第4章 信源编码原理
- 格式:ppt
- 大小:1.15 MB
- 文档页数:117
信源编码的原理
信源编码是数字通信中的一种技术,用于将信源的离散信号转化为连续信号以便传输。
信源编码的主要原理是通过对信源进行编码来提高信息传输的效率,并减少传输所需的带宽。
下面就信源编码的原理进行具体描述:
信源编码的原理主要包括两个方面:信息熵和编码。
信息熵是指信源输出符号的平均信息量。
在信息论中,熵可以描述一个随机信源的不
确定性。
一个信源可以通过信息熵的度量来评估其具有的信息量。
信息熵的计算公式为:
H = -Σpilog2pi
其中,pi是信源输出符号的概率。
H表示信息熵,它的单位是比特。
常见的信源编码有霍夫曼编码、香农-费诺编码、赫夫曼分段编码、格雷码等。
其中,霍夫曼编码是在所有编码中使用最广泛的编码算法,它的基本思想是,将出现概率高的符
号用较短的码表示,出现概率低的符号用较长的码表示,这样可以使总的编码长度最短。
以二进制为例,设共有n种离散信源输出符号,则该n个符号的离散概率为pi,要对这n个符号进行编码,使得所有符号的码值长度和为L,则平均码长为:
通过对概率进行排序,对每个符号进行编码,可以构造一个符号-码字对的码表。
对
于给定的输入符号序列,可以通过码表中的对应关系将其转化为对应的码字序列。
发送方
发送的码字序列就成为了连续信号,接收方将其还原为离散符号序列进行解码即可。
总的来说,信源编码通过压缩信息内容,减少传输所需的带宽,提高了数据传输的效率,具有重要的意义和应用。
信息论与编码原理信源编码
信息论是一门涉及了信息处理的学科,它研究信息生成、传输、接收、存储、利用等过程的一般性理论。
它探讨涉及信息的一切问题,强调掌握
信息所必需的体系性的体系知识,其主要内容有:信息的定义、信息测度,信息的熵,信息编码,信息的可计量性,信息传输,信息和随机性,信息
编译,信息安全,信息认证,解码准确性,信息的保密,校验,系统复杂性,信息的加密等。
信源编码是一种在信息论中常用的编码技术,其目的是用最少的信息
量表示最多的信息内容,以提高信息发送效率。
它主要包括概率信息源编
码和确定性信息源编码两种。
概率信息源编码是根据一个信息源的发生概率来编码,是根据发出信
息的概率来决定编码方式的。
它根据一个消息源中发出的不同信息的概率
来决定信息的编码,并确定每种信息的编码长度。
在这种情况下,越高概
率的信息,编码长度越短。
确定性信息息源编码,是根据一个消息源中出现特定信息的概率确定
编码方式的。
在这种情况下,编码长度取决于消息源的熵,也就是期望的
信息量。
信源编码的基本思想是以最小的编码来传输最多的信息量。
第四章信源编码一、信源编码的作用(1)把信源发出的模拟信号转换成以二进制为代表的数字式信息序列,完成模拟信号数字化。
(2)为了使传输更有效,把与传输内容无关的冗余信息去掉,完成信源的数据压缩。
二、模拟信号数字化法方法1.模拟调制正弦波调制,调幅(AM)、调频(FM)和调相(PM),采用的载波是正弦波,已调信号在时间上是连续的,它们均属于模拟调制。
脉冲调制,如脉冲幅度调制(PAM)、脉冲相位调制(PPM)和脉冲宽度调制(PWM)等,虽然已调波在时间上被取样离散化了,但各自的调制参数是按照信源的规律连续地变化,所以仍然属于模拟调制的范畴。
2.模拟信号数字化法方法模拟信号数字化的方法有很多种:脉冲编码调制(Pulse Code Modulation ,缩写为PCM)、增量调制(Delta Modulation,缩写为DM或ΔM)、差分脉冲编码调制(缩写为DPCM)等。
脉冲编码调制(PCM)。
其过程为抽样、量化、编码等,使已调波不但在时间上是离散的,且在幅度变化上用数字来体现,这便是模拟信号数字化。
4.1 抽样定理一、抽样的概念1.抽样的概念:抽样又可称为取样或者采样。
抽样定理是任何模拟信号数字化的理论基础。
实质上,抽样定理讨论的是一个时间连续的模拟信号经过抽样变成离散序列之后,如何用这些离散序列样值不失真地恢复原来的模拟信号这样一个问题。
2.抽样的任务:是对模拟信号进行时间上的离散化处理,即每隔一段时间对模拟信号抽取一个样值。
抽样是模拟信号数字化的第一步。
相应的在接收端要从离散的样值脉冲不失真地恢复出原模拟信号,实现重建任务。
那么,抽样脉冲的重复频率f s 必须满足什么条件才能保证收信端正确地加以重建。
这就是下面要介绍的抽样定理。
二、抽样定理 1.样值信号频谱抽样定理模型可用一个乘法器表示,如图所示。
