湘教版数学七年级下册期中检测模拟试题(含答案)
- 格式:docx
- 大小:95.46 KB
- 文档页数:5
湘教版七年级数学下册期中考试及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.超市出售的某种品牌的面粉袋上,标有质量为(25±0.2)kg的字样,从中任意拿出两袋,它们的质量最多相差-()A.0.2 kg B.0.3 kg C.0.4 kg D.50.4 kg2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°5.实效m ,n 在数轴上的对应点如图所示,则下列各式子正确的是( )A .m n >B .||n m ->C .||m n ->D .||||m n <6.下列各组数中,两个数相等的是( )A .-2与2(-2)B .-2与-12C .-2与3-8D .|-2|与-27.下列说法正确的是( )A .如果一个数的立方根等于这个数本身,那么这个数一定是零B .一个数的立方根和这个数同号,零的立方根是零C .一个数的立方根不是正数就是负数D .负数没有立方根8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知有理数a 、b 、c 在数轴上对应的点如图所示,则下列结论正确的是( )A .c+b >a+bB .cb <abC .﹣c+a >﹣b+aD .ac >ab10.实数a 在数轴上的位置如图所示,则下列说法不正确的是( )A .a 的相反数大于2B .a 的相反数是2C .|a|>2D .2a <0二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.如图,在△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB .若∠BOC=110°,则∠A=________.3.分解因式:x 3y ﹣2x 2y+xy=________.4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解方程:223124x x x --=+-.2.甲、乙两名同学在解方程组5{213mx y x ny +=-=时,甲解题时看错了m ,解得7{22x y ==- ;乙解题时看错了n ,解得3{7x y ==-.请你以上两种结果,求出原方程组的正确解.3.如图,已知在△ABC 中,EF ⊥AB,CD ⊥AB,G 在AC 边上,∠AGD=∠ACB ,求证:∠1=∠2.4.如图,已知O 为直线AB 上一点,过点O 向直线AB 上方引三条射线OC 、OD 、OE ,且OC 平分AOD ∠,3BOE DOE ∠=∠,70COE ∠=,求∠BOE 的度数5.某校为加强学生安全意识,组织全校学生参加安全知识竞赛.从中抽取部分学生成绩(得分取正整数值,满分为100分)进行统计,绘制以下两幅不完整的统计图.请根据图中的信息,解决下列问题:(1)填空:a=_____,n=_____;(2)补全频数直方图;(3)该校共有2000名学生.若成绩在70分以下(含70分)的学生安全意识不强,则该校安全意识不强的学生约有多少人?6.小明同学三次到某超市购买A 、B 两种商品,其中仅有一次是有折扣的,购买数量及消费金额如下表:解答下列问题:(1)第次购买有折扣;(2)求A、B两种商品的原价;(3)若购买A、B两种商品的折扣数相同,求折扣数;(4)小明同学再次购买A、B两种商品共10件,在(3)中折扣数的前提下,消费金额不超过200元,求至少购买A商品多少件.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、A5、C6、C7、B8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、40°3、xy(x﹣1)24、55、两6、76.510⨯三、解答题(本大题共6小题,共72分)1、54 x=2、n = 3 , m = 4,2 {3 xy==-3、略。
湘教版七年级下册数学期中考试试题及答案湘教版七年级下册数学期中考试试卷一、选择题(本题共8小题,每小题3分,共24分)1.(3分)计算(-2xy^2)^3的结果是()A。
-2x^3y^6 B。
-6x^3y^6 C。
8x^3y^6 D。
-8x^3y^62.(3分)将多项式-6a^3b^2-3a^2b^2因式分解时,应提取的公因式是()A。
-3a^2b^2 B。
-3ab C。
-3a^2b D。
-3a^3b^33.(3分)下列计算中,正确的是()A。
(m-2)(m+2)=m^2-2 B。
(x-6)(x+6)=x^2-36 C。
y^2 D。
(x+y)(x+y)=x^2+y^24.(3分)下列方程组中,为二元一次方程组的是()A。
B。
C。
D.5.(3分)下列各式从左到右的变形中,为因式分解的是()A。
x(a-b)=ax-bx B。
x^2-1+y^2=(x-1)(x+1)+y^2 C。
y^2-1=(y+1)(y-1) D。
ax+by+c=x(a+b)+c6.(3分)已知 -1 是方程组 4x-3y=11,2x+y=-5 的解,则a-b的值是()A。
-1 B。
3 C。
4 D。
67.(3分)多项式x^2-mxy+9y^2能用完全平方因式分解,则m的值是()A。
3 B。
6 C。
±3 D。
±68.(3分)某商场购进甲、乙两种服装后,都加价40%标价出售。
“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别把标价的八折和九折出售。
某顾客购买甲、乙两种服装共付182元,两种服装的标价之和为210元,则这两种服装的进价各是()A。
50、100 B。
50、56 C。
56、126 D。
100、126二、填空题(本题共8小题,每小题3分,共24分)9.(3分)计算:(-3x+1)•(-2x)^2=12x^3-4x^210.(3分)因式分解a(b-c)-3(c-b)=a(b-c)+3(b-c)=(a+3)(b-c)11.(3分)解下列方程组:① 3x+2y=5,x-y=1;④ 2x-3y=1,4x-6y=2①解法:x=1,y=1④解法:无解12.(3分)分解因式:(a-b)^2-4b^2=(a-b+2b)(a-b-2b)=(a-3b)(a+b)13.(3分)若x+y=6,xy=5,则x^2+y^2=(x+y)^2-2xy=36-10=2614.(3分)已知x^2-4x+n因式分解的结果为(x+2)(x+m),则n=-4m15.(3分)某宾馆有3人房间和2人房间共20间,总共可以住旅客48人,若设3人房间有x间,2人房间有y间,则可列出方程组为:3x+2y=203x+2y=48解法:无解16.(3分)对于有理数x,y,定义新运算“※”:x※y=ax+by+1,a,b为常数,若3※5=15,4※7=28,则5※9=25a+9b+1解法:将3※5=15和4※7=28带入得到两个方程式:3a+5b+1=154a+7b+1=28解得a=2,b=1,代入5※9=25a+9b+1得到5※9=60.点评】此题考查了多项式因式分解的基本思想和方法,需要掌握提取公因式的技巧和规律。
