抽屉原理(中)
- 格式:doc
- 大小:1.41 MB
- 文档页数:10
抽屉原理的三个公式抽屉原理(也称为鸽笼原理)是离散数学中的一项基本原理,用于解决一类关于集合和计数的问题。
该原理指出,当将n+1个物体放入n个容器中时,至少有一个容器中必然有两个或两个以上的物体。
这个原理虽然看似简单,却被广泛应用于各个领域,如图论、计算机科学等。
在本文中,我们将通过阐述抽屉原理的三个公式来进一步理解和应用这一原理。
公式一:抽屉问题公式在抽屉问题中,我们要研究的是如何将n个物体放入m个抽屉中,使得至少有一个抽屉中装有k个或更多的物体。
那么根据抽屉原理,我们可以得到如下公式:n ≥ (k-1) * m + 1这个公式告诉我们,当抽屉的数量m不足以容纳k个物体时,至少有一个抽屉中会有k个以上的物体。
公式二:鸽笼问题公式鸽笼问题是抽屉原理的一种特殊形式,它要求从n个物体中选择m 个物体,保证至少有一个物体被选中两次。
根据抽屉原理,我们可以得到如下公式:m ≥ n这个公式告诉我们,当鸽笼的数量m小于等于物体的数量n时,至少有一个鸽笼会被分配到两个或更多的物体。
公式三:化简公式在某些情况下,我们需要对抽屉原理进行化简,以求得更简洁的表达式。
当物体的数量n不足以填满抽屉的数量m时,我们可以利用抽屉原理进行化简,得到如下公式:n ≤ (k-1) * m这个公式告诉我们,当抽屉的数量m过多时,至少会有一个抽屉为空。
同时,它也提醒我们在实际问题中进行有效的资源利用,避免抽屉的浪费。
综上所述,抽屉原理是离散数学中一项重要的原理,通过公式的运用,我们能够更好地理解和应用这一原理。
通过抽屉问题公式,我们可以确定至少某抽屉中装有一定数量的物体;通过鸽笼问题公式,我们可以确定至少某个物体会被选中两次;通过化简公式,我们可以对抽屉原理进行简化,提醒我们有效利用资源。
无论是在理论还是实践中,抽屉原理的三个公式都具有重要的指导意义。
所以,我们应该深入学习和掌握这些公式,并能够在适当的时候灵活运用,解决实际问题。
抽屉原理中的至少是什么意思在数学和计算机科学中,抽屉原理(Pigeonhole Principle)是一种重要的概念。
它由德国数学家迪尔利希·施图姆在19世纪首次提出,并且在许多领域都有广泛的应用。
抽屉原理是一种简单而强大的推理工具,用于证明某个问题的存在性或者限制条件。
它基于一个直观的观察结果,即如果我们试图把更多的物体放入比可以容纳的抽屉中,那么至少会有一个抽屉会装满。
抽屉原理的正式陈述抽屉原理可以正式陈述如下:如果有 n + 1 个物体放入 n 个抽屉中,那么至少有一个抽屉中会放入两个或更多的物体。
这个陈述看起来非常简单,但它的推论却非常重要。
抽屉原理强调了对于给定数量的物体和容器,不能避免某些情况下重复的情况发生。
它的应用范围非常广泛,包括组合数学、图论、算法设计和数据结构等领域。
抽屉原理的证明和推论抽屉原理的证明可以通过反证法来完成。
假设我们有n个抽屉和n+1个物体,同时假设每个抽屉中至多放入一个物体。
根据这个假设,我们可以得出以下结论:1.如果每个抽屉中放入一个物体,那么总共放入的物体数量为n,显然小于n+1,矛盾。
2.如果有某个抽屉中放入两个或更多的物体,那么根据鸽笼原理的假设成立。
因此,通过反证法,我们可以证明抽屉原理是成立的。
抽屉原理还有一些重要的推论:1.存在原理:如果将n个物体放入m个抽屉中,且n > m,那么至少会存在一个抽屉为空。
2.相等原理:如果将 n 个物体放入 m 个抽屉中,且 n < m,那么至少会存在一个抽屉中放入两个或更多的物体。
这些推论都可以通过抽屉原理的证明过程得到。
抽屉原理的应用抽屉原理的应用非常广泛。
下面是一些常见的应用场景:1.数学中的鸽笼原理:抽屉原理常被用于组合数学中的鸽笼原理。
例如,我们考虑一年有365天,那么在每天上午11点,至少会有两个人生日相同。
这是因为人数超过了365,而天数只有365,根据抽屉原理,至少会有一个天数对应多个人。
抽屉原理十个例题抽屉原理,又称鸽巢原理,是数学中一个非常重要的概念。
它指的是如果有n+1个或更多的物体放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的物体。
这个原理在数学证明和计算概率等领域中有着广泛的应用。
下面我们来看看抽屉原理在实际问题中的应用,通过十个例题来深入理解这一概念。
例题1,班上有30名学生,其中有29名学生的生日不在同一天,那么至少有两名学生的生日在同一天。
例题2,某个班级有25名学生,其中有23名学生的身高不相同,那么至少有两名学生的身高相同。
例题3,在一个班级里,有10名男生和9名女生,那么至少有一个班级有两名同性别的学生。
例题4,某公司有36名员工,其中每个员工的年龄都不相同,那么至少有两名员工的年龄相差不超过1岁。
例题5,一家商店有40件商品,其中有39件商品的价格都不相同,那么至少有两件商品的价格相同。
例题6,在一个班级里,有15名学生,每个学生都选修了2门不同的课程,那么至少有一门课程有两名学生选修。
例题7,某个班级有20名学生,他们每个人的体重都不相同,那么至少有两名学生的体重相差不超过1千克。
例题8,某个班级的学生参加了一次考试,考试成绩都不相同,那么至少有两名学生的成绩相差不超过5分。
例题9,在一个班级里,有12名男生和13名女生,那么至少有一名学生和另一名学生同性别并且同年龄。
例题10,某公司的40名员工中,每个员工的工作经验都不相同,那么至少有两名员工的工作经验相差不超过1年。
通过以上十个例题的分析,我们可以看到抽屉原理在实际问题中的应用。
