信息论与编码理论-第4章无失真信源编码-习题解答-20071202
- 格式:doc
- 大小:448.50 KB
- 文档页数:10
4.1某离散无记忆信源概率空间为分别使用长度为10和100的序列进行等长无失真编码,分别计算最短平均码长和编码效率。
解:信源的熵为881.03.03.07.07.0)(H =--=lb lb X 比特/符号当N=10时,序列码长应当满足 81.81881.0102)(L 1=⨯=>lb X NH 比特/序列考虑到序列码长应该为整数,取L1=9比特/符号,平均每个符号的码长为9.0NL L 11==比特/符号 所以编码效率为%9.97L )(H 11==X η 当N=100时,序列码长为1.881881.01002)(L 1=⨯=>lb X NH 比特/100符号取L1=89比特/符号,平均每个符号的码长为89.0NL L 22==比特/符号 编码效率为%99L )(H 22==X η 4.2设离散无记忆信源为如果要求编码效率为,允许错误概率为,求编码序列的长度。
解:信源的熵为722.02.02.08.08.0)(H =--=lb lb X 比特/符号自信息量方差为64.0722.0-)2.0(2.0)8.0(8.0D 222=+=lb lb采用二进制码进行等长编码,序列长度应当满足72221062.1)1)((D N ⨯=-≥δηηX H4.3设离散无记忆信源的概率空间为要求编码效率为(1) 如果采用序列等长编码,而允许译码错误概率为,求编码序列的长度。
(2) 如果采用序列变长编码,求编码序列的长度,并且与(1)比较,说明为什么会有这样的结果。
解1)信源的熵为811.025.025.075.075.0)(H =--=lb lb X 比特/符号自信息量方差为471.0811.0-)25.0(25.0)75.0(75.0D 222=+=lb lb采用二进制编码,序列长度为62221029.1)1)((D N ⨯=-≥δηηX H2)对信源进行二次扩展,并采用下列编码方式构成唯一可译码平均码长为6875.13161316321631169L =⨯+⨯+⨯+⨯=比特/2符号 每个符号码长为84375.026875.12L L ===比特/符号 编码效率为%95%1.9684375.0811.0L H(X)=>===δη 由于变长编码能够更好利用不同序列的概率分布进行编码,概率越大,序列的码长越短,概率越小,序列的码长越长,所以相对等长编码而言,变长编码的平均码长很短。
《信息论与编码》习题解答第四章 信息率失真函数-习题答案4.1解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率⎥⎦⎤⎢⎣⎡--=εεεε11)|(i j a b p 平均失真:εεεεε=⨯-⨯+⨯⨯+⨯⨯+⨯-⨯==∑∑==0)1(2/112/112/10)1(2/1),()|()(2121j i i j i j i b a d a b p a p D4.2解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0210d , 0min =D ,∑=⨯+⨯=⨯+⨯===ij i i j j y x d x p D D )102/122/1(2/112/102/1),()(min min max 舍去当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=1001P当2/1max =D ,0)(max =D R因为取的是第二列的max D 值,所以输出符号概率:,1)(,0)(21==b p b p ,,2221b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=1010P 4.3解:0min =D0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 当0min =D ,bit X H R D R 24log )()0()(min ==== 因为没有失真,此时的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P 当4/3max =D ,0)(max =D R因为任何一列的max D 值均为3/4,所以取输出符号概率:0)(,0)(,0)(,1)(4321====b p b p b p b p ,即14131211,,,b a b a b a b a →→→→因此编码器的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P 4.4解: 依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=4/1014/110d , 0min =D∑=⨯+⨯===ij i i j j y x d x p D D )2/12(4/1)4/12/14/12/1min(),()(min min max 个均为其它当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=010001P 当4/1max =D ,0)(max =D R因为取的是第三列的max D 值为1/4,所以取输出符号概率:1)(,0)(,0)(321===b p b