湘教版七年级下册数学期中考试试题一、单选题1.计算(−x 2y)2的结果是()A .x 4y 2B .﹣x 4y 2C .x 2y 2D .﹣x 2y 22.方程组60230x y x y +=⎧⎨-=⎩的解是()A .7010x y =⎧⎨=-⎩B .9030x y =⎧⎨=-⎩C .5010x y =⎧⎨=⎩D .3030x y =⎧⎨=⎩3.下列运算正确的是()A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y-+--=--4.下列各式中,能用完全平方公式分解因式的是()A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+5.为了绿化校园,某班学生共种植了144棵树苗.其中男生每人种3棵,女生每人种2棵,且该班男生比女生多8人,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是()A .144328x y x y +=⎧⎨-=⎩B .832144x y x y -=⎧⎨+=⎩C .832144y x x y -=⎧⎨+=⎩D .832144x y x y +=⎧⎨+=⎩6.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为()A .21x x --B .21x x ++C .21x x --D .21x x +-7.计算(0.5×105)3×(4×103)2的结果是()A .13210⨯B .140.510⨯C .21210⨯D .21810⨯8.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A .2mnB .(m+n )2C .(m-n )2D .m 2-n 29.计算(﹣4a ﹣1)(﹣4a+1)的结果为()A .16a 2﹣1B .﹣8a 2﹣1C .﹣4a 2+1D .﹣16a 2+110.下列等式由左到右的变形中,属于因式分解的是()A .x 2+5x ﹣1=x (x+5﹣1x)B .x 2﹣4+3x =(x+2)(x ﹣2)+3x C .x 2﹣6x+9=(x ﹣3)2D .(x+2)(x ﹣2)=x 2﹣4二、填空题11.化简:()()x 111x +-+=_______.12.因式分解:2218x -=______.13.如果有理数x ,y 满足方程组4221x y x y +=⎧⎨-=⎩那么x 2-y 2=________.14.多项式()()x m x n --的展开结果中的x 的一次项系数为3,常数项为2,则22m n mn +的值为_________.15.已知13x y =⎧⎨=⎩是二元一次方程组71mx ny nx my +=⎧⎨-=⎩的解,则2m+n 的值为_____.16.若(17x-11)(7x-3)-(7x-3)(9x-2)=(ax+b )(8x-c ),其中a ,b ,c 是整数,则a+b+c 的值等于______.17.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.三、解答题18.已知22610340m n m n +-++=,则m n +=______.19.先化简,再求值:(2x+3)(2x-3)-4x(x-1)-(x+2)2,其中x=-3.20.解下列方程组:(1)38 534 x yx y+=⎧⎨-=⎩(2)132(1)6 x yx y⎧+=⎪⎨⎪+-=⎩21.分解因式或计算:(1)(2m-n)2-169(m+n)2;(2)8(x2-2y2)-x(7x+y)+xy.(3)40×3.152+80×3.15×1.85+40×1.85222.已知二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,而它的一次项与(x-2)(x-4)的一次项相同,试将此多项式因式分解.23.已知方程组51542ax yx by-=⎧⎨-=-⎩①②由于甲看错了方程①中的a得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程②中的b得到方程组的解为54xy=⎧⎨=⎩,若按正确的a,b计算,请你求原方程组的解.24.为建设资源节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家今年2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时;(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.25.观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1…①根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)=______.②你能否由此归纳出一般性规律:(x-1)(x n+x n-1+…+x+1)=______.③根据②求出:1+2+22+…+234+235的结果.26.图1是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一下正方形.(1)请你用两种不同的方法求图2中阴影部分的面积?①②(2)观察图2,写出三个代数式(m+n)2,(m﹣n)2,4mn之间的等量关系:(3)根据(2)中的等量关系,解决如下问题:若|a+b﹣7|+|ab﹣6|=0,求(a﹣b)2的值.参考答案1.A 【解析】试题分析:(−x 2y)2=x 4y 2.故选A .考点:幂的乘方与积的乘方.2.C 【详解】试题分析:利用加减消元法求出方程组的解即可作出判断:60{230x y x y +=-=①②,①﹣②得:3y=30,即y=10,将y=10代入①得:x+10=60,即x=50,则方程组的解为50{10x y ==.故选C.考点:解二元一次方程组.3.A 【解析】解:A .(-2x 2)3=-8x 6,正确;B .-2x(x +1)=-2x 2-2x ,故B 错误;C .(x +y)2=x 2+2xy+y 2,故C 错误;D .(-x +2y)(-x -2y)=x 2-4y 2,故D 错误;故选A .4.D 【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A.2161x +只有两项,不符合完全平方公式;B.221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C.2224a ab b +-,其中2a 与24b -不能写成平方和的形式,不符合完全平方公式;D.214x x -+符合完全平方公式定义,故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.5.B 【分析】根据“共种植了144棵树苗”,“男生比女生多8人”可以列出相应的二元一次方程组,本题得以解决.【详解】由题意可得:832144x y x y -=⎧⎨+=⎩.故选:B .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的二元一次方程组.6.B 【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.7.C【详解】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质进行计算.