无论是生日、身高、性别、价格还是其他属性,只要物体的数量超过抽屉的数量,就一定会存在重复的情况。
这个原理在解决排列组合、概率统计等问题时都有着重要的作用,希望通过这些例题的学习,大家能更加深入地理解抽屉原理的应用。
什么是抽屉原理
抽屉原理是一种用以解释某种情况下的现象或情况的原理,常常用于说明在一定条件下,将若干物体均匀放置在一定数量的抽屉或容器中,那么必然会有至少一个抽屉或容器中放置的物体数量超过平均值。
此原理源自于数学和概率统计学中的原理。
抽屉原理的具体内容可以通过以下例子来说明:假设有10个
苹果,要将它们放入5个抽屉中,不论如何放置,至少会有一个抽屉中放置的苹果数量超过平均值,即至少会有一个抽屉中放置2个或以上的苹果。
这个原理适用于很多不同的情况,包括计算机科学、组合数学、概率统计学等领域。
例如,在计算机科学中,抽屉原理可以用来解释哈希函数的冲突现象,即在将大量的键映射到有限数量的哈希槽中时,必然会有多个键映射到同一个槽中。
需要注意的是,抽屉原理并不是指完全相同的物体或情况,而是指在一定条件下的某种相似性的现象。
它虽然不能提供精确的答案,但对于解释和推断问题有一定的参考价值,因为它揭示了现实世界中很多不可避免的规律和现象。
抽屉原理公式及例题抽屉原则一:如果把n+1个物体放在n个抽屉里;那么必有一个抽屉中至少放有2个物体..例:把4个物体放在3个抽屉里;也就是把4分解成三个整数的和;那么就有以下四种情况:①4=4+0+0 ②4=3+1+0 ③4=2+2+0 ④4=2+1+1观察上面四种放物体的方式;我们会发现一个共同特点:总有那么一个抽屉里有2个或多于2个物体;也就是说必有一个抽屉中至少放有2个物体..
抽屉原则二:如果把n个物体放在m个抽屉里;其中n>m;那么必有一个抽屉至少有:①k=n/m +1个物体:当n不能被m整除时..
②k=n/m个物体:当n能被m整除时..
理解知识点:表示不超过X的最大整数..
键问题:构造物体和抽屉..也就是找到代表物体和抽屉的量;而后依据抽屉原则进行运算..
例1.木箱里装有红色球3个、黄色球5个、蓝色球7个;若蒙眼去摸;为保证取出的球中有两个球的颜色相同;则最少要取出多少个球
解:把3种颜色看作3个抽屉;若要符合题意;则小球的数目必须大于3;故至少取出4个小球才能符合要求..
例2.一幅扑克牌有54张;最少要抽取几张牌;方能保证其中至少有2张牌有相同的点数
解:点数为1A、2、3、4、5、6、7、8、9、10、11J、12Q、13K的牌各取1张;再取大王、小王各1张;一共15张;这15张牌中;没有两张的点数相同..这样;如果任意再取1张的话;它的点数必为1~13中的一个;于是有2张点数相同..。
抽屉原理一.抽屉原理的各种形式:抽屉原理1:n +1 个元素分成n 类,至少有1类中的元素不止1个.抽屉原理2:n ·m +1个元素分成n 类,至少有1类中的元素不止m +1个.即:k 个元素分成n 类,至少有1类中的元素不止⎣⎡⎦⎤k -1n +1个.(k ,n ∈N*)抽屉原理3:n 个数之和为m ,则其中必有一数≥m n ,也必有一数≤m n .抽屉原理4 把一个无限集A 分成有限个集合的并集,即A i ⊂A ,且i =1∪nA i =A ,A i ∩A j =∅(i ,j =1,2,……,n ;i ≠j ).则至少有一个A 的子集A k (1≤k ≤n ),它有无限多个元素.例1.把大小两个圆盘各划分成2n 个相等的扇形格,在每格都用黑、白两色之一涂色,使两盘总计,黑格与白格都各有2n 格.然后把两个圆盘的圆心固定于同一点,并让小盘在上成为一个转盘.试证:可将小盘转到某一适当位置,使两个圆盘上的格子对齐,并使二盘对应格子颜色不同的不少于n 对.证明:让小盘逐格转动,每次都记下颜色不同的格子对齐的数目,当转动了2n -1次后,小盘转动了一周,共记了2n 次.于是,小盘上每个格子都与大盘上的每个格子对齐一次.设小盘上有k 个黑格,2n -k 个白格,则大盘上有2n -k 个黑格,k 个白格.颜色不同的格子对齐的数目为k 2+(2n -k )2=4n 2+2k 2-4nk =2(k -n )2+2n 2≥2n 2.∴至少有一次转动对齐后,使二盘对应格子颜色不同的数目≥⎣⎡⎦⎤2n 2-12n +1=n .例2.从1,2,3,…,3n (n ≥2)这3n 个正整数中任意取出n +2个数,求证:其中必有两个数,其差大于n 而小于2n .解:设取出的最大的数为k ,则把取出的数都加上 3n -k ,这样做不会影响它们之间的差.此时最大数为3n ,如果在取出的数中有一个在n 与2n 间(满足n+1≤x ≤2n -1的数),则这数与3n 即为所求.若无任何数在此二数之间,则作抽屉(1,2n ),(2,2n +1),(3,2n +2),…,(n ,3n -1),共n 个抽屉,除去3n 这个数外,还有n +1 个数,于是必有两个数落入同一抽屉,此二数即满足要求.例3.任取一个正实数a ,求证:在a ,2a ,3a ,…,(n -1)a 这n -1个数中,至少有一个数,它与最接近的整数之差不超过1n. 解:取这n -1个数的小数部分{a },{2a },{3a },…,{(n -1)a },则此n -1个数都在区间[0,1)内,把区间[0,1)分成n 个小区间,每个区间的长都为1n :[0,1n ),[1n ,2n ),…,[n -1n,1). 若此n -1个数中有某一个落入头尾两个区间之一,则原数即与最近的整数相差不超过1n.此n -1个数不可能没有任何一个落入头尾两个区间中,因若此n -1个数中没有任何一个落入头尾两个区间,则此n -1个数必落入了其余n -2 个区间内,于是必有两个数落入同一区间,设为{ta },{sa },(1≤t <s ≤n -1),此时|(s -t )a |<1n,而0<s -t <n -1,令k =s -t ,于是必有{ka }落入头尾两个区间之一.