p b p ,即3231,b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=100100P 4.5解:(1)依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率为:⎥⎦⎤⎢⎣⎡-=q q P 101 )1(0)1()1(1)1(1001),()|()(11p q q p q p p p y x d x y p x p D n i mj j i i j i -⨯=⨯-⨯-+⨯⨯-+⨯⨯+⨯⨯==∑∑==(2) 0min =D因为)(D R 是D 的递减函数,所以)1log()1(log )()()())(m ax (min min p p p p D H p H D R D R ----=-==当0=q 时可达到))(max(D R ,此时0=D(3) ∑-=⨯+⨯===iji i j j ,p p p p y x d x p D D )1(10),()(min min max 舍去更大另一个 因为)(D R 是D 的递减函数,所以0)()()())(m in(max max =-==D H p H D R D R当1=q 时可达到))(min(D R ,此时p D -=1(图略,见课堂展示)4.6解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡∞∞=1010d ,信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2/12/110)(u p u 0min =D ,∑⨯+⨯⨯+∞⨯∞⨯+⨯===iji i j j y x d x p D D )12/112/1,02/12/1,2/102/1min(),()(min min max )(1]1,,m in[舍去另二个,∞=∞∞=10≤≤D因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中1,2==a n ,所以率失真函数为:D D R -=1)(4.7解:失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011101110d ,按照P81页方法求解。
《信息论、编码与密码学》课后习题答案第1章 信源编码1.1考虑一个信源概率为{0.30,0.25,0.20,0.15,0.10}的DMS 。
求信源熵H (X )。
解: 信源熵 ∑=-=512)(log )(k k k p p X HH(X)=-[0.30*(-1.737)+0.25*(-2)+0.2*(-2.322)+0.15*(-2.737)+0.1*(-3.322)]=[0.521+0.5+0.464+0.411+0.332] =2.228(bit)故得其信源熵H(X)为2.228bit1.2 证明一个离散信源在它的输出符号等概率的情况下其熵达到最大值。
解: 若二元离散信源的统计特性为P+Q=1 H(X)=-[P*log(P)+(1-P)*log(1-P)] 对H(X)求导求极值,由dH(X)/d(P)=0可得211101log ==-=-p ppp p可知当概率P=Q=1/2时,有信源熵)(1)(max bit X H =对于三元离散信源,当概率3/1321===P P P 时,信源熵)(585.1)(m ax bit X H =,此结论可以推广到N 元的离散信源。
1.3 证明不等式ln 1x x ≤-。
画出曲线1ln y x =和21y x =-的平面图以表明上述不等式的正确性。
证明:max ()ln 1(0)1()()01001()0()0ln 11ln 1ln 1f x x x x f x xf x x x x f x f x f x x x x x x x =-+>'=''==>∴<≤>≤=≤-≥≤-≤-令,又有时此时也即当时同理可得此时综上可得证毕绘制图形说明如下 可以很明确说明上述 不等式的正确性。
1.4 证明(;)0I X Y ≥。
在什么条件下等号成立?1111(,)(,)(,)(,)log()()n mi j i j i j n mi j i j i j i j I P x y I x y P x y P x y P x P y =====∑∑∑∑(X ;Y )=当和相互独立时等号成立。
《信息论与编码》习题解答第四章 信息率失真函数-习题答案4.1解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率⎥⎦⎤⎢⎣⎡--=εεεε11)|(i j a b p 平均失真:εεεεε=⨯-⨯+⨯⨯+⨯⨯+⨯-⨯==∑∑==0)1(2/112/112/10)1(2/1),()|()(2121j i i j i j i b a d a b p a p D4.2解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0210d , 0min =D ,∑=⨯+⨯=⨯+⨯===ij i i j j y x d x p D D )102/122/1(2/112/102/1),()(min min max 舍去当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=1001P当2/1max =D ,0)(max =D R因为取的是第二列的max D 值,所以输出符号概率:,1)(,0)(21==b p b p ,,2221b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=1010P 4.3解:0min =D0041041041041),(min )(43041141141141),()(min min min max =⨯+⨯+⨯+⨯===⨯+⨯+⨯+⨯===∑∑i j i j i i j i i j j y x d x p D y x d x p D D 当0min =D ,bit X H R D R 24log )()0()(min ==== 因为没有失真,此时的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P 当4/3max =D ,0)(max =D R因为任何一列的max D 值均为3/4,所以取输出符号概率:0)(,0)(,0)(,1)(4321====b p b p b p b p ,即14131211,,,b a b a b a b a →→→→因此编码器的转移概率为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P 4.4解: 依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=4/1014/110d , 0min =D∑=⨯+⨯===ij i i j j y x d x p D D )2/12(4/1)4/12/14/12/1min(),()(min min max 个均为其它当0min =D ,bit X H R D R 12log )()0()(min ====因为没有失真,此时的转移概率为⎥⎦⎤⎢⎣⎡=010001P 当4/1max =D ,0)(max =D R因为取的是第三列的max D 值为1/4,所以取输出符号概率:1)(,0)(,0)(321===b p b p b p ,即3231,b a b a →→因此编码器的转移概率为⎥⎦⎤⎢⎣⎡=100100P 4.5解:(1)依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡=0110d ,转移概率为:⎥⎦⎤⎢⎣⎡-=q q P 101 )1(0)1()1(1)1(1001),()|()(11p q q p q p p p y x d x y p x p D n i mj j i i j i -⨯=⨯-⨯-+⨯⨯-+⨯⨯+⨯⨯==∑∑==(2) 0min =D因为)(D R 是D 的递减函数,所以)1log()1(log )()()())(m ax (min min p p p p D H p H D R D R ----=-==当0=q 时可达到))(max(D R ,此时0=D(3) ∑-=⨯+⨯===iji i j j ,p p p p y x d x p D D )1(10),()(min min max 舍去更大另一个 因为)(D R 是D 的递减函数,所以0)()()())(m in(max max =-==D H p H D R D R当1=q 时可达到))(min(D R ,此时p D -=1(图略,见课堂展示)4.6解:依题意可知:失真矩阵:⎥⎦⎤⎢⎣⎡∞∞=1010d ,信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2/12/110)(u p u 0min =D ,∑⨯+⨯⨯+∞⨯∞⨯+⨯===iji i j j y x d x p D D )12/112/1,02/12/1,2/102/1min(),()(min min max )(1]1,,m in[舍去另二个,∞=∞∞=10≤≤D因为二元等概信源率失真函数:⎪⎭⎫ ⎝⎛-=a D H n D R ln )( 其中1,2==a n ,所以率失真函数为:D D R -=1)(4.7解:失真矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011101110d ,按照P81页方法求解。
信息论与编码习题详解第四章4。
1 某集源按 P(0)=3/4,P(1)=1/4 的概率产生统计独立的二元序列.(1)试求 N0,使当 N>N 0时有: P{| I(a i)/N-H(S)|≥ 0.05}≤ 0.01其中 H( S)是信源的熵。
(2)试求当 N= N0时典型序列集 Gε N 中含有的信源序列个数.解:(1) H(S)= —∑ Pi ㏒ Pi= -3/4 ㏒ (3/4) —1/4 ㏒ (1/4 )=0.811比特/符号依照契比雪夫不等式,对于任意ε>0,当 N> N0 时,P {∣ I( αi)/N – H(S )∣≥ε}≤ D[I(Si )]/N ε2现有ε =0.05, 欲证原式,只要D[ I(Si )]/N ε2≤ 0。
01依照信源, D[ I ( Si)]= ∑P( Si )[㏒ P(Si) ]2– H 2( S)=3/4 (㏒ 3/4) 2+1/4 (㏒ 1/4) 2— (0 。
811) 2=0 。
4712 2∴ N0= D[I(Si)]/0。
01ε =0.471/0 。
