最终版林寿数学史第二讲:古代希腊数学.ppt
- 格式:ppt
- 大小:13.42 MB
- 文档页数:47
第2章古代希腊数学主题:希腊文化与理论数学的起源人类理性思维的形成在唯理的社会气氛中,希腊人将埃及和美索不达米亚的数学经验算术和几何法则加工成具有初步逻辑结构的论证数学体系。
概述:希腊数学分为三个阶段:一是从公元前6C到约公元前3C,这一时期以雅典为中心,形成了论证几何数学的思想基础和有关方法上的基础;二是从约公元前3C到约公元前30年,这一时期主要以亚历山大为中心,形成的系统的论证几何体系,建立理论方法,为数学的发展提供了一种基本的观点和方法。
三是从约公元前30年到公元6C,这是希腊数学发展后期,主要发展带有实用特点的数学。
同时也有对前人进行评述和整理工作。
主要成就:1 论证数学的鼻祖及主要贡献:泰勒斯(前625-前547)泰勒斯领导的爱奥尼亚学派据说开了希腊命题论证之先河,并证明了四条定理和“泰勒斯定理”。
毕达哥拉斯(前580-前500)毕达哥拉斯创立了毕达哥拉斯学派,从事哲学和数学研究。
普鲁克鲁斯在《评注》中论述了毕达哥拉斯学派的主要成就有:(1)证明了毕达哥拉斯定理,即勾股定理。
其方法最著名的猜测是“面积剖分法”。
(2)正多面体作图(包括正四、六、八、十二、二十面体)。
以正十二面体的作图最为著名,它的每个面都是正五边形,并且和“黄金分割”相关(注:黄金分割这一名字并不是来源该学派,见书36页注)。
(3)关于数的研究,毕达哥拉斯学派的基本信条是“万物皆数”(这里指整数),并讨论了许多数论的性质,如偶数与奇数,完全数等。
该学派还有关于“形数”的研究,他们把数作为几何思维元素的精神,“形数”体现了数与形的结合。
(4)发现了不可公度量。
评论:毕达哥拉斯学派把数看成是世界的基础,客观上形成对世界数量关系的认识,是人类认识上的一大进步。
加强了数概念中的理论倾向,推动了几何学的抽象化倾向,这些研究使人类抽象思维能力达到了一个高的水平。
不可公度量的发现,由此产生了“第一次数学危机”,这一问题的根本解决是人们对连续性有更精确的定义后才完全解决。
1第二讲古代希腊数学恩格斯(德,1820-1895年)指出:“没有希腊的文化和罗马帝国奠定的基础,就没有现代的欧洲。
”背景:古希腊的变迁。
1、古典时期的希腊数学公元前600-前300年。
1.1爱奥尼亚学派(米利都学派)泰勒斯(公元前625-前547年),被称为“希腊哲学、科学之父”。
哲学:水生万物,万物复归于水。
数学:创数学命题逻辑证明之先河,希腊几何学的鼻祖,最早留名于世的数学家,测量过金字塔的高度,预报了公元前585年的一次日食。
1.2毕达哥拉斯学派毕达哥拉斯(约公元前560-前480年),在萨摩斯岛建立了具有宗教、哲学、科学性质的学派,致力于哲学和数学的研究,繁荣兴旺达一个世纪以上。
哲学:万物皆为数。
数学:数学研究抽象概念的认识归功于毕达哥拉斯学派,毕达哥拉斯定理,完全数、亲和数,正五角星作图与“黄金分割”,发现了“不可公度量”。
1.3伊利亚学派芝诺(约公元前490-前430年)悖论:运动不存在、阿基里斯、飞矢不动。
芝诺的功绩在于把动和静的关系、无限和有限的关系、连续和离散的关系以非数学的形态提出,并进行了辩证的考察。
1.4诡辩学派(智人学派)活跃于公元前5世纪下半叶的雅典城,代表人物均以雄辩著称,故亦称智人学派。
安蒂丰(约公元前480-前411年)的“穷竭法”。
古典几何三大作图问题:三等分任意角、化圆为方、倍立方。
1.5柏拉图学派柏拉图(约公元前427-前347年)对于欧洲的哲学乃至整个文化的发展,有着深远的影响。
柏拉图说:“不懂几何者免进”,认为打开宇宙之迷的钥匙是数与几何图形,发展了用演绎逻辑方法系统整理零散数学知识的思想。
2柏拉图不是数学家,却赢得了“数学家的缔造者”的美称,创办雅典学院(前387-公元529),讲授哲学与数学。
1.6亚里士多德学派(吕园学派)亚里士多德(公元前384-前322年)是古希腊最著名的哲学家、科学家。
集古希腊哲学之大成,把古希腊哲学推向最高峰,堪称“逻辑学之父”,为欧几里得演绎几何体系的形成奠定了方法论的基础,被后人奉为演绎推理的圣经。