故证.例4.M 是1985个不同的正整数的集合,M 中每个数的质因数都小于26,求证:从M 中一定可以选出四个不同的数,使它们的积等于一个完全四次方数.解:M 中的任一个数的质因子只能是2、3、5、7、11、13、17、19、23这9个数中的某些数.设a ∈M ,则按这9个质因子的指数为奇或为偶可把所有1985个数分成29=512类,由抽屉原理,任取513个M 中的数必有两个数属于同一类,于是可得(1985-511)÷2=737对数,每对数都属于同一类,于是,这737对数中,每对两数的乘积都是完全平方数,即每个质因子的指数都是偶数.即每个质因子的指数除以4后的余数都只能是0或2,再按这9个质因子的指数是0或2把这737个数分类,又可得512类,现在737个数放入这512类,必有两数同一类,此二数的乘积就是完全四次方数,而乘得此二数的原来4个数即为所求.例5.6个代表队共有1978名运动员,编上号码1,2,3,…,1978号,证明至少有一个运动员,他的号码等于其两个队友号码的和或者等于某一个队友号码的两倍.解:不妨设第1个代表队人数最多,则其人数≥[1978-16]+1=330人,设其中最大的号码为a 1,用a 1减其它329个号码,得到的差如果在此329个数中,则命题已成立.如果这329个差都不是第一个代表队的号码,那么不妨设其中有[329-15]+1=66个号码在第二个队中,同样设这66个号码最大的为b 1,用它减其余65个号码,差b 1-b i =(a 1-a t )-(a 1-a s )=a s -a t 如果在第一或第二个队的号码中,则命题已证,若不在,则此65个数必有[65-14]+1=17人同一队,设为第三队,又设其中最大者为c 1,用c 1减其余16个数,其差c 1-c i =(b 1-b i )-(b 1-b j )=b j -b i ,而b j -b i =(a 1-a t )-(a 1-a s )=a s -a t ,若在第一,二,三队的号码中,则命题可证,依此类推,若无,则[16-13]+1=6,[5-12]+1=3个,其差或是前面某队的号码,或是第6队的号码,问题总能成立.例6.S 是{1,2,3,…,1989}的一个子集,而且S 中任两个数的差不能是4或7,那么S 中最多可有多少个元素?(1989年第七届美国数学邀请赛)解:取前11个自然数1、2、3、4、5、6、7、8、9、10、11,排成一个圈:1、5、9、2、6、10、3、7、11、4、8.这样排好后,任意相邻两数都不能同时被取出,否则其差为4或7.而在这11个数中任取6数,就会在上面这个圈中取出了相邻的两个数,于是这11个数中,最多只能取出5个满足要求的数.例如,取1,3,4,6,9这五个数满足要求.1989=11×180+9,于是把这1989个数从1开始每连续11个数为一组,每组都取出5个数:11k +1,11k +3,11k +4,11k +6,11k +9(k =0,1,2,…,180)共取出181×5=905个数.即S 中最多可有905个元素.当取出的数超过905个时,总有某组数中取出的数超过6个,于是就会出现差为4或7的两个数.从而905为所求.例7.一位棋手参加11周(77天)的集训,每天至少下1盘棋,每周至多下12盘棋,证明这个棋手必在连续的几天内恰好下了21盘棋.解:这名棋手在77天内最多下了11×12=132盘棋.不妨记他从开始起第n 天共下了a n 盘棋,则有a 1<a 2<…<a 77.再取77个数:a 1+21,a 2+21,…,a 77+21,这样共得77×2=154个数.但这些数最大 不超过132+21=153. 于是必有两个数相等,这就是说,必有a i +21=a j (i <j ),即从第i +1天起,到第j 天这连续j -i 天中,这名棋手共下了21盘棋.例8.设有小数A =0.a 1a 2a 3…,如果a i +2是a i +1+a i 的个位数字(i =1,2,3,…),求证:A 是有理数. 解:把a i ,a i +1组成一组:(a i ,a i +1),(i =1,2,3,…),则所有这些组只有以下100种可能的取法:(0,0),(0,1),(0,2),…,(0,9);(1,0),(1,1),(1,2),…,(1,9);…(9,0),(9,1),(9,2),…,(9,9).而取(a 1,a 2),(a 2,a 3),…,(a 100,a 101),(a 101,a 102)这101组,于是必有两组相同,设为(a i ,a i+1),(a i ,a j+1),(i <j ).于是可得a i +2=a j +2,a i +3=a j +3,…,即A 为循环小数,故A 为有理数.例9.已知菲波拉契数列0,1,1,2,3,5,8,13,21,……(从第三项起,每项都等于它的前面两项的和).试问,它的前100000001项中,是否有某一项的末四位数字全为0?(不算第1项)分析:添一项可以看作0000,考虑每一项的末四位数字,末四位数字共有104种,(从0000到9999),而每项的末四位数字都是由其前面两项的末四位数字求和而得出.解:记每一项a i 的末四位数字为x i ,由于该数列的每一项都是其前两项的和,由于x i 有104种,x i+1也有104种,所以有序数对(x i ,x i+1)共有108种,但对于每一项都有一个有序数对(x i ,x i +1)与之对应:(x 0,x 1),(x 1,x 2),…,(x 100000000,x 100000001),共有100000001个数对,从而必有两个数对完全一样,设(x i ,x i +1)与(x j ,x j +1)相同(i <j ).