解:(0.5×105)3×(4×103)2=0.125×1015×16×106=2×1021.故选C.本题考查同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.8.C【详解】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)2.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)2-4mn=(m-n)2.故选C.9.A【分析】根据平方差公式计算即可.【详解】解:原式=(﹣4a)2﹣12=16a2﹣1.故选:A.【点睛】本题考查整式的乘法、乘法公式等知识,熟练掌握这些法则是解题的关键,属于中考常考题型.10.C【分析】根据多项式因式分解的意义,逐个判断得结论.【详解】解:A等号的右边不是整式积的形式,不属于因式分解;B、D等号的右边是和的形式,不属于因式分解;C属于因式分解.故选:C .【点睛】本题考查了因式分解的意义.因式分解就是把多项式化为几个整式乘积的形式.11.2x .【详解】第一项利用平方差公式展开,去括号合并即可得到结果:()()22x 11111x x x +-+=-+=.考点:整式的混合运算12.2(x+3)(x ﹣3).【详解】试题分析:先提公因式2后,再利用平方差公式分解即可,即2218x -=2(x 2-9)=2(x+3)(x-3).考点:因式分解.13.2【分析】把第一个方程乘以2,然后利用加减消元法求解得到x 、y 的值,然后代入代数式进行计算即可得解.【详解】4221x y x y +=⎧⎨-=⎩①②,①×2得,2x+2y=8③,②+③得,4x=9,解得x=94,把x=94代入①得,94+y=4,解得y=74,∴方程组的解是94{74x y ==,∴x 2-y 2=(94)2-(74)2=32216=.考点:解二元一次方程组.14.-6【详解】分析:根据多项式与多项式相乘的法则把原式变形,根据题意求出m+n和mn,把所求的代数式因式分解、代入计算即可.详解:(x-m)(x-n)=x2-(m+n)x+mn,由题意得,m+n=-3,mn=2,则m2n+mn2=mn(m+n)=-6,故答案为-6.点睛:本题考查的是多项式与多项式相乘的法则,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.15.3【详解】解:由题意可得:3731m nn m+=⎧⎨-=⎩①②,①-②得:4m+2n=6,故2m+n=3.故答案为3.16.13【详解】解:(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(7x﹣3)[(17x﹣11)﹣(9x﹣2)]=(7x﹣3)(8x﹣9)∵(17x﹣11)(7x﹣3)﹣(7x﹣3)(9x﹣2)=(ax+b)(8x﹣c),可因式分解成(7x﹣3)(8x﹣9),∴a=7,b=﹣3,c=9,∴a+b+c=7﹣3+9=13.故答案为13.【点睛】此题主要考查了提取公因式法分解因式以及代数式求值,根据已知正确分解因式是解题关键.17.25【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩.即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.18.-2【分析】本题利用拆常数项凑完全平方的方法进行求解.【详解】解:22 610340m n m n +-++=22 6910250m m n n -++++=即()()22350m n -++=根据非负数的非负性可得: 3050m n -=+=,解得: 35m n ==-,所以()35 2.m n +=+-=-故答案为:-2.19.-x 2-13,-22【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】(2x+3)(2x-3)-4x (x-1)-(x+2)2=4x 2-9-4x 2+4x-x 2-4x-4=-x 2-13,当x=-3时,原式=-(-3)2-13=-22.【点睛】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(1)22xy=⎧⎨=⎩(2)32xy=⎧⎨=⎩【详解】试题分析:(1)用加减消元法解方程组即可;(2)用代入法解方程组即可.试题解析:解:(1)38534x yx y+=⎧⎨-=⎩①②①+②,得6x=12,解得x=2.将x=2代入①中,得2+3y=8,解得y=2.∴方程组的解为22 xy=⎧⎨=⎩;(2)原方程组可化为3324x yx y①②=-⎧⎨-=⎩将①代入②中,得2(3y-3)-y=4,解得y=2.将y=2代入①中,得x=3,∴方程组的解为32 xy=⎧⎨=⎩.21.(1)-(15m+12n)(11m+14n);(2)(x+4y)(x-4y);(3)1000.【分析】(1)原式利用平方差公式分解即可;(2)原式整理后,利用平方差公式分解即可;(3)原式提取40,再利用完全平方公式分解即可.【详解】(1)原式=[(2m-n)+13(m+n)][(2m-n)-13(m+n)]=-(15m+12n)(11m+14n);(2)原式=x2-16y2=(x+4y)(x-4y);(3)原式=40×(3.152+2×3.15×1.85+1.852)=40×(3.15+1.85)2=40×25=1000.【点睛】此题考查了因式分解-运用公式法,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.22.答案见解析【分析】先计算出(x-1)(x-9)与(x-2)(x-4),根据二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,一次项与(x-2)(x-4)的一次项相同,确定二次三项式,再因式分解.【详解】(x-1)(x-9)=x2-10x+9,由于二次三项式x2+px+q的常数项与(x-1)(x-9)的常数项相同,∴q=9,(x-2)(x-4)=x2-6x+8,由于二次三项式x2+px+q的一次项与(x-2)(x-4)的一次项相同,∴p=-6.∴原二次三项式是x2-6x+9.∴x2-6x+9=(x-3)2.【点睛】本题考查了多项式乘以多项式和多项式的因式分解.解决本题的关键是根据题目条件确定二次三项式.23.14295 xy=⎧⎪⎨=⎪⎩【分析】依题意把31xy=-⎧⎨=-⎩代入②,把54xy=⎧⎨=⎩代入①,组成二元一次方程组即可求出a,b,再求出原方程的解即可.【详解】解:(1)依题意把31xy=-⎧⎨=-⎩代入②,把54xy=⎧⎨=⎩代入①,得52013 122 ab+=⎧⎨-+=-⎩解得7510 ab⎧=-⎪⎨⎪=⎩(2)故原方程为751354102x yx y⎧-+=⎪⎨⎪-=-⎩,解得20415xy=⎧⎪⎨=⎪⎩【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知二元一次方程组的求解方法. 24.(1)“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时;(2)98元.