即 m s (t )=m (t )〃s (t )式中s (t )是重复周期为T s 、脉冲幅度为1、脉冲宽度为τ的周期性脉冲序列,即抽样脉冲。
信源编码的基本原理及应用1. 什么是信源编码信源编码,也称为数据压缩或编码压缩,是指在数字通信中对信息源进行编码,以便更有效地表示和传输数据。
信源编码的目标是尽量减小数据的表示和传输所需的比特数,提高传输效率。
2. 信源编码的基本原理信源编码的基本原理是利用编码技术将信息源中的冗余部分去除,从而实现数据压缩。
信源编码可以分为两种基本类型:无损编码和有损编码。
2.1 无损编码无损编码是指经过编码和解码后,能够完全还原原始数据的编码方法。
无损编码的基本思想是通过找到数据中的冗余部分,并对其进行有效的压缩和表示。
2.2 有损编码有损编码是指经过编码和解码后,不能完全还原原始数据的编码方法。
有损编码的基本思想是通过牺牲一定的数据精度来实现数据压缩,从而提高传输效率。
3. 信源编码的应用信源编码在数字通信领域有着广泛的应用。
下面列举一些常见的应用场景:•数据传输:信源编码常用于数据传输中,通过压缩数据,减少传输所需的带宽和存储空间。
•图像压缩:对于数字图像的存储和传输,信源编码可以显著减小存储和传输负荷,提高图像的传输效率。
•音频编码:在音频编码中,通过信源编码可以将音频数据进行压缩,实现更高效的音频传输和存储。
•视频编码:信源编码在视频编码中也起到了关键作用,通过对视频数据的压缩,可以实现高清视频的传输和存储。
•文本压缩:在文本处理和存储中,信源编码可以将文本数据进行压缩,并提供更高效的文本处理和存储方式。
•无线通信:在无线通信中,信源编码可以将数据进行压缩,减小数据量,提高无线通信的传输效率。
4. 总结信源编码是数字通信中重要的一环,通过对信息源进行编码,可以实现数据的压缩和高效传输。
无损编码和有损编码是信源编码的两种基本类型,根据不同的应用场景选择合适的编码方式。
信源编码在数据传输、图像压缩、音频编码、视频编码、文本压缩和无线通信等领域都有着重要的应用价值。
通过合理地选用信源编码技术,可以有效地提高数据的传输效率和存储效率,减少网络带宽消耗,为数字通信提供更好的服务和用户体验。
第4章抗干扰二元编码原理与方法信源编码目的:压缩冗余,提高有效性。
信道编码目的:提高传输可靠性,通过增加冗余来实现,方法是纠错编码。
信道编码●在理论上,Shannon第二编码定理已指出,只要当实际传信率R<C(信道容量)几乎无差错的信道编、译码是存在的。
●理论上的存在性并不等于实际上的可构造性,本章就是研究如何构造如何实现信道编码的理论与方法。
●从原理上看,构造信道码的基本思路是根据一定的规律在待发送的信息码元中人为的加入一定的多余码元,以保证在传输中发送码元的可靠性。
按照差错类型大致可分为三类:●独立差错信道:噪声独立随机的影响每个码元,白噪声信道属于这类信道。
差错独立随机出现;●突发差错信道:差错是成片,成串出现的,衰落信道、码间干扰、脉冲干扰信道属于这类;●混合差错信道:差错既有随机独立的,也有成片,成串出现的,实际的移动信道属于此类;采用冗余校验的基本思想:即在基本的有效数据外,再扩充部分位,增加部分(冗余部分)被称为校验位。
将校验位与数据位一起按某种规则编码,写入存储器或向外发送。
当从存储器读出或接收到外部传入的代码时,再按相应的规则进行判读。
若约定的规则被破坏,则表示出现错误。
根据错误的特征进行修正恢复。
几个名词概念:码字:由若干代码组成的一个字。
如8421码中6(0110),7(0111)码距:一种码制中任意两个码字间的最小距离。
距离:两个码字之间不同的代码个数。
8421码中,最小的码距为1,如0000和0001、0010和0011等;最大码距为4,如0111和1000。
8421码的码距为1。
码距为1,即不能查错也不能纠错。
码距越大,查错、纠错能力越强。
4.1 抗干扰编码4.1.1 编码与纠错信宿收到禁用码字时,才能断定出错。
例4.1.1最小码距与检纠错能力:码距:两个码字之间相异码元的数目。
码重:码组中非零码元的个数。
如001,码重为1;011,码重为2。
对于如图所示的3位二进制码,如果8个码组可用,(000,001,010,011,100,101,110,111),各点之间最小相差1个边长,最小码距为1。
第四章移动通信中的信源编码在当今这个信息爆炸的时代,移动通信已经成为我们生活中不可或缺的一部分。
无论是与亲朋好友的语音通话,还是观看精彩的视频直播,亦或是随时随地获取各种信息,都离不开移动通信技术的支持。