则有x i = x j ,x i +1= x j +1,由于x i -1= x i +1- x i , x j -1= x j +1- x j ,故又有x i -1=x j -1,这样又有(x i -1,x i )=(x j -1,x j ),(x i -2,x i -1)=(x j -2,x j -1),…,直至(x 0,x 1)与(x j -i ,x j -i +1),即x j -i 与x 0相同,即a j -i 的末四位数字全是0.事实上该数列的7501项的末四位全是0.当两项相邻时的情况.例10.设m 、n 都是自然数,任给一个有nm +1项的数列(该数列各项互不相等)a 1,a 2,……,a nm +1证明可以从中选出m +1项,按原来的顺序组成递增数列或选出n +1项按原来的顺序组成递减数列. 说明:先举一个例说明:m =n =2,在一个5项的数列1,8,3,2,5中,可以选出一个3项的递增数列:1,3,5;但未能选出3项的递减数列来.解:对于mn +1项的数列a 1,a 2,…,a nm +1中每一项a i ,都可以从这项开始向后找出以该项为首项的项数最多的递增数列来,设这样的数列有x i 项,同时也能找出以该项为首项的项数最多的递减数列来,设这样的数列有y i 项,这样,对于每一项a i ,都有一对数(x i ,y i )与之对应,这就得到了mn +1个数对(可以看成是mn +1个坐标).如果所有x i 都不大于m ,所有y i 都不大于n ,即x i =1,2,…,m ;且y i =1,2,…,n .于是这样的数对只能有nm 种,将每一种都看成是一个抽屉,但共有nm +1个数对,于是根据抽屉原理,必有2个数对落入同一抽屉.设为a i 与a j ,(i <j ),它们都对应着坐标(h ,k ),这表示从这两个数中的任一个开始,可以向后找出h 项组成递增数列,也可向后找出k 项组成递减数列.若a i <a j ,则从a j 起共有h 项组成递增数列,但加上a i 后应有h +1项,即与a i 对应的数不应为h ,同样若a i >a j ,也将引出矛盾.这说明必有某个x i 满足x i >m ,或者某个y i 满足y i >n 命题得证.例11.设实数x 1,x 2,x 3,…,x n 满足x 12+x 22+x 32+…+x n 2=1证明对每一个整数k ≥2,存在不全为0的整数a 1,a 2,…,a n ,满足|a i |≤k -1,(i =1,2,…,n )使|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 证明:对于|a i |≤k -1,有(a 1x 1+a 2x 2+…+a n x n )2≤(a 12+a 22+…+a n 2)(x 12+x 22+…+x n 2)≤a 12+a 22+…+a n 2≤(k -1)2+(k -1)2+…+(k -1)2=n (k -1)2.所以, |a 1x 1+a 2x 2+…+a n x n |≤(k -1)n . ⑴现在取{a 1,a 2,…,a n } {0,1,2,…,k -1},则共可有k n 种取法,其每一种取法都满足⑴式.把区间[0,(k -1)n ]分成k n -1等份,每份长为(k -1)n k n -1.则k n 个数落入此区间内,必有二数落入同一份内.设为a '1x 1+a '2x 2+…+a 'n x n 与a "1x 1+a "2x 2+…+a "n x n ,则它们的差:(a '1-a "1)x 1+(a '2-a "2)x 2+…+(a 'n -a "n )x n = a 1x 1+a 2x 2+…+a n x n .必满足|a i |≤k -1 (i =1,2,…,n ),且|a 1x 1+a 2x 2+…+a n x n |≤(k -1)n k n -1. 例12.一个棱柱以五边形A 1A 2A 3A 4A 5及B 1B 2B 3B 4B 5分别为上下底,这两个多边形的每一条边及线段A i B j (i ,j =1,2,3,4,5)均涂上红色与绿色,每个以棱柱的顶点为顶点,以涂色线段为边的三角形都有两边颜色不同.求证:上底与下底10条边的颜色相同.证明:首先证明此棱柱的上底面的棱颜色相同.否则必有两条相邻边颜色不同.不妨设A 1A 5为红,A 1A 2为绿.5条线段A 1B i (i =1,2,3,4,5)中必有3条同色.设有3条同为红色.这3条红色的线段中,总有两条是向相邻的两个顶点引出的,例如A 1B 1、A 1B 2都为红色.于是在△A 1B 1B 2中B 1B 2必为绿色.又在△A 1A 5B 1及△A 1A 5B 2中,A 5B 1及A 5B 2均必为绿色.这样就得△A 5B 1B 2全为绿色.矛盾.这说明上底面的5条棱同色.同理,下底面的5棱也同色. 下面再证明,上下底面10条棱颜色全同.反设上底面5条棱钱红,下底面5条棱全绿.由上证,A 1B 1、A 1B 2不能全红,但也不能全绿,故必一红一绿,设A 1B 1红,则A 1B 2绿,同理得,A 1B 3红,A 1B 4绿,A 1B 5红,此时,△A 1B 1B 5又出现上证情况.故得证.练习题 1. 在3×4(cm )的长方形中,放置6个点,试证:可以找到两点,其距离不超过 5 cm .解 先把长方形分成5个区域(如图),根据抽屉原理,必有两个点在同一个区域内,因而它们的距离不超过 5 cm .2.⑴ 是否存在由10个正整数组成的集合A ,使A 的任一6元子集的元素和都不能被6整除?