林寿数学史第八讲:19世纪的代数讲课讲稿
- 格式:ppt
- 大小:7.63 MB
- 文档页数:1
代数与代数基本定理的历史1.关于代数的故事在十九世纪以前,代数被理解为关于方程的科学。
十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。
作为中学数学课程的代数,其中心内容就是方程理论。
代数的发展是和方程分不开的。
代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题的条件列同方程,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于60,求这个数。
算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。
代数解法:设某数为x ,则可见代数解法与算术思路不同。
各有自己的一套规则,代数解法比较简单明了。
古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。
据说,1858年苏格兰有一位古董收藏家兰德在非洲的尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。
例如有一个问题翻译成数学语言是:“啊哈,它的全部,它的1/7,其和等于19。
”如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。
令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。
我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。
贾宪等的高次方程数值解方法,秦九韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,及其有限级数求和的“招差法公式”,都早于欧洲几百年。
“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。
林寿数学史教案-第十讲:19世纪的分析第一篇:林寿数学史教案-第十讲:19世纪的分析第十讲:19世纪的分析1、分析的严格化经过近一个世纪的尝试与酝酿,数学家们在严格化基础上重建微积分的努力到19世纪初开始获得成效。
1.1 分析的算术化所谓分析是指关于函数的无穷小分析,主要贡献归功于柯西(法,1789-1857年)和魏尔斯特拉斯(德,1815-1897),前者著有《分析教程》(1821)、《无穷小分析教程概论》(1823)和《微分学教程》(1829),后者创造了ε-δ语言,是“现代分析之父”。
1837年狄里克雷(德,1805-1859年)的函数定义。
魏尔斯特拉斯简介。
1.2 实数理论19世纪60年代魏尔斯特拉斯提出“单调有界原理”,康托、戴德金各自独立地给出了无理数定义,建立了严格的实数论。
实数的定义及其完备性的确立,标志着由魏尔斯特拉斯倡导的分析算术化运动大致宣告完成。
1.3 集合论康托(德,1845-1918年),1874年发表了“关于一切代数实数的一个性质”,引入了无穷的概念。
康托简介。
2、分析的拓展 2.1 复变函数论在18世纪后半叶到19世纪初,开始了复函数的偏导数与积分性质的探索。
复分析真正作为现代分析的一个研究领域是在19世纪建立起来的,主要奠基人:柯西(法,1789-1857年)、黎曼(德,1826-1866年)和魏尔斯特拉斯(德,1815-1897年)。
柯西建立了复变函数的微分和积分理论。
1814年、1825年的论文《关于积分限为虚数的定积分的报告》建立了柯西积分定理,1826年提出留数概念,1831年获得柯西积分公式,1846年发现积分与路径无关定理。
柯西简介。
背景:波旁王朝、捷克简史、哈布斯堡王朝、拿破仑三世、欧洲1848年革命。
黎曼的几何观点,引入“黎曼面”的概念。
1851年博士论文《单复变函数一般理论基础》,建立了柯西-黎曼条件、黎曼映射定理。
魏尔斯特拉斯于19世纪40年代,以追求绝对的严格性为特征,建立了幂级数基础上的解析函数理论,解析开拓。
8、十九世纪的数学十九世纪是数学史上创造精神和严格精神高度发扬的时代。
复变函数论的创立和数学分析的严格化,非欧几何的问世和射影几何的完善,群论和非交换代数的诞生,是这一世纪典型的数学成就。
它们所蕴含的新思想,深刻地影响着二十世纪的数学。
十九世纪数学发展的概貌十八世纪数学发展的主流是微积分学的扩展,它与力学和天文学的问题紧密相联。
微积分的运用使这些自然科学领域迅猛发展,至十八世纪末,它们达到了一种相对完美的程度。
然而,将数学和这些自然科学基本上视为一体的观念,使当时一些著名的数学家,如拉格朗日、欧拉、达朗贝尔等对数学的前途产生了悲观情绪,他们觉得数学泉源已近枯竭。
而实际上,此时的数学正处于兴旺发达的前夜:18世纪的数学家忙于获取微积分的成果与应用,较少顾及其概念与方法的严密性,到十八世纪末,为微积分奠基的工作已紧迫地摆在数学家面前;另一方面,处于数学中心课题之外的数学分支已积累了一批重要问题,如复数的意义、欧式几何中平行公设的地位,高次代数方程根式解的可能性等,它们大都是从数学内部提出的课题;再者,自十八世纪后期开始,自然科学出现众多新的研究领域,如热力学、流体力学、电学、磁学、测地学等等,从数学外部给予数学以新的推动力。
上述因素促成了十九世纪数学充满活力的创新与发展。
十九世纪欧洲的社会环境也为数学发展提供了适宜的舞台,法国资产阶级大革命所造成的民主精神和重视数学教育的风尚,鼓励大批有才干的青年步入数学教育和研究领地。
法国在十九世纪一直是最活跃的数学中心之一,涌现出一批优秀人才,如傅里叶、泊松、彭赛列、柯西、刘维尔、伽罗华、埃尔米特、若尔当、达布、庞加莱、阿达马。
他们在几乎所有的数学分支中都作出了卓越贡献。
法国革命的影响波及欧洲各国,使整个学术界思想十分活跃,突破了一切禁区。
英国新一代数学家克服近一个世纪以来以牛顿为偶像的固步自封局面,成立了向欧洲大陆数学学习的“分析学会”,使英国进入世界数学发展的潮流。
《数学史概论》教案主讲人:林寿导言主讲人简介:林寿,宁德师专教授,漳州师院特聘教授,四川大学博士生导师,德国《数学文摘》和美国《数学评论》评论员。
1978.4~1980.2宁德师专数学科学习;1984.9~1987.7苏州大学数学系硕士研究生;1998.9~2000.5 浙江大学理学院攻读博士学位。
拓扑学方向的科研项目先后20次获得国家自然科学基金、国家优秀专著出版基金等的资助,研究课题涉及拓扑空间论、集合论拓扑、函数空间拓扑等,在国内外重要数学刊物上发表拓扑学论文90多篇,科学出版社出版著作3部。
1992年获国务院政府特殊津贴,1995年被授予福建省优秀专家,1997年获第五届中国青年科技奖、曾宪梓高等师范院校教师奖一等奖。
个人主页:/ls.asp一、数学史要学习什么?为什么要开设数学史的选修课?数学史研究数学概念、数学方法和数学思想的起源与发展,及其与社会、经济和一般文化的联系。
对于深刻认识作为科学的数学本身,及全面了解整个人类文明的发展都具有重要的意义。
庞加莱(法,1854-1912年)语录:如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
萨顿(美,(1884-1956年):学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培植他们高雅的质量。
数学史的分期:1、数学的起源与早期发展(公元前6世纪);2、初等数学时期(公元前6世纪-16世纪);3、近代数学时期(17世纪-18世纪);4、现代数学时期(1820年至今)。
二、教学工作安排授课形式:讲解与自学相结合,分13讲。
第一讲:数学的起源与早期发展;第二讲:古代希腊数学;第三讲:中世纪的东西方数学I;第四讲:中世纪的东西方数学II;第五讲:文艺复兴时期的数学;第六讲:牛顿时代:解析几何与微积分的创立;第七讲:18世纪的数学:分析时代;第八讲:19世纪的代数;第九讲:19世纪的几何与分析I;第十讲:19世纪的几何与分析II;第十一讲:20世纪数学概观I;第十二讲:20世纪数学概观II;第十三讲:20世纪数学概观III;选讲:数学论文写作初步。