【详解】试题分析:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,则根据2月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元,列方程组求解;(2)由(1)得出的“基本电价”和“提高电价”求出6月份应上缴的电费.试题解析:解:(1)设“基本电价”为x 元/千瓦时,“提高电价”为y 元/千瓦时,根据题意,得:()()801008068801208088x y x y ⎧+-=⎪⎨+-=⎪⎩,解之,得:0.61x y =⎧⎨=⎩.答:“基本电价”为0.6元/千瓦时,“提高电价”为1元/千瓦时.(2)80×0.6+(130﹣80)×1=98(元).答:预计小张家6月份上缴的电费为98元.点睛:此题考查的是二元一次方程组的应用,解题的关键是理解明确上缴电费的计算方法,列方程组求解.25.(1)x 7-1;(2)x n +1-1;(3)236-1.【分析】①观察已知各式,得到一般性规律,化简原式即可;②原式利用①中得出的规律化简即可得到结果;③原式变形后,利用②中得出的规律化简即可得到结果.【详解】解:①根据题意得:(x ﹣1)(x 6+x 5+x 4+x 3+x 2+x+1)=x 7﹣1;②根据题意得:(x ﹣1)(x n +x n ﹣1+…+x+1)=x n+1﹣1;③原式=(2﹣1)(1+2+22+…+234+235)=236﹣1.故答案为①x 7﹣1;②x n+1﹣1;③236﹣1【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.26.(1)①(m ﹣n )2;②(m+n )2﹣4mn ;(2)(m ﹣n )2=(m+n )2﹣4mn ;(3)25.【分析】(1)由题意知,阴影部分为一正方形,其边长正好为m n -.根据正方形的面积公式即可求出图中阴影部分的面积,也可以用大正方形的面积减去四个小长方形的面积由图形可得:(2)大正方形的面积减去四个小长方形的面积正好等于图中阴影部分的面积.(3)2()a b +正好表示大正方形的面积,2()a b -正好表示阴影部分小正方形的面积,ab 正好表示一个小长方形的面积.根据(2)中的等式代入计算即可.【详解】解:(1)①由图可知,阴影部分是一个正方形,边长为m ﹣n∴阴影部分的面积为:(m ﹣n )2;②由图形知,阴影部分的面积=大正方形的面积减去四个小长方形的面积,∴阴影部分的面积为(m+n )2﹣4mn ;故答案为:①(m ﹣n )2;②(m+n )2﹣4mn ;(2)由(1)知(m ﹣n )2=(m+n )2﹣4mn ,故答案为:(m ﹣n )2=(m+n )2﹣4mn ;(3)∵|a+b ﹣7|+|ab ﹣6|=0∴a+b =7,ab =6,当a+b =7,ab =6时,(a-b )2=(a+b )2-4ab=72-4×6=49﹣24=25,【点睛】此题考查根据图形理解完全平方公式,以及利用整体代入的方法求代数式的值.。
湘教版七年级数学下册期中测试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若a ≠0,b ≠0,则代数式||||||ab aba b ab ++的取值共有( )A .2个B .3个C .4个D .5个2.实数a 在数轴上的位置如图所示,则化简22(4)(11)-+-a a 结果为( )A .7B .-7C .215a -D .无法确定3.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°4.已知a =b ,下列变形正确的有( )个.①a +c =b +c ;②a ﹣c =b ﹣c ;③3a =3b ;④ac =bc ;⑤abc c =.A .5B .4C .3D .25.实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是()A .a b >B .a b <C .0a b +>D .0ab <6.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A.∠1+∠2 B.∠2-∠1 C.180°-∠1+∠2 D.180°-∠2+∠17.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 28.若长度分别为,3,5a的三条线段能组成一个三角形,则a的值可以是()A.1 B.2 C.3 D.89.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°10.如图,宽为50cm的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为()A.400cm2B.500cm2C.600cm2D.300cm2二、填空题(本大题共6小题,每小题3分,共18分)116________.2.绝对值不大于4.5的所有整数的和为________.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0.4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.若102.0110.1=,则± 1.0201=_________.6.如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是__________.三、解答题(本大题共6小题,共72分)1.解不等式组,并将解集在数轴上表示出来.273(1)15(4)2x x x x -<-⎧⎪⎨-+≥⎪⎩①②2.若关于,x y 的二元一次方程组213x y a x y +=+⎧⎨-=-⎩的解都为正数. (1)求a 的取值范围;(2)若上述方程组的解是等腰三角形的腰和底边的长,且这个等腰三角形周长为9,求a 的值.3.如图,平面直角坐标系中,ABCD 为长方形,其中点A 、C 坐标分别为(﹣4,2)、(1,﹣4),且AD ∥x 轴,交y 轴于M 点,AB 交x 轴于N .(1)求B 、D 两点坐标和长方形ABCD 的面积;(2)一动点P 从A 出发(不与A 点重合),以12个单位/秒的速度沿AB 向B 点运动,在P 点运动过程中,连接MP 、OP ,请直接写出∠AMP 、∠MPO 、∠PON 之间的数量关系;(3)是否存在某一时刻t ,使三角形AMP 的面积等于长方形面积的13?若存在,求t 的值并求此时点P 的坐标;若不存在请说明理由.4.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.5.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近8000名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?6.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了______条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(3)小明说:他所剪的所有棱中,最长的一条棱是最短的一条棱的5倍.