01×( 0.05) =18840(2)序列 GεN是所有 N 长的ε典型序列会集,(1-δ)2N[H( S)—ε ] ≤‖GεN‖≤2N[H( S) - ε]0.99 × 214342。
5≤‖ GεN‖≤ 216226。
54。
2 设无记忆二元信源,其概率为P1=0.005, P0=0。
995.信源输出 N= 100 的二元序列 .在长为 N=100 的信源序列中只对含有 3 个或小于 3 个“1的”各信源序列组成一一对应的一组等长码。
(1)求码字所需的最小长度。
(2)计算式( 4.27a)中的ε。
(3)考虑没有恩赐编码的信源序列出现的概率,该等长码引起的错误概率PE 是多少?若从契比雪夫不等式( 4。
22)考虑, PE 应是多少?试加以比较。
解:( 1)无记忆二元信源S 0, 1P s i 0.995 0.005N=100 的扩展信源S NN N N N1 0,2 0,,2 N 1 11 10, 2 N 11 1P i 0 01N N-1 ,,N 1 N0.995 , 0.995 0.995 0.005 , 0.0050.005现只对含有 3 个或小于 3 个“ 1”的各信源序列组成一一对应的一组二元等长码。
第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长l。
4-2 设信源61261126()1()()()()iis s sXp sp s p s p sP X=⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦∑。
对此次能源进行m元唯一可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)4-3设信源为1234567811111111()248163264128128s s s s s s s sXp X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,编成这样的码:(000,001,010,011,100,101,110,111)。
求(1)信源的符号熵;(2)这种码的编码效率;(3)相应的仙农码和费诺码。
4-4求概率分布为11122(,,,,)3551515信源的二元霍夫曼编码。
讨论此码对于概率分布为11111(,,,,)55555的信源也是最佳二元码。
4-5有两个信源X和Y如下:121234567()0.200.190.180.170.150.100.01X s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦123456789()0.490.140.140.070.070.040.020.020.01Y s s s s s s s s s p Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X 和Y 进行编码,并计算其平均码长和编码效率;(2)从X ,Y 两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样 霍夫曼码的信源的所有概率分布。
4-7设信源为12345678()0.40.20.10.10.050.050.050.05X s s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求其三元霍夫曼编码。
4.1 当率失真函数R (D )取什么值的时候,表示不允许有任何失真。
解:当D=0时,表示不允许有任何失真,此时R (D )= H (X ), 即R max ((D )= H (X )4.2 说明信源在不允许失真时,其信息率所能压缩到的极限值是什么?当允许信源存在一定的失真时,其信息率所能压缩到的极限值又是什么?解:不允许失真时,信息率压缩极限值R (D )= H (X );不允许失真时,信息率压缩极限值 R (D )= 04.3 在例4.8中,当允许D= 0.5δ时,请问每个信源符号至少需要几个二进制符号来对其编码?解:因为二元信源率失真函数:⎪⎭⎫⎝⎛-=a D H p H D R )()(其中a = 1(汉明失真), 所以二元信源率失真函数为:)()()(D H p H D R -=当D= 2P 时[]symbol nat p p p p p p p p p H p H p R /21ln 212ln 2)1ln()1(ln 2)(2⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-++--+-=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛4.4 给定信源分布⎥⎦⎤⎢⎣⎡)(q X X = ⎥⎦⎤⎢⎣⎡25.025.05.0x 321x x ,失真测度矩阵[d]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011302120,求率失真函数R (D )。
解:定义域:D min =0×0.5+0×0.25+0×0.25=0D max =min{2×0.25+1×0.25,2×0.5+1×0.25,1×0.5+3×0.25}=0.75值域:R (D min )= -0.5log0.5-0.25log0.25-0.25log0.25=0.45 R (D max )= 04.5 给定二元信源⎥⎦⎤⎢⎣⎡)(q X X = ⎥⎦⎤⎢⎣⎡5.05.0x x 21, 失真测度矩阵为[d]=⎥⎦⎤⎢⎣⎡00αα,求率失真函数R(D)。