而在移动通信系统中,信源编码是一个至关重要的环节,它直接影响着通信的质量和效率。
那么,什么是信源编码呢?简单来说,信源编码就是将信源输出的信号转换成适合在信道中传输的形式。
在移动通信中,信源通常是指语音、图像、视频等各种信息。
由于这些原始信息的数据量往往非常庞大,如果直接进行传输,将会占用大量的信道资源,导致传输效率低下,甚至无法实现实时通信。
因此,需要通过信源编码对原始信息进行压缩和处理,减少数据量,提高传输效率。
信源编码的主要目的有两个:一是减少冗余信息,二是提高编码效率。
冗余信息是指那些在传输过程中不必要或者可以通过其他方式恢复的信息。
例如,在语音信号中,相邻的语音样本之间往往存在很强的相关性,这就意味着存在大量的冗余信息。
通过对这些冗余信息进行分析和处理,可以大大减少数据量。
同时,信源编码还需要考虑如何在保证一定质量的前提下,尽可能地提高编码效率,也就是用更少的比特数来表示相同的信息。
在移动通信中,常用的信源编码技术包括语音编码和图像编码。
语音编码是将语音信号转换为数字信号的过程。
目前,广泛应用的语音编码标准有 GSM 语音编码、CDMA 语音编码和 3GPP 语音编码等。
这些编码技术通过采用不同的算法和策略,对语音信号进行分析、建模和编码,在保证语音质量的前提下,实现了较高的压缩比。
例如,GSM 语音编码采用了规则脉冲激励长期预测(RPELTP)编码算法,将语音信号分成若干个帧,对每一帧进行分析和编码。
CDMA 语音编码则采用了可变速率码激励线性预测(QCELP)编码算法,根据语音的特征动态调整编码速率,从而在不同的信道条件下都能提供较好的语音质量。
3GPP 语音编码则引入了自适应多速率(AMR)技术,能够根据网络状况和用户需求自适应地选择不同的编码速率,进一步提高了语音通信的灵活性和效率。
信源编码和信道编码的原理English:Source encoding, also known as source coding, is the process of compressing or encoding the original information from the source in order to reduce redundancy and minimize the amount of data that needs to be transmitted. This is typically done through techniques such as Huffman coding, which assigns shorter codes to more frequent symbols, or run-length encoding, which replaces repeated sequences of symbols with a single symbol and a count. The goal of source encoding is to efficiently represent the information in a way that can be easily transmitted and reconstructed at the destination.Channel encoding, on the other hand, is the process of adding redundancy to the transmitted data in order to make it more resilient to noise and interference during transmission. This is often achieved using error-correcting codes such as Reed-Solomon codes or convolutional codes, which add extra bits to the data that can be used to detect and correct errors at the receiver. By introducing redundancy, channel encoding helps to improve the reliability of thetransmitted information, making it more likely to be received correctly despite the presence of noise and other impairments in the communication channel.中文翻译:信源编码,也被称为源编码,是将原始来源的信息进行压缩或编码的过程,以减少冗余并最小化需要传输的数据量。