⑵ 对于任一由11个正整数组成的集合A ,证明:一定可以找到它的一个6元子集,其和能被6整除.⑴解:取A ={1,7,13,19,25,6,12,18,24,30},则A 的任一六元子集的元素和都不能被6整除.⑵证明:对于任一元素都是正整数的11元集A ,总可以把这11个元配成5组,每组二个数的奇偶性相同,于是同组两数的和为偶数,这样就得到5个偶数和.这5个偶数mod 3后,如果有3个数mod 3互不同余,则此三数的和被3整除;如果这样的3个数不存在,即mod 3后只有至多两个剩余类,则其中必有1类中至少有3个数,则此三个数的和被3整除.于是取加得这三个数的原来的六个数,其和被6整除.3.把大小圆盘各划分成n 个相等的扇形格,各依次填上实数a 1、a 2、…、a n 及b 1、b 2、…、b n ,然后把把两圆盘圆心重叠做成转盘,试证:若a 1+a 2+…+a n <0,b 1+b 2+…+b n <0,则必可以使转盘转到某个适当位置,使大小圆盘对应扇形上两个数的乘积的和为一个正数.证明:让小盘逐格转动,每次都记下大小圆盘对应扇形上两个数的乘积的和,这样转过n 次后,共得B 1B 2B 3B 4B 5A 5A 4A 3A 2A 1B 1B 2B 3B 4B 5A 5A 4A 3A 2A1到了n 个和.由于大盘上的每个数字都要与小盘上的每个数字对应一次,故乘积a i b j (i ,j =1,2,3,…,n )在这n 个和中都出现一次且只出现一次,故这n 个和的总和=(a 1+a 2+…+a n )( b 1+b 2+…+b n )>0.∴这n 个和不可能都小于≤0,即其中至少有一个和为正数.4.已知自然数n (n >1),用小于n 的自然数组成两个数组,每组内的数都各自两两不同,但两组间的数不一定全不同.证明:若两组数的总个数不小于n ,那么,一定可以从每一组中各选一个数,其和为n .证明:设所组成的两个数组分别为A ={a 1、a 2、…、a k }及B ={b 1、b 2、…、b h }.其中各个a i 互不相同,各个b j 也互不相同.且k +h ≥n .现取一数组C ={c 1,c 2,…,c h },使c j =n -b j ,于是各c j 均为小于n 的正数,也互不相同.由于数组{ a 1、a 2、…、a k ,c 1,c 2,…,c h }的元素都为小于n 的正整数,但k +h ≥n .从而必有某个c j =a i ,于是a i +b j =n .5.给定13个不同的实数a 1,a 2,…,a 13,求证:存在两个实数a i ,a j ,(i ≠j ),满足0< a i -a j 1+a i a j <2- 3 2+ 3. 证明:令tan θi =a i (-π2 <θi <π2,i =1,2,…,13), 则有tan(θi -θj )= a i -a j 1+a i a j <2- 3 2+ 3 =1- 3 2 1+ 3 2 = 1-cos π6 1+cos π6 =tan π12 . 故只要把这13个角按从大到小排列,并把区间(-π2 ,π2)分成12等分,则总有一个区间内落入了二个所给的角θi ,θj ,(θi >θj ),这两个角对应的实数即为所求.6.在[1,1000]内任取n 个互不相等的数a 1,a 2,…,a n ,为了总可以找到两个数a i ,a j (1≤i <j ≤n ),使得0<a i -a j <1+3∛____a i a j成立,试确定n 的最小值并证明之.解:设a i >a j ,且 0<∛__a i -∛__a j <1,于是,立方之,得0<a i -a j -3∛____a i a j (∛__a i -∛__a j )<1.∴ 0< a i -a j <1+3∛____a i a j (∛__a i -∛__a j )<1+∛____a i a j .如果取n =10,可令a i =i 3,此时当i >j 时,a i -a j =i 3-j 3=(i -j )3+3ij (i -j )≥1+3ij =1+∛____a i a j 当取n =11,及区间[i 3,(i +1)3],(i =1,2,…,9).于是这11个数中必有两个数落入同一区间.由于这些区间共有10个端点,故这11个数不可能只取这9个区间的端点值i 3,于是必存在两个数落入同一区间且其中至少有一个数不是区间的端点.则此二数满足要求.7.证明:存在着绝对值都小于一百万,不全为0的三个整数a ,b ,c ,使|a + 2 b + 3 c |<10-11.证明:令A ={x ∈N |0≤x <106}.M ={ r +s 2 +t 3 | r ,s ,t ∈A }.d =(1 + 2 + 3 )·106.若x ∈M ,则x ∈[0,d ].把区间[0,d ]分成1018-1个长度为l =d 1018-1 的子区间. 由抽屉原理,M 中1018个数中必有两个数同在某个子区间内,此二数之差<l <1071018-1 <10-11. 即此二数之差满足要求.8.我们称A 1,A 2,…,A n 为集合A 的一个n 划分,如果⑴ A 1∪A 2∪…∪A n =A ;⑵ A i ∩A j =Ø,1≤i <j ≤n .求最小的正整数m ,使得对A ={1,2,…,m }的任意一个14划分A 1,A 2,…,A 14,一定存在某个集合A i (1≤i ≤14),在A i 中有两个元素a ,b 满足b <a ≤43b .(中国西部2001数学奥林匹克) 分析:14个集合相当于14个抽屉,取15个数,则必有一个抽屉中有两个数.若15个数中任意两个的数都满足b <a ≤43b ,则可求出最小的m 值. 解:取b ,b +1,b +2,…,b +14,共15个数.若b +14b ≤43,即得b ≤42.即至少取42+14=56个数,就可保证对A 的任一划分满足要求.当m ≥56时,取出其中42,43,…,56,共15个数,则根据抽屉原理,必有两数b ,a (42≤b <a ≤56)在同一划分中,由于1<a b ≤5642 = 43 ,即b <a ≤43b 成立. 若m <56.取A i ={a |a ≡i (mod 14),0<a <56},则对于A i 中任意两个数c ,d (c <d ),显然,c ≤42.故d c≥c +14c =1+14c >1+1442 =43,即此时不存在满足要求的划分.。