第4章无失真信源编码习题及其参考答案4-1 有一信源,它有六个可能的输出,其概率分布如下表所示,表中给出了对应的码A、B、C、D、E和F(1)求这些码中哪些是唯一可译码;(2)求哪些码是及时码;(3)对所有唯一可译码求出其平均码长l。
4-2 设信源61261126()1()()()()iis s sXp sp s p s p sP X=⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦∑LL。
对此次能源进行m元唯一可译编码,其对应的码长为(l1,l2,…,l6)=(1,1,2,3,2,3),求m值的最好下限。
(提示:用kraft不等式)4-3设信源为1234567811111111()248163264128128s s s s s s s sXp X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,编成这样的码:(000,001,010,011,100,101,110,111)。
求(1)信源的符号熵;(2)这种码的编码效率;(3)相应的仙农码和费诺码。
4-4求概率分布为11122(,,,,)3551515信源的二元霍夫曼编码。
讨论此码对于概率分布为11111(,,,,)55555的信源也是最佳二元码。
4-5有两个信源X和Y如下:1234567()0.200.190.180.170.150.100.01X s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦123456789()0.490.140.140.070.070.040.020.020.01Y s s s s s s s s s p Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦(1)用二元霍夫曼编码、仙农编码以及费诺编码对信源X 和Y 进行编码,并计算其平均码长和编码效率;(2)从X ,Y 两种不同信源来比较三种编码方法的优缺点。
4-6设二元霍夫曼码为(00,01,10,11)和(0,10,110,111),求出可以编得这样 霍夫曼码的信源的所有概率分布。
4-7设信源为12345678()0.40.20.10.10.050.050.050.05X s s s s s s s s p X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求其三元霍夫曼编码。
4-8若某一信源有N 个符号,并且每个符号等概率出现,对这个信源进行二元霍夫曼编码,问当N =2i 和N =2i +1(i 是正整数)时,每个码值的长度是多少?平均码长是多少?4-9现有一幅已离散量化后的图像,图像的灰度量化分成8级,如下表所示。
表中数字为相应像素上的灰度级。
(1)不考虑图像的任何统计特性,对图像进行二元等长编码,这幅图像共需要多少个二元符号描述?(2)若考虑图像的统计特性,求这幅图像的信源熵,并对每个灰度级进行二元霍夫曼编码,问平均每个像素需用多少二元符号表示。
4-10在MPEG 中为了提高数据压缩比,采用了____方法。
A .运动补偿与运行估计 B.减少时域冗余与空间冗余 C .帧内图像数据与帧间图像数据压缩 D.向前预测与向后预测4-11 JPEG中使用了____熵编码方法。
A.统计编码和算术编码B.PCM编码和DPCM编码C.预测编码和变换编码D.哈夫曼编码和自适应二进制算术编码4-12 简述常用信息编码方法的两类。
4-13 简述等长编码和变长编码的特点,并举例说明。
4-14已知信源X=[x1=0.25,x2=0.25,x3=0.2,x4=0.15,x5=0.10,x6=0.05],试对其进行Huffman编码。
4-15已知信源X=[x1=1/4,x2=3/4],若x1=1,x2=0,试对1011进行算术编码。
4-16离散无记忆信源发出A,B,C三种符号,其概率分布为5/9,1/3,1/9,应用算术编码方法对序列CABA进行编码,并对结果进行解码。
4-17给定一个零记忆信源,已知其信源符号集为A={a1,a2}={0,1},符号产生概率为P(a1)=1/4,P(a2)=3/4。
对二进制序列11111100,求其二进制算术编码码字。
4-18有四个符号a,b,c,d构成的简单序列S=abdac,各符号及其对应概率如表所示。
应用算术编码方法对S进行编码,并对结果进行解码。
符号符号概率p ia 1/2b 1/4c 1/8d 1/84-19简述游程编码的思想和方法。
4-20简述JEPG算法的主要计算步骤,并详细说明每个步骤。
4-21设二元信源的字母概率为P(0)=1/4,P(1)=3/4。
若信源输出序列为10111(a)对其进行算术编码并计算编码效率。
(b)对其进行LZ编码并计算编码效率。
4-22设有二元信源符号集,输入信源符号序列为101000110110,a a a a a a a a a a a a L求其序列的字典编码。
4-23一个离散记忆信源A={a,b,c},发出的字符串为bccacbcccccccccccaccca。
试用LZ算法对序列编码,给出编码字典及发送码序列。