现在已知这个长方体纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是880cm,求这个长方体纸盒的体积.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、B4、B5、D6、D7、B8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、22、03、<4、如果两个角是同一个角的余角,那么这两个角相等5、±1.016、同位角相等,两直线平行.三、解答题(本大题共6小题,共72分)1、原不等式组的解集为﹣4<x≤2,在数轴上表示见解析.2、(1)a>1;(2)a 的值为2.3、(1)(﹣4,﹣4),D(1,2),面积为30;(2)∠MPO=∠AMP+∠PON或∠MPO=∠AMP﹣∠PON;(3)存在,t=10, P点坐标为(﹣4,﹣3).4、(1)证明略;(2)∠AED+∠D=180°,略;(3)110°5、(1)200;(2)见解析;(3)54°;(4)估计该市初中生中大约有6800名学生学习态度达标.6、(1)8;(2)答案见解析:(3)200000立方厘米。
湘教版数学七年级下册期中检测综合试题(含答案)初中数学试卷湘教版七年级数学(下)期中检测综合试题(含答案)一、选择题(每题3分,共30分)1、下列各式中是二元一次方程组的是()A. 4x π+=;B. 2x-y ;C. 3x+y =0;D. 2x -5=y 2;2、下列运算中,结果正确的是()A.x 3·x 3=x 6;B. 3x 2+2x 2=5x 4;C. (x 2) 3=x 5 ;D. (x+y ) 2=x 2+y 2;3、下列各式从左边到右边的变形中,是因式分解的为()A.a (x+y )=ax +ay ;B. x 2-4x +4=x (x -4)+4;C. 10x 2-5x =5x (2x -1);D. x 2-16x +3x =(x +4)(x -4)+3x4、已知4x 2+2mx +36是完全平方式,则m 的值为()A. 12;B. ±12;C. -6;D. ±6;5、如图,点O 在直线AB 上,OC 为射线,∠1比∠2的3倍少10°,设∠1,∠2的度数分别为x °、y °,那么下列可求出这两角的度数的方程组是()A. 18010x y x y +=??=-?;B. 180310x y x y +=??=-?; C. 18010x y x y +=??=+?; D. 3180310y x y =??=-?6、若(x -5)(2x -n )=2x 2+mx -15,则m 、n 的值分别是()A. m =-7,n =3;B. m =7,n =-3;C. m =-7,n =-3;D. m =7,n =3;7、已知12x y =??=?是关于x 、y 的二元一次方程ax -3y =1的解,则a 的值为()A. -5;B. -1;C. 2;D. 7;8、从边长为a 的正方形内剪去一个边长为b 的小正方形(如图①),然后将剩余部分剪拼成一个长方形(如图②),上述操作下面能验证的等式是()A. a -b =(a+b )(a -b );B. (a -b )=a -2ab +b ;C. (a +b )=a +2ab +b ;D. a +ab =a (a +b );O A BC 12(第8题图)(第9题图)9、根据图中数据(单位:cm ),计算阴影部分面积为()A. 27 cm 2;B. 25 cm 2;C. 20 cm 2;D. 30 cm 2;10、已知13a a +=,则221a a+的值等于。
湘教版七年级数学下册期中测试卷一、选择题(每题3分,共24分)1.下列式子是二元一次方程的是( )A .3x -6=xB .3x =2yC .x -y 2=0D .2x -3y =xy2.下列各组数中,不是二元一次方程x +2y =5的解的为( )A .⎩⎨⎧x =1,y =2B .⎩⎨⎧x =2,y =1.5C .⎩⎨⎧x =6,y =-1D .⎩⎨⎧x =9,y =-23.下列运算正确的是( )A .(-2x 2)3=-8x 6B .-2x (x +1)=-2x 2+2xC .(x +y )2=x 2+y 2D .(-x +2y )(-x -2y )=-x 2-4y 24.下列从左到右的变形中,属于因式分解的是( )A .(x +2)(x -2)=x 2-4B .x 2-4+3x =(x +2)(x -2)+3xC .x 2+4xy -x =x (x +4y )D .a 2-1=(a +1)(a -1)5.将下列多项式因式分解,结果中不含有因式a +1的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+16.对于任何整数m ,多项式(4m +5)2-9一定能被( )A .8整除B .m 整除C .(m -1)整除D .(2m -1)整除7.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的完全平方公式:(m +n )2=m 2+2mn +n 2.根据图乙能得到的数学公式是( )A .(a +b )(a -b )=a 2-b 2B .(a -b )2=a 2-2ab +b 2C .a (a +b )=a 2+abD .a (a -b )=a 2-ab8.如图,设他们中有x 个成人,y 个儿童.根据对话可得方程组( )A .⎩⎨⎧x +y =30,30x +15y =195B .⎩⎨⎧x +y =195,30x +15y =8C .⎩⎨⎧x +y =8,30x +15y =195D .⎩⎨⎧x +y =15,30x +15y =195二、填空题(每题4分,共32分)9.写出一个以⎩⎨⎧x =2,y =3为解的二元一次方程:______________. 10.若x n -1·x n +5=x 10,则n =________.11.已知a ,b 满足方程组⎩⎨⎧2a -b =2,a +2b =6,则3a +b 的值为________. 12.把多项式9a 3-ab 2因式分解的结果是________________.13.若x 2+x +m =(x -3)(x +n )对x 恒成立,则m =________.14.已知xy =2,x -3y =3,则2x 3y -12x 2y 2+18xy 3=________.15.已知(-x )(2x 2-ax -1)-2x 3+3x 2中不含x 的二次项,则a =________.16.我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两.银子共有________两.三、解答题(第17,18题每题12分,第19题6分,第20题4分,第21题6分,其余每题8分,共64分)17.解方程组:(1)⎩⎨⎧x -2y =3,①3x +y =2;② (2)⎩⎨⎧2x +y =5,①x -y =1.②18.计算:(1)a (2-a )+(a +1)(a -1); (2)y (2x -y )+(x +y )2;(3)(x-2y)(x+2y-1)+4y2; (4)a2b[(ab2)2+(2ab)3+3a2].19.因式分解:(1)4x2-8x+4; (2)16x4-81y4.20.先化简,再求值:[(a+b)2-(a-b)2]·a,其中a=-1,b=5.21.