑学的一个分支。
它研究拓扑空间以及定义在其上的数学构造的基本性质。
这一分支起源于以下几个领域:对实数轴上点集的细致研究,流形的概念,度量空间的概念,以及早期的泛函分析。
它的表述形式大概在1940年左右就已经成文化了。
通过这种可以为所有数学分支适用的表述形式,点集拓扑学基本上抓住了所有的对连续性的直观认识。
2.点集拓扑的起源点集拓扑学产生于19世纪。
G.康托尔建立了集合论,定义了欧几里得空间中的开集、闭集、导集等概念,获得了欧几里得空间拓扑结构的重要结果。
1906年M.-R.弗雷歇把康托尔的集合论与函数空间的研究统一起来,建立了广义分析,可看为拓扑空间理论建立的开始。
3.一些参考书籍(1)《拓扑空间论》,高国士,科学出版社,2000年7月第一版(2)《基础拓扑讲义》,尤承业,北京大学出版社,1997年11月第一版(3)《一版拓扑学讲义》,彭良雪,科学出版社,2011年2月第一版第一章 集合论初步在这一章中我们介绍有关集合论的一些基本知识.从未经定义的“集合”和“元素”两个概念出发给出集合运算、关系、映射以及集合的基数等方面的知识等。
这里所介绍的集合论通常称为“朴素的集合论”,这对大部分读者已经是足够了.那些对集合的理论有进一步需求的读者,例如打算研究集合论本身或者打算研究数理逻辑的读者,建议他们去研读有关公理集合论的专著。
1.1 集合的基本概念集合这一概念是容易被读者所理解的,它指的是由某些具有某种共同特点的个体构成的集体。
例如我们常说“正在这里听课的全体学生的集合”, “所有整数的集合”等等.集合也常称为集。
集合(即通常所谓的“集体”)是由它的元素(即通常所谓的“个体”)构成的.例如正在这里听课的全体学生的集合以正在听课的每一个学生为它的元素;所有整数的集合以每一个整数为它的元素.元素也常称为元,点或成员.集合也可以没有元素.例如平方等于2 的有理数的集合,既大于1 又小于2 的整数的集合都没有任何元素,这种没有元素的集合我们称之为空集,记作φ。
2024年河北师大点集拓扑课件第五章一、教学内容1. 5.1节:拓扑空间的定义与基本性质2. 5.2节:开集、闭集、边界与内部3. 5.3节:极限与连续性4. 5.4节:连通性与紧性二、教学目标1. 理解拓扑空间的基本概念,掌握拓扑的性质与分类。
2. 学会运用极限与连续性分析点集拓扑问题。
3. 掌握连通性与紧性的定义,并能运用到实际问题中。
三、教学难点与重点1. 教学难点:拓扑空间的抽象概念、连通性与紧性的理解。
2. 教学重点:拓扑空间的定义与性质、极限与连续性、连通性与紧性的应用。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、笔记本、文具。
五、教学过程1. 导入:通过实际问题,引导学生思考拓扑空间的概念。
2. 新课导入:讲解拓扑空间的定义与性质,让学生了解拓扑的基本概念。
3. 例题讲解:结合教材,讲解极限与连续性的相关例题。
4. 随堂练习:让学生运用所学知识,解决实际问题。
5. 知识拓展:介绍连通性与紧性的定义及其在实际问题中的应用。
六、板书设计1. 拓扑空间的定义与性质2. 开集、闭集、边界与内部3. 极限与连续性4. 连通性与紧性七、作业设计1. 作业题目:(1)证明:任意两个开集的交集是开集。
2. 答案:八、课后反思及拓展延伸1. 课后反思:本节课学生对拓扑空间的概念掌握程度较好,但在解决具体问题时,还需加强练习。
2. 拓展延伸:引导学生了解更多拓扑空间的性质,如度量空间、赋范线性空间等,为后续课程打下基础。
重点和难点解析1. 教学难点与重点的识别;2. 教学过程中的例题讲解;3. 作业设计中的题目难度与答案的详细程度;4. 课后反思与拓展延伸的实际应用。
一、教学难点与重点的识别(1)拓扑空间的抽象概念:拓扑空间的概念是点集拓扑的基石,理解这一概念需要学生具备较强的抽象思维能力。
在教学中,应通过具体的实例和图形,帮助学生将抽象的拓扑空间概念具体化,使其理解开集、闭集等基本概念。