4-24 用LZ算法对信源A={a,b,c}编码,其发送码字序列为:2,3,3,1,3,4,5,10,11,6,10。
试据此构建译码字典并译出发送序列。
习题参考答案4-1:(1) A 、B 、C 、E 编码是唯一可译码。
(2) A 、C 、E 码是及时码。
(3) 唯一可译码的平均码长如下:61111111()3()32416161616A i i i l p s l ===⨯+++++=∑ 码元/信源符号61111111()123456 2.1252416161616B i i i l p s l ===⨯+⨯+⨯+⨯+⨯+⨯=∑码元/信源符号61111111()123456 2.1252416161616C i i i l p s l ===⨯+⨯+⨯+⨯+⨯+⨯=∑码元/信源符号61111111()12()422416161616E i i i l p s l ===⨯+⨯++++⨯=∑码元/信源符号4-3:(1)/bit ∑8i i i=1H(X)=-p(x )logp(x )1111111111=-log -log -log -log -log 22448816163232111111 -log -log -log646412812812812863=164符 (2) 平均码长:6111111111()3()3248163264128128i i i l p s l ===⨯+++++++=∑码元/信源符号所以编码效率:()0.6615H X lη==4-5:(1)霍夫曼编码:l=⨯+⨯+⨯+⨯+⨯+⨯+⨯=码元/信源符号0.220.1920.1830.1730.1530.140.014 2.7271()log 2.61i i i H X p p ===∑ 码元/符号() 2.610.95962.72H X lη===平均码长:0.4910.14320.07420.0440.0250.0260.016 2.23l =⨯+⨯⨯+⨯⨯+⨯+⨯+⨯+⨯=码元/信源符 91()log 2.31i i i H Y p p ===∑码元/符号编码效率:() 2.310.99142.33H Y lη=== (2) 仙农编码:平均码长:0.230.1930.1830.1730.1530.140.017 3.14l =⨯+⨯+⨯+⨯+⨯+⨯+⨯=码元/信源符() 2.610.83123.14H X lη===平均编码长度:0.4920.1420.07420.0450.02620.0260.017 2.89l =⨯+⨯+⨯⨯+⨯+⨯⨯+⨯+⨯=码元/信源符编码效率:() 2.310.79932.89H Y lη=== (3) 费诺编码:对X 的费诺编码:0.220.1930.1830.1720.1530.140.014 2.74l =⨯+⨯+⨯+⨯+⨯+⨯+⨯=码元/信源符号 编码效率:() 2.610.95262.74H X lη=== 对Y 进行费诺编码:0.4910.14230.07420.0440.0250.0260.016 2.33l=⨯+⨯⨯+⨯⨯+⨯+⨯+⨯+⨯=码元/信源符号编码效率:() 2.310.99142.33H Ylη===(4)由三种编码的编码效率可知:仙农编码的编码效率为最低,平均码长最长;霍夫曼编码的编码长度最短,编码效率最高,费诺码居中。
4-7:由三元编码方式可知:R=D-B=R D-1(K-2)+2由本题可知D=3,K=8,R=2,所以,首先合并最后两个信源概率,其中一种编码方式如下:译码:46738()0.9292,172996738572990.36280,89190.36280580.6530,5991950.6530590.36280,85999F u ⎡⎫==∈⎪⎢⎣⎭∴-⎡⎫=∈⎪⎢⎣⎭-∴-⎡⎫=∈⎪⎢⎣⎭-∴-⎡⎫=∈⎪⎢⎣⎭-∴第一字符是:C 第二字符是:A 第二字符是:B第二字符是:A所以译码结果是:CABA4-21: 1011 0111 1011 0111124124()31(1)(0)()()0.0001237441011 0111 1011 0111p s p p ====算术码的码长log ()13l p s =-=由序列S 的分布函数F (S )由二元整树图来计算:2482103124()1(11)(10111)(1011011111)(1011011110111)(1011011110110111)3313131311()()()()()()()()()4444444440.35114030.0101100110011F S p p p p p =-----=-----== 所以算术编码为:0100 0011 0011 平均码长及编码效率如下:130.812516l ==码元/符号 ()(1)log (1)(0)log (0)0.8113H S p p p p =--= bit/符号 ()0.9985H S lη== (2)由于信源符号集中共有2个元素,因此只需要⎡⎤12log =位二进制数就可以表示其编码,该符号集的编码表如下:按照分段规则,分段为:1 0 11 01 111 011 0111 短语数为7,可用⎡⎤37log ==n 位来表示段号;每个信源符号编码长度为1,所以短语长度为:3+1=4,具体编码过程如下:平均编码长度: 1.7516l ==码元/符号编码效率为:4636.075.18113.0)(===lS H η。