信源编码的原理
信源编码是指将源数据进行编码,以便在传输和存储时占用更少的空间。
信源编码的原理是通过利用信源的统计特性来进行编码,使得编码后的数据长度更短,从而达到压缩的效果。
信源编码的方法有很多种,其中较为常见的有霍夫曼编码、算术编码、字典编码等。
霍夫曼编码是一种基于最优化原则的编码方法,它通过构造哈夫曼树来确定每个符号的编码,使得出现频率高的符号的编码长度更短,从而达到压缩的效果。
算术编码是一种通过将一段数据映射到一个区间内来进行编码的方法,它可以实现无损压缩,并且编码后的数据长度可以接近信源的熵。
字典编码是一种基于字典的编码方法,它通过将出现频率高的字符串映射到较短的编码,从而实现压缩的效果。
不同的信源编码方法有着不同的适用范围和优缺点,根据具体的应用场景来选择合适的编码方法可以达到更好的压缩效果。
- 1 -。
信源编码定理的内容和其意义
信源编码定理(Source Coding Theorem)是信息论的基本定理之一,由克劳德·香农于1948年提出。
该定理指出,对于一个字符的离散无记忆源,其熵是它的平均编码长度的下限。
具体来说,设X为离散无记忆源,其有N个可能输出符号
x_1, x_2, ..., x_N,相应的输出概率分布为P(X=x_1),
P(X=x_2), ..., P(X=x_N)。
则X的熵H(X)定义为:
H(X) = -Σ(P(X=x_i) * log2(P(X=x_i)))
信源编码定理表述如下:
对于给定的源,如果存在一种编码方式,使得该编码方式满足以下两个条件:
1. 平均编码长度L满足L ≤ H(X) + ε,其中ε为正数。
2. 随着编码长度的增加,编码方式的错误率趋近于0。
那么,对于任意小的ε和δ,当信号序列长度n足够大时,就能以概率大于1-δ找到一种编码方式,使得产生的编码序列长度为n的平均长度小于L+ε,并且错误率小于δ。
信源编码定理的意义在于,它告诉我们通过对信息进行适当的编码,可以将信息压缩到接近其熵的程度,从而提高信息的传输效率。
例如,在通信领域中,信源编码定理的应用可以帮助
我们设计更高效的编码算法,减小数据传输所需的带宽和存储空间,提高数据压缩的效果。
此外,信源编码定理也为信息论的其他重要结果提供了基础,如信道编码定理等。
信源编码的原理、方法、优缺点及应用信源编码就是从信源产生的信号到码符号的一种映射,它把信源输出的符号变换成码元序列。
信源编码主要是利用信源的统计特性,解决信源的相关性,去掉信源冗余信息,从而达到压缩信源输出的信息率,提高系统有效性的目的。
冗余信息是指信源产生信息所用数据位数与消息中包含的实际信息数据位的数目差值。
解决信源的相关性本质就是降低信源中的冗余,常用消除信源相关性的方法:“合并法”和“预测法”。
如果信源的符号序列中,只在相邻的少数几个符号之间有相关性,而相距较远的符号之间的相关性可以忽略不计,那么,这种信源称为弱记忆信源。
在这种情况下,可以把具有较强相关性的邻近几个符号看成一个大符号。
于是,这些大符号之间的相关性就变得很小了。
实际上就是把原来的基本信源空间变换成了多重空间。
多重空间的重数越高,这种大符号之间的相关性越小,最终可以获得相互独立的情况。
这种方法称为合并法。
如果信源的符号序列之间存在较强的相关性联系,以至根据其中一部分符号能够以一定的准确性推测出其余的符号,这种信源就称为强记忆信源。
在传递这样的信息时,那些可以被精确推断出来的符号就不必传送,从而可以节省时间,提高传输的效率。
但是,大多数情况下,完全可以精确推断出来的情况是极少的,只能根据信源的统计相关性作近似的预测,这就是预测法。
信源编码的作用之一是设法减少码元数目和降低码元速率,即通常所说的数据压缩:作用之二是将信源的模拟信号转化成数字信号,以实现模拟信号的数字化传输。
最原始的信源编码就是莫尔斯电码,另外还有电报码都是信源编码,它们主要用于传输电报信息。
但现代通信应用中常见的信源编码方式有:香农编码、费诺编码、Huffman 编码、算术编码、L-Z编码等,另外还有一些有损的编码方式。
信源编码的目标就是使信源减少冗余,更加有效、经济地传输,最常见的应用形式就是压缩。
另外,在数字电视领域,信源编码包括通用的MPEG—2编码和H.264(MPEG—Part10 AVC)编码等。