王爷爷家的花圃是长方形的,长比宽多2 m,如果花圃的长和宽分别增加3 m,那么这个花圃的面积将增加39 m2.你能算出花圃原来的长和宽各是多少米吗?22.阅读:x4+4=(x4+4x2+4)-4x2=(x2+2)2-(2x)2=(x2-2x+2)(x2+2x+2).按照这种方法把多项式x4+64因式分解.23.河南省药监局出台多项措施支持南阳中药产业健康发展.现欲将某中药材生产基地的一批中药材运往外地,若用2辆A型车和1辆B型车载满中药材一次可运走10吨;用1辆A型车和2辆B型车载满中药材一次可运走11吨.现有中药材31吨,计划同时租用A型车a辆和B型车b辆(两种车都要租),一次运完,且恰好每辆车都载满中药材.根据以上信息,解答问题:(1)1辆A型车和1辆B型车都载满中药材,一次可分别运送多少吨?(2)请你帮该中药材生产基地设计租车方案﹔(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次,请选出费用最少的租车方案,并求出最少租车费.24.阅读材料并回答问题:我们知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示,如(2a+b)(a+b)=2a2+3ab+b2就可以用图①或图②中图形的面积表示.(1)请写出图③所表示的代数恒等式;(2)试画一个几何图形,使它的面积可用(a+b)(a+3b)=a2+4ab+3b2表示;(3)请依照上述方法另写一个含有a,b的代数恒等式,并画出它对应的几何图形.答案一、1.B 2.C 3.A 4.D 5.C 6.A 7.B 8.C二、9.答案不唯一,如2x -y =110.3 11.8 12.a (3a +b )(3a -b )13.-12 14.36 15.-3 16.46三、17.解:(1)由①+②×2,得7x =7,解得x =1.将x =1代入①,得y =-1. 所以原方程组的解为⎩⎨⎧x =1,y =-1.(2)①+②,得3x =6,解得x =2.将x =2代入②,得2-y =1,解得y =1.所以原方程组的解是⎩⎨⎧x =2,y =1. 18.解:(1)原式=2a -a 2+a 2-1=2a -1.(2)原式=2xy -y 2+x 2+2xy +y 2=x 2+4xy .(3)原式=(x -2y )(x +2y )-x +2y +4y 2=x 2-x +2y .(4)原式=a 2b (a 2b 4+8a 3b 3+3a 2)=a 4b 5+8a 5b 4+3a 4b .19.解:(1)原式=4(x 2-2x +1)=4(x -1)2.(2)原式=(4x 2-9y 2)(4x 2+9y 2)=(2x -3y )(2x +3y )(4x 2+9y 2).20.解:原式=(a 2+2ab +b 2-a 2+2ab -b 2)·a =4ab ·a =4a 2b .当a =-1,b =5时,原式=4×(-1)2×5=20.21.解:设花圃原来的宽为x m ,则原来的长为(x +2)m.根据题意,得(x +3)(x +2+3)=x (x +2)+39,解得x =4,所以x +2=6.答:花圃原来的长为6 m ,宽为4 m.22.解:x 4+64=(x 4+16x 2+64)-16x 2=(x 2+8)2-(4x )2=(x 2+8+4x )(x 2+8-4x ).23.解:(1)设1辆A 型车载满中药材一次可运送x 吨,1辆B 型车载满中药材一次可运送y 吨,依题意得⎩⎨⎧2x +y =10,x +2y =11,解得⎩⎨⎧x =3,y =4.答:1辆A 型车载满中药材一次可运送3吨,1辆B 型车载满中药材一次可运送4吨.(2)依题意得3a +4b =31,所以a =31-4b 3.因为a , b 均为正整数,所以⎩⎨⎧a =9,b =1或⎩⎨⎧a =5,b =4或⎩⎨⎧a =1,b =7.所以该中药材生产基地共有3种租车方案.方案1:租用9辆A 型车,1辆B 型车﹔方案2:租用5辆A 型车,4辆B 型车﹔方案3:租用1辆A 型车,7辆B 型车.(3)选择方案1所需租车费用为100×9+120×1=900+120=1 020(元);选择方案2所需租车费用为100×5+120×4=500+480=980 (元);选择方案3所需租车费用为100×1+120×7=100+840=940 (元).因为1 020 > 980 > 940,所以费用最少的租车方案为租用1辆A 型车,7辆B 型车,最少租车费为940元.24.解:(1)(2a +b )(a +2b )=2a 2+5ab +2b 2.(2)如图①所示.(答案不唯一)(3)代数恒等式是(a +2b )(a +b )=a 2+3ab +2b 2,如图②所示.(答案不唯一)。
七年级下册数学期中考试模拟试卷(满分:150分 时间:120分钟)一、 选择题(每小题4分,共40分)1. 二元一次方程2x −y =1有无数多个解,下列四组值是这个方程的解的是( )A.{x =3y =4B.{x =3y =3C.{x =2y =3D.{x =2y =42. 已知{x +6y =123x −2y =4则x +y 的值是( ) A.5 B.4 C.3 D.23.下列计算正确的是( )A.a 2·a −2=a −4B. a 2·a 3=a 5C. a 2+a −2=a 0D. (−ab)4=a 4b 44.下列能用平方差公式计算的是( )A.(3a +b)(a −b)B. (−3a +b)(3a +b)C. (−3a −b)(3a +b)D. (−3a +b)(3a −b)5.下列等式中,从左到右是因式分解的是( )A.(x −1)(x −1)=x 2−1B. a 2−b 2=(a −b)2C. a 2−2ab +b 2=(a −b)2D. m 2−4m +4=m (m −4)+46.长方形长为a ,宽为b ,周长为10,面积为6.则a 2b +ab 2值为( )A.10B.20C.30D.407.用加减消元法解方程组{2x +y =3①x +y =4②最适合的方法是( ) A. ①-② B. ①+② C. ①×2+② D. ②×2 -①8.某中学组织师生共500人出行参加活动,有AB两种型号客车可供租用,两种客车载客量分别为25人,60人,要求每辆车必须满载,则师生一次性到达活动现场的租车方案有()A.1种B.2种C.3种D.4种9.计算(−57)2019×(125)2020的结果是()A. −57B. −75C.57D.7510.将多项式a2−4a进行因式分解,结果正确的是()A.(a−2)(a+2)B.a (a−2)(a+2)C. a (a−2)(a−2)D. a (a+2)(a+2)二、填空题(每小题4分,共32分)11.把3x+2y=1改写成用含x的式子表示y形式是:y=。