抽屉原理及其生活中的应用什么是抽屉原理?抽屉原理又被称为鸽巢原理或鸽笼原理,是指将n+1只物体放入n个抽屉中,至少有一个抽屉内会放入至少两个物体的原理。
这个原理在计算机科学、数学、统计学等领域中有着广泛的应用。
生活中的抽屉原理应用抽屉原理不仅在理论上有重要意义,还在我们的日常生活中有许多实际应用。
以下是一些生活中的抽屉原理应用的示例:1.衣柜抽屉–抽屉原理在衣柜中的应用非常常见。
当我们把各种衣物放入抽屉时,由于衣物的数量有限,总会有一些抽屉里放入了多件衣物。
这符合抽屉原理的定义。
2.书架层板–书架的层板上通常用于存放书籍和杂志。
由于书籍的数量有限,当我们把众多的书籍放到书架上时,必然会有一些层板上放置了多本书。
这也是抽屉原理的一个具体应用。
3.学生的课程表–学生通常会有一份课程表,其中包含了每天的上课时间和地点。
由于学生通常有多门课程,但时间和教室是有限的,所以肯定会有某些时间和地点上有多门课程排在同一时间和地点上。
4.饭店的订单配送–饭店的订单配送也可以用抽屉原理来解释。
当饭店收到多个订单后,通常会安排一个时间窗口来进行配送。
这个时间窗口是有限的,但订单的数量可能较多,所以必然会有某些时间段内需要配送多个订单。
5.电影院的座位安排–电影院的座位也是抽屉原理的一种具体应用。
无论电影院座位的数量多少,总会出现某些座位被多个人选择的情况。
这就是因为抽屉原理的存在。
抽屉原理的作用抽屉原理在我们的生活中起着重要的作用,以下是一些抽屉原理的作用:•解决资源分配问题:在资源有限的情况下,抽屉原理可以帮助我们合理地分配资源,使得每个抽屉/资源都得到合理的利用。
•证明存在性:抽屉原理通常用于证明某个现象的存在性。
通过推理和推论,我们可以利用抽屉原理来证明某个情况的存在性。
•解决冲突和竞争:在不同的场景中,抽屉原理可以帮助我们解决冲突和竞争。
当资源有限且需求超过资源时,抽屉原理可以帮助我们找到一种合理而公正的分配方式。
抽屉原理是什么意思抽屉原理(也称为鸽巢原理)是数学中的一个重要原理,它描述的是一种概率现象。
抽屉原理可以简单地概括为:如果有n+1个物体要放进n个抽屉中,那么无论如何放置,至少有一个抽屉中必然会有两个或更多物体。
抽屉原理最早可以追溯到古希腊数学家彼得·建设者(Peter C. D)在1939年提出的鸽巢定理,后来由是美国数学家罗森(R. R*) 在1964年将其普及并以抽屉原理的名字命名。
这个原理的简单解释是很容易理解的。
假设有5个苹果和4个抽屉,我们需要将这些苹果放入抽屉中去。
无论如何摆放,必然会有至少一个抽屉中放入了两个或更多的苹果。
这是因为若将5个苹果放入4个抽屉,我们只能在某一个抽屉中放2个苹果,而按照抽屉原理的规定,至少会有一个抽屉中放入了两个或更多的物体。
抽屉原理的应用非常广泛,不仅仅局限于数学领域。
它可以应用于各个领域,如计算机科学、生物学、物理学等。
在计算机科学中,抽屉原理可以用于解决许多问题。
例如,在散列函数中,如果我们将 n个关键字映射到 m个槽位中(假设 n>m),那么至少会有一个槽位中有多个关键字映射。
这是因为抽屉原理告诉我们,无论以何种方式映射,始终会有两个关键字映射到同一个槽位上。
生物学中,抽屉原理可以用于解释遗传学中的基因频率。
在一个种群中,如果有 n 个个体,而有 m 种不同的基因,则至少会有个体携带相同的基因,而原因也是抽屉原理的应用。
物理学中,抽屉原理可以类比于波动理论。
例如,如果我们在一条线上有 n 个波峰,而只有 m 个波谷(n>m),则必然会有至少两个波峰在同一个波谷之间。
抽屉原理指导我们认识到,波动现象中特定的波峰和波谷的存在不能无限地隔离。
在生活中,我们也可以看到抽屉原理的应用。
例如,如果我们参加一个聚会,那么如果参与人数超过了场地的容纳能力,那么至少会有两个人被安排坐在同一张桌子上。
总结一下,抽屉原理是一种重要的概率现象,可以简单地概括为:在一定条件下,将多个物体放置到较少的容器中,必然会出现某个容器放入了两个或更多物体。
抽屉原理的定义是什么1. 引言抽屉原理(也被称为鸽笼原理)是一种基本的数学原理,它在各个领域都有广泛的应用。
在数学、计算机科学和其他一些领域,抽屉原理用于解决众多问题,特别是计数和概率问题。
本文将讨论抽屉原理的定义、原理以及其应用。
2. 抽屉原理的定义抽屉原理是指,当将n+1个物体放入n个抽屉中时,至少有一个抽屉里面会放有两个或两个以上的物体。
换句话说,如果有更多的物体要放入比抽屉数更少的抽屉中,那么至少会有一个抽屉中会有多个物体。
具体来说,假设有n个抽屉和m个物体,如果m > n,那么至少会有一个抽屉中有两个或两个以上的物体。
3. 抽屉原理的证明为了证明抽屉原理,我们可以采用反证法。
假设没有任何一个抽屉中放有两个或两个以上的物体,那么每个抽屉最多只能放一个物体。
如果有n个抽屉,那么最多只能放n个物体。
但是,假设我们有m > n个物体,这与前提矛盾。
因此,我们可以得出结论,至少会有一个抽屉中放有两个或两个以上的物体。
