∴f(x)是偶函数.
解:(1)∵由
课堂篇
探究学习
探究一
探究二
探究三
(4)设 f(x)=(x-2)
∵由
+2
-2
≥ 0,
思维辨析
当堂检测
+2
.
-2
得 x≤-2 或 x>2,
-2 ≠ 0,
∴函数的定义域为(-∞,-2]∪(2,+∞),
不关于原点对称.
∴f(x)=(x-2)
+2
既不是奇函数也不是偶函数.
课前篇
自主预习
一
二
3.做一做
(1)下列函数是偶函,2]
B.y=x3-x2
C.y=x3
D.y=x2,x∈[-1,0)∪(0,1]
答案:D
(2)下列函数中,既是奇函数又是减函数的为(
A.y=x-1
B.y=3x2
1
C.y=2
答案:D
D.y=-x|x|
)
课前篇
探究三
思维辨析
当堂检测
4.已知函数f(x)是定义在R上的偶函数,当x∈(-∞,0)时,f(x)=x-x4;当
x∈(0,+∞)时,f(x)=
.
解析:方法一:由于是填空题,故可采用直接代换法,将x用-x代替,
D.f(x)=x2+x4
答案:AD
当堂检测
)
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
2.有下列说法:
①偶函数的图像一定与y轴相交;
②若y=f(x)是奇函数,则由f(-x)=-f(x)可知f(0)=0;
③既是奇函数也是偶函数的函数一定是f(x)=0,x∈R;