湘教版七年级数学下册期中测试卷【及参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是()A.2 B.12C.12-D.2-2.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球()A.12个B.16个C.20个D.30个3.已知:20n是整数,则满足条件的最小正整数n为( )A.2 B.3 C.4 D.54.一5的绝对值是()A.5 B.15C.15-D.-55.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是()A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.关于x的不等式组314(1){x xx m->-<的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥37.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,已知AE 是ΔABC 的角平分线,AD 是BC 边上的高.若∠ABC=34°,∠ACB=64°,则∠DAE 的大小是( )A .5°B .13°C .15°D .20°10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( ) A .10B .9C .8D .7二、填空题(本大题共6小题,每小题3分,共18分)1. 3-5的相反数为______,|1-2|=_______,绝对值为327的数为________.2.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a)x <13的解集是________.5.若一个数的平方等于5,则这个数等于________. 6.关于x 的分式方程721511x m x x -+=--有增根,则m 的值为__________. 三、解答题(本大题共6小题,共72分)1.解方程组:34165633x y x y +=⎧⎨-=⎩2.已知|5﹣2x |+(5﹣y )2=0,x ,y 分别是方程ax ﹣1=0和2y ﹣b +1=0的解,求代数式(5a ﹣4)2011(b ﹣1102)2012的值.3.如图,已知在四边形ABCD 中,点E 在AD 上,∠BCE =∠ACD =90°,∠BAC =∠D ,BC =CE .(1)求证:AC =CD ;(2)若AC =AE ,求∠DEC 的度数.4.如图,已知直线EF 分别交AB,CD 于点E,F,且∠AEF =66°,∠BEF 的平分线与∠DFE 的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、D6、D7、B8、D9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1-1 ±32、a+c3、同位角相等,两直线平行4、x<1 95、6、4.三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、1 2 -.3、(1)略;(2)112.5°.4、(1)∠PEF=57°;(2)∠EPF=90°.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。
湘教版七年级数学下册期中考试及答案【完整】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .3.下列图形中,是轴对称图形的是( )A .B .C .D .4.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为( )A .(2,3)B .(-2,-3)C .(-3,2)D .(3,-2)5.计算22222100-9998-972-1++⋅⋅⋅+的值为( )A .5048B .50C .4950D .50506.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.下列各数中,313.14159 8 257π⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个8.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.下列各组数值是二元一次方程x ﹣3y =4的解的是( )A .11x y =⎧⎨=-⎩B .21x y =⎧⎨=⎩C .12x y =-⎧⎨=-⎩D .41x y =⎧⎨=-⎩10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .33C .26D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为________.2.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠=________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.多项式112m x -﹣3x+7是关于x 的四次三项式,则m 的值是________. 5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解方程组(1)327413x y x y +=⎧⎨-=⎩ (2)143()2()4x y x y x y ⎧-=-⎪⎨⎪+--=⎩2.已知关于x 的方程2x m -=x+ 3m 与方程41210.653y y -+=-的解互为倒数,求m 的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC=78°,求∠DAC 的度数.5.九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.6.某自行车经销商计划投入7.1万元购进100辆A型和30辆B型自行车,其中B型车单价是A型车单价的6倍少60元.(1)求A、B两种型号的自行车单价分别是多少元?(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行年的总数不变,那么至多能购进B型车多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、C5、D6、D7、B8、B9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、4a<2、1253、135°4、55、2或﹣8.6、2 1三、解答题(本大题共6小题,共72分)1、(1)31xy=⎧⎨=-⎩;(2)4989xy⎧=-⎪⎪⎨⎪=⎪⎩.2、6 53、(1)35°;(2)36°.4、44°5、(1)50,18;(2)补全的条形统计图见解析;(3)108;(4)该校九年级学生中有300名学生对数学感兴趣.6、(1)A型自行车的单价为260元/辆,B型自行车的单价为1500元/辆;(2)至多能购进B型车20辆.。
初中数学试卷 灿若寒星整理制作
湘教版七年级数学(下)期中检测模拟试题(含答案)
一、选择题(每题3分,共3分)
1、代数式x -2是下列哪一组的公因式( )
A. (x +2) 2,(x -2) 2 ;
B. x 2-2x ,4x -6;
C. 3x -6, x 2-2x ;
D. x -4,6x -18;
2、以为解的二元一次方程组可以是( )
A. 51x y x y +=⎧⎨-=⎩;
B. 2332x y x y =⎧⎨=⎩;
C. 11423115
326x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩; D.