4. 抽屉原理的例子4.1 学生选择课程考虑一个学生选择课程的例子。
假设有10门课程和8名学生。
每个学生选择了至少一门课程。
根据抽屉原理,至少有一个学生选择了两门或两门以上的课程。
这是因为学生数(8)大于课程数(10)。
4.2 双生子生日问题另一个例子是双生子生日问题。
假设有365天,365个抽屉代表每一天,而抽屉里放置的是人的出生日期。
根据抽屉原理,当我们有至少366个人时,至少会有两个人在同一天出生。
这个问题揭示了在很小的数量下,会有出现概率较高的事件。
5. 抽屉原理的应用抽屉原理在计算机科学和数学中有广泛的应用。
以下是一些常见的应用:•密码学:在密码学中,抽屉原理用于解释概率分布和碰撞的概念。
它帮助我们理解两个不同的消息可能具有相同哈希值的概率。
•图论:在图论中,抽屉原理有助于解决图的着色问题。
根据抽屉原理,当要给少于或等于n个节点的图着色时,至少需要n种颜色。
•计算机算法:抽屉原理还用于处理算法设计中的情况,例如哈希冲突。
一、抽屉原理美国一家杂志上曾刊登这样一副漫画:三只鸽子同时往两个鸽笼里飞。
这是一副含义深刻的漫画,它有趣的揭示了抽屉原理:三只鸽子同时飞进两个鸽笼里,则一定有一只鸽笼里至少飞进两只鸽子。
抽屉原理俗称鸽笼原理,最先是由19世纪的德国数学家狄利克雷(P.G.Dirichlet 1805--1859)运用于解决数学问题的,所以抽屉原理又叫狄利克雷原理。
1.抽屉原理(1)第一抽屉原理设有m 个元素分属于n 个集合(其两两的交集可以非空),且m kn >(m n k ,,均为正整数),则必有一个集合中至少有1k +个元素。
(2)第二抽屉原理设有m 个元素分属于n 个两两不相交的集合,且m kn <(m n k ,,均为正整数),则必有一个集合中至多有1k -个元素。
(3)无限的抽屉原理设有无穷多个元素分属于n 个集合,则必有一个集合中含有无穷多个元素。
2.平均值原理设12n a a a ∈R ,,,,且 ()12121||n n n A a a a G a a a n=+++ , 则12n a a a ,,,中必有一个不大于A ,亦必有一个不小于A ;12||||||n a a a ,,,中必有一个不大于G ,亦有一个不小于G 。
3.面积重叠原理n 个平面图形12n A A A ,,,的面积分别为12n S S S ,,,,将它们以任意方式放入一个面积为S 的平面图形A 内。
7抽屉原理与极端原理(1)若12n S S S S +++> ,则存在1i j n <≤≤,使图形i A 与j A 有公共内点;(2)若12n S S S S +++< , 则A 存在一点,不属于图形12n A A A ,,,中的任意一个。
以上命题用反证法很容易证明,大家可以自行完成。
一般来说,适合应用抽屉原理解决的数学问题具有如下特征:新给的元素具有任意性.如1n +个苹果放入n 个抽屉,可以随意地一个抽屉放几个,也可以让抽屉空着. 问题的结论是存在性命题,题目中常含有“至少有……”、“一定有……”、“不少于……”、“存在……”、“必然有……”等词语,其结论只要存在,不必确定,即不需要知道第几个抽屉放多少个苹果. 对一个具体的可以应用抽屉原理解决的数学问题还应搞清三个问题: (1)什么是“苹果”? (2)什么是“抽屉”? (3)苹果、抽屉各多少? 用抽屉原理解题的本质是把所要讨论的问题利用抽屉原理缩小范围,使之在一个特定的小范围内考虑问题,从而使问题变得简单明确. 用抽屉原理解题的基本思想是根据问题的自身特点和本质,弄清对哪些元素进行分类,找出分类的规律.关键是构造适合的抽屉,抽屉之间可以有公共部分,亦可以没有公共部分。
一般说来,数的奇偶性、剩余类、数的分组、染色、线段与平面图形的划分等,都可作为构造抽屉的依据。
这一简单的思维方式在解题过程中却可以演变出很多奇妙的变化和颇具匠心的运用。
抽屉原理常常结合几何、整除、数列和染色等问题出现,从小学奥数、中学奥数、IMO 到Putnam 都可以见到它的身影。
实际应用中,抽屉原理常常与反证法结合在一起。
二、极端原理让我们先看一个有趣的放硬币游戏.两人相继轮流往一张圆桌上平放一枚同样大小的硬币,条件是后放的硬币不能压在先放的硬币上,直到桌子上再也放不下一枚硬币为止。
谁放入了最后一枚硬币谁获胜。
问:先放的人有没有必定取胜的策略?这是一个古老而值得深思的难题.当有人向一位确有才能的数学家提出这个难题时,引出了如下一段意味深长的对话:数学家:这有什么难?如果圆桌小到只能容纳一枚硬币,那么先放的人当然能够取胜。
提问者:这还用你讲?简直废话!数学家:不!这是一个很重要的特殊情况,它的解决将导致一般问题的解决. 提问者:怎么解决?数学家:我先将第一枚硬币放在桌子的中心,利用圆桌的对称性,我就可以获胜.不管是圆桌还是方桌,也不管是桌子有多大,只要有一个对称中心就行.数学家独具慧眼,能从一般性问题中一下子找到一个极易求解的极端情形,并能将极端情形下的解法推向一般,轻而易举地解决了上述难题,而且还作了推广.这位数学家大概是这样思考的:一般性的问题比较复杂,先将其极端化,注意到所放硬币总数1n ≥,取其极端情形1n =即假设桌子小到只能放下一枚硬币,得出特殊问题的解,即先占中心者为胜.然后根据圆桌的对称性,先放者把硬币放在中心位置O ,若后放者把硬币放在C 处,则先放者把硬币放在中心位置O 的对称点'C 处,这样只要后放者能放下硬币,先放者总能根据对称性,放下硬币,最后获胜.这种思考问题的方法称为极端原理.有时,我们只要抓住研究对象中某些具有极端性质的事物或它们所具有的特殊性质即可达到解决问题的目的。
