林寿数学史第二讲:古代希腊数学(课堂课资)
- 格式:ppt
- 大小:13.65 MB
- 文档页数:13
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。
第2章古代希腊数学主题:希腊文化与理论数学的起源人类理性思维的形成在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。
概述:希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。
三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。
同时也有对前人进行评述和整理工作。
主要成就:1 论证数学的鼻祖及主要贡献:泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。
毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。
普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。
其方法最著名的猜测是“面积剖分法”。
(2)正多面体作图(包括正四、六、八、十二、二十面体)。
以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。
(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。
该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。
(4)发现了不可公度量。
评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。
加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。
不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。
第2章古代希腊数学主题:希腊文化与理论数学的起源人类理性思维的形成在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。
概述:希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。
三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。
同时也有对前人进行评述和整理工作。
主要成就:1 论证数学的鼻祖及主要贡献:泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。
毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。
普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。
其方法最著名的猜测是“面积剖分法”。
(2)正多面体作图(包括正四、六、八、十二、二十面体)。
以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。
(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。
该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。
(4)发现了不可公度量。
评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。
加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。
不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。
林寿数学史教案-古代希腊数学一、教学目标1. 知识与技能:(1)了解古代希腊数学的发展背景和重要人物;(2)掌握古代希腊数学的主要成就和贡献;(3)学会运用古代希腊数学家的思想和方法解决实际问题。
2. 过程与方法:(1)通过自主学习、合作探讨的方式,深入研究古代希腊数学的发展过程;(2)学会分析古代希腊数学家的学术思想和研究方法;(3)培养学生的逻辑思维能力和创新意识。
3. 情感态度与价值观:(1)感受古代希腊数学家的求知精神和探索意识;(2)认识数学是人类智慧的结晶,增强对数学的热爱和尊重;(3)培养学生的团队合作意识和历史责任感。
二、教学内容1. 古代希腊数学的发展背景(1)古希腊的历史和文化背景;(2)古希腊数学家的学术氛围和思想交流。
2. 重要人物及其成就(1)毕达哥拉斯及其学派;(2)欧几里得及其《几何原本》;(3)阿基米德及其数学贡献。
3. 古代希腊数学的主要成就(1)数论方面的成就;(2)几何学方面的成就;(3)数学方法论方面的成就。
三、教学重点与难点1. 教学重点:(1)古代希腊数学的发展背景;(2)重要人物及其成就;(3)古代希腊数学的主要成就。
2. 教学难点:(1)古代希腊数学家的思想观念;(2)古代希腊数学成就的现代意义。
四、教学过程1. 导入新课:(1)介绍古希腊的历史和文化背景;(2)激发学生对古希腊数学家的敬仰之情。
2. 自主学习:(1)让学生阅读教材,了解古希腊数学的发展过程;(2)引导学生关注重要人物及其成就。
3. 合作探讨:(1)分组讨论古代希腊数学的主要成就;(2)分享学习心得和感悟。
4. 课堂讲解:(1)详细讲解毕达哥拉斯及其学派、欧几里得及其《几何原本》、阿基米德及其数学贡献;(2)分析古代希腊数学家的学术思想和研究方法。
5. 练习与拓展:(1)布置课后作业,巩固所学知识;(2)引导学生运用古代希腊数学家的思想和方法解决实际问题。
五、教学评价1. 学生自评:(1)评价自己在课堂学习中的表现;(2)反思自己在团队合作中的成长。
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。
第二讲古代希腊数学恩格斯(德,1820-1895年)指出:“没有希腊的文化和罗马帝国奠定的基础,就没有现代的欧洲。
”背景:古希腊的变迁。
1、古典时期的希腊数学公元前600-前300年。
1.1 爱奥尼亚学派(米利都学派)泰勒斯(公元前625-前547年),被称为“希腊哲学、科学之父”。
哲学:水生万物,万物复归于水。
数学:创数学命题逻辑证明之先河,希腊几何学的鼻祖,最早留名于世的数学家,测量过金字塔的高度,预报了公元前585年的一次日食。
1.2 毕达哥拉斯学派毕达哥拉斯(约公元前560-前480年),在萨摩斯岛建立了具有宗教、哲学、科学性质的学派,致力于哲学和数学的研究,繁荣兴旺达一个世纪以上。
哲学:万物皆为数。
数学:数学研究抽象概念的认识归功于毕达哥拉斯学派,毕达哥拉斯定理,完全数、亲和数,正五角星作图与“黄金分割”,发现了“不可公度量”。
1.3 伊利亚学派芝诺(约公元前490-前430年)悖论:运动不存在、阿基里斯、飞矢不动。
芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系以非数学的形态提出,并进行了辩证的考察。
1.4 诡辩学派(智人学派)活跃于公元前5世纪下半叶的雅典城,代表人物均以雄辩著称,故亦称智人学派。
安蒂丰(约公元前480-前411年)的“穷竭法”。
古典几何三大作图问题:三等分任意角、化圆为方、倍立方。
1.5 柏拉图学派柏拉图(约公元前427-前347年)对于欧洲的哲学乃至整个文化的发展,有着深远的影响。
柏拉图说:“不懂几何者免进”,认为打开宇宙之迷的钥匙是数与几何图形,发展了用演绎逻辑方法系统整理零散数学知识的思想。
柏拉图不是数学家,却赢得了“数学家的缔造者”的美称,创办雅典学院(前387-公元529),讲授哲学与数学。
1.6 亚里士多德学派(吕园学派)亚里士多德(公元前384-前322年)是古希腊最著名的哲学家、科学家。
集古希腊哲学之大成,把古希腊哲学推向最高峰,堪称“逻辑学之父”,为欧几里得演绎几何体系的形成奠定了方法论的基础,被后人奉为演绎推理的圣经。