则不可能实现无失真编码。
第三节 等长信源编码定理
•定理5.3的条件式可写为:
长为l 的码符号所能 载荷的最大信息量 长为N的序列平均携带的信息量
l log r > NH ( S )
只要码字传输的信息量大于信源序列携带的 信息量,总可以实现无失真编码。 l •定理5.3的条件式也可写成: log r H ( S ) e N
i
N
1
2
N
是一一对应的:
i Bi (Wi1 ,Wi2 , ,WiN ), i S ,Wil C
N
4)惟一可译码 若任意一串有限长的码符号序列只能被惟 一地译成所对应的信源符号序列,则此码称 为惟一可译码(或称单义可译码);否则就 称为非惟一可译码或非单义可译码。
例:对于二元码 C1 {1, 01, 00} ,当任意给定一串 码字序列,例如“10001101”,只可唯一地划 分为1,00,01,1,01,因此是惟一可译码;而对 另一个二元码 C 2 {0,10, 01} ,当码字序列为 “01001”时,可划分为0,10,01或01,0,01,所 以是非惟一可译的。
P(G eN )
-
(2) 若 i (si1, s i2 ,...,s iN ) GeN,则 2 - N [ H ( s )e ] < P( i ) < 2 - N [ H ( s ) -e ] (3) || GeN || 表示e典型序列集中 e典型序列的个数,则 (1 - )2 N [ H ( s )-e ] <|| GeN ||< 2 N [ H ( s ) e ]
1 N - log P ( si ) 以概率收敛于均值 H ( s ) 熵定义 N i 1 1 N 1 即 - log P ( s i ) - log[ P ( s i ) P ( s 2 ) L P ( s N )] N次扩展信源 N i 1 N 1 - log P ( si s 2 L s N ) H ( S ) 以概率收敛 N 因为 i1 ( si1 si 2 L s i N ) S1 S 2 L S N , (i 1, 2 , L , q N i1 , i2 , L , i N 1, 2 , L , q )