这样一种思想方法常称为极端原理.在数学竞赛中应用较多.从问题的极端情况考虑,对于数值问题来说,就是指取它的最大或最小值;对于一个动点来说,指的是线段的端点,三角形的顶点等等。
极端化的假设实际上也为题目增加了一个条件,求解也就会变得容易得多。
所谓极端原理指的是直接抓住全体对象中的极端情形或它们所具有的某种极端性质加以研究、解决问题的思想方法.【例 1】 在一个礼堂中有99名学生,如果他们中的每个人都与其中的66人相识,那么可能出现这种情况:他们中的任何4人中都一定有2人不相识(假定相识是互相的)。
【解析】 注意到题中的说法“可能出现……”,说明题的结论并非是条件的必然结果,而仅仅是一种可能性,因此只需要设法构造出一种情况使之出现题目中所说的结论即可。
将礼堂中的99人记为1a ,2a ,…,99a ,将99人分为3组:()()()1233343566676899a a a a a a a a a ,,,,,,,,,,,,将3组学生作为3个抽屉,分别记为A ,B ,C ,并约定A 中的学生所认识的66人只在B ,C 中,同时,B ,C 中的学生所认识的66人也只在A ,C 和A ,B 中。
如果出现这种局面,那么题目中所说情况就可能出现。
因为礼堂中任意4人可看做4个苹果,放入A ,B ,C 三个抽屉中,必有2人在同一抽屉, 即必有2人来自同一组,那么他们认识的人只在另2组中,因此他们两人不相识。
点评:这种类型的构造通常都是用分组的语言来描述的,此题的99和66是很大的提示【例 2】 已知正整数01n a a a ,,,,满足0122n a a a a n <<<<< .证明:一定可以从中选出3个不同的数,使得其中两数之和等于第三数。
【解析】 由于01212n a a a a n <<<<<< ①12012n n n n n a a a a a a n ---<-<-<≤ ②从而21n +个数012120n n n n n n a a a a a a a a a a ----- ,,,,,,,,,分属于21n -个集合{1}, {2},…, {2n-1},根据抽屉原理,存在01i j n -≤,≤,使得n i j a a a -=. (1)若i j ≠,则n i j a a a =+,原命题成立;(2)若i j =,即2n i a a =,则对于k i ≠,0k n ≤≤,有2n k a a ≠, 从而2n 个数01211120i i n n n n n n a a a a a a a a a a a a -+----- ,,,,,,,,,,,分属于2n-1个集合{1}, {2},…, {2n-1},据抽屉原理,存在01i j n ''≠-≤≤,使得n i j a a a ''-=,即n i j a a a ''=+,于是原命题成立 综上所述,命题成立。
【点评】 欲在01n a a a ,,,中找到不同的三个数,使得其中两数之和等于第三数,首先构造抽屉及足够数量的数,在注意到特殊情况。
根据需要两次应用抽屉原理是解答要点。
其中(2)是在加强条件以后再次应用抽屉原理,值得我们研究。
【例 3】 在圆周上放着100个筹码,其中有41个红的和59个蓝的。
那么总可以找到两个红筹码,在它们之间刚好放有19个筹码,为什么?【解析】 此题需要研究“红筹码”的放臵情况,因而涉及到“苹果”的具体放臵方法,由此我们可以在构造抽屉时,使每个抽屉中的相邻“苹果”之间有19个筹码。
依顺时针方向将筹码依次编上号码:1,2,…,100。
然后依照以下规律将100个筹码分为20组:(1,21,41,61,81);(2,22,42,62,82);……(20,40,60,80,100)。
将41个红筹码看做苹果,放入以上20个抽屉中,因为412201=⨯+,所以至少有一个抽屉中有213+=(个)苹果,也就是说必有一组5个筹码中有3个红色筹码,而每组的5个筹码在圆周上可看做两两等距,且每2个相邻筹码之间都有19个筹码,那么3个红色筹码中必有2个相邻(这将在下一段利用第二抽屉原理证明),即有2个红色筹码之间有19个筹码。
上述疑问,现改述如下:在圆周上放有5个筹码,其中有3个是同色的,那么这3个同色的筹码必有2个相邻。
将这个问题加以转化:如图,将同色的3个筹码A B C ,,臵于圆周上,看是否能用另外2个筹码将其隔开。
将同色的3个筹码放臵在圆周上,将每2个筹码之间的间隔看做抽屉,将其余2个筹码看做苹果,将2个苹果放入3个抽屉中,则必有1个抽屉中没有苹果,即有2个同色筹码之间没有其它筹码,那么这2个筹码必相邻。
【例 4】 在一个面积为2025⨯的长方形内任意放进120个面积为11⨯的正方形,证明:在这个长方形内一定还可以放下一个直径为1的圆,它和这120个正方形的任何一个都不相重叠.【解析】 要使直径为1的圆完全放在一个矩形里,它的圆心应与矩形任何一条边的距离不小于12,这可从20×25的长方形ABCD 的每一边剪去一个宽为12的长条,则余下的长方形''''A B C D 的面积为1924456⨯=(如图a ).这样,任意放进长方形ABCD 内的直径为1的圆心都在长方形C''''A B C D 中,此外,圆心应与任何一个正方形的边界的距离也大于12,即在任何一个小正方形以外加上12的框[如图b )所得图形的面积是 1ππ143244+⨯+=+.用这样的120个图形互不相交地去覆盖长方形''''A B C D ,它们的总面积等于).43(120π+⨯但是 π120(3)4⨯+.4562.153042.312120=⨯=+⨯< 这说明用这样的120图形不能覆盖一个面积为456的长方形,从而可以在长方形ABCD 内放臵一个直径为1的圆,它不与所有的小正方形中的任何一个重叠.【点评】 常规题型 最常见的做法,把圆心不能存在的地方全部描述出来。