222322
x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=⎪⎩ 3、计算:231()2
xy -,结果正确的是( ) A. 2414x y ; B. 3618x y -; C. 3618x y ; D. 3518
x y - 4、下列各式是完全平方式的是( )
A. x 2-x +1;
B. 4x 2+4xy+1;
C. x 2+xy+14
y 2; D. x 2-4xz+z 2; 5、下列各式可以用平方差公式分解因式的是( )
A. -a 2b 2+16;
B. -a 2b 2-16;
C. a 2b 2+16;
D. (ab +16) 2;
6、三年前甲的年龄是乙的2倍,21年后乙的年龄是甲的34
;设甲现年x 岁,乙现年y 岁,列方程组得( ) A. 323214
x y y x -=⎧⎪⎨+=⎪⎩; B. 32(3)321(21)4x y y x -=-⎧⎪⎨+=+⎪⎩; C. 323321214x y y x -=-⎧⎪⎨+=+⎪⎩; D. 13(3)2321(21)4
x y x y ⎧-=-⎪⎪⎨⎪+=+⎪⎩ 7、已知二次三项式2x 2+bx+c 可分解因式为2(x -3)(x +1),则b 、c 的值为( )
A. b =3,c =-1;
B. b =-6,c =2;
C. b =-6,c =-4;
D. b =-4,c =-6;
8、一次课堂练习,小米同学做了如下四道因式分解题,你认为小米做得不够完整的一题是( )
A. x 3-x=x (x 2-1)
B. x 2-2xy+y 2=(x -y ) 2;
C. x 2y -xy 2=xy (x -y );
D. x 2-y 2=(x+y )(x -y );
9、有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57名,仙海湖某船家有3艘大船与6艘小船,一次可以载乘客的人数为( ),
A. 129;
B. 120;
C. 108;
D. 96;
10、如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+i)cm 的正方 形(a>0),余下部分沿虚线又剪拼成一个长方形(不重叠无缝隙),则长方 形的面积是( )
A. (2a 2+5a )cm 2;
B. (3a +15)cm 2;
C. (6a +9)cm 2;
D. (6a +15)cm 2;
二、填空题(每题4分,共32分)
11、分解因式:x 3y -2x 2y 2+xy 3= .
12、计算:3221(3)()9
x x ⋅-= 。
13、写出一个与23823x y x y +=⎧⎨-=-⎩
的解相同的二元一方程组: 。
14、已知当x =1时,2ax 2+bx 的值是3,则当x =2时,ax 2+bx 的值是 。
15、( )(a -3)=7a 2-21a
16、如果x a y b =⎧⎨=⎩
是方程2x +y =0的一组解,那么6a +3b +2= . 17、某班同学参加运土劳动,女同学除1人请假外,全部分配去抬土,两人抬一筐,男同学除去3个弱者跟女同学一起抬土外,其余全部去担土,1人担两筐,这样全部共需土筐59个,扁担36根,则该班男同学有 人,女同学有 人。
18、已知方程组32121
x y m x y m +=+⎧⎨+=-⎩,当m 时,x 比y 大2.
三、解答题(58分)
19、(16分)因式分解:
(1) 2241222
x xy y ++ (2)222224()b c b c -+
(3)22(1)1a a a --+ (4)(1)(1)8a a +-- a +4 a
+1
20、(8分)解方程组:
(1)34105642x y x y -=⎧⎨+=⎩ (2)1234()5()2
x y x y x y x y +-⎧+=⎪⎨⎪+--=⎩
21、(6分)如图,在一块边长为a cm 的正方形纸板的四角,各剪去一个边长为
b (b<2
a )cm 的小正方形,利用因式分解计算,当a =13.2 cm ,
b =3.4 cm 时,剩余部分的面积。
22、(6分)已知4m+n =90,2m -3n =10,求(m +2n ) 2-(3m -n ) 2的值。
23、(10分)《一千零一夜》中有这样一段文字:有一群鸽子,一部分在树上欢歌,另一部分在树下觅食,树上的一只鸽子对树下的说:“若你们中飞上来一只,则树下的鸽子就是整个鸽群的三分之一;若树上的飞下来一只,则树上、树下的鸽子就一样多了。
”求树上、树下各有多少只鸽子?
24、(12分)某同学在A 、B 两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听单价比书包单价的4倍少8元。
(1)求该同学看中的随身听和书包单价各式多少元?
(2)某一天该同学上街,恰好赶上商家促销,超市A 所有商品打八五折销售,a b
超市B 全场购物满100元返购物券30元销售(不足100元不返,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的两样物品,你能说明他选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?
参考答案:一、1、C ;2、D ;3、B ;4、C ;5、A ;
6、B ;
7、D ;
8、A ;
9、D ;10、D ;
二、11、xy (x -y ) 2;12、-x 8;13、13
x y x y -=-⎧⎨+=⎩(答案不唯一);14、6; 15、7a ;16、2;17、26,24;18、m >4;
三、19、(1)原式=221(2)2
x y +;(2)原式=22()()b c b c -+-;
(3)原式=(a +1)(a -1) 2;(4)原式=(a +3)(a -3);
20、(1)62x y =⎧⎨=⎩;(2)原方程组整理为:5692x y x y +=⎧⎨-=-⎩解得:26238
23x y ⎧=⎪⎪⎨⎪=⎪⎩ 21、剩余部分的面积S=a 2-4b 2 当a =13.2 cm ,b =3.4 cm 时,原式=128
22、原式=-(4m+n )(2m -3n ),将已知条件代入:原式=-900.
23、设树上鸽子数为x 只,树下鸽子数为y 只。
依题意得:11()311
y x y x y ⎧-=+⎪⎨⎪-=+⎩整理得:232y x y x -=⎧⎨-=-⎩解得:75x y =⎧⎨=⎩ 24、(1)设随身听单价是x 元,书包单价是y 元。
依题意得:45248x y x y +=⎧⎨=-⎩解得:36092
x y =⎧⎨=⎩ (2)A 超市需要:452×0.85=384.2(元)
B超市需要:先购随身听花360元,返购物券:90元,买书包还要:92-90=2元。
一共要:360+2=362元。
因为384.2>362,所以,选择B超市购买更省钱。