信息论第四章 信源编码
- 格式:ppt
- 大小:262.00 KB
- 文档页数:46
信源编码的原理
信源编码是数字通信中的一种技术,用于将信源的离散信号转化为连续信号以便传输。
信源编码的主要原理是通过对信源进行编码来提高信息传输的效率,并减少传输所需的带宽。
下面就信源编码的原理进行具体描述:
信源编码的原理主要包括两个方面:信息熵和编码。
信息熵是指信源输出符号的平均信息量。
在信息论中,熵可以描述一个随机信源的不
确定性。
一个信源可以通过信息熵的度量来评估其具有的信息量。
信息熵的计算公式为:
H = -Σpilog2pi
其中,pi是信源输出符号的概率。
H表示信息熵,它的单位是比特。
常见的信源编码有霍夫曼编码、香农-费诺编码、赫夫曼分段编码、格雷码等。
其中,霍夫曼编码是在所有编码中使用最广泛的编码算法,它的基本思想是,将出现概率高的符
号用较短的码表示,出现概率低的符号用较长的码表示,这样可以使总的编码长度最短。
以二进制为例,设共有n种离散信源输出符号,则该n个符号的离散概率为pi,要对这n个符号进行编码,使得所有符号的码值长度和为L,则平均码长为:
通过对概率进行排序,对每个符号进行编码,可以构造一个符号-码字对的码表。
对
于给定的输入符号序列,可以通过码表中的对应关系将其转化为对应的码字序列。
发送方
发送的码字序列就成为了连续信号,接收方将其还原为离散符号序列进行解码即可。
总的来说,信源编码通过压缩信息内容,减少传输所需的带宽,提高了数据传输的效率,具有重要的意义和应用。
信息论与编码原理信源编码
信息论是一门涉及了信息处理的学科,它研究信息生成、传输、接收、存储、利用等过程的一般性理论。
它探讨涉及信息的一切问题,强调掌握
信息所必需的体系性的体系知识,其主要内容有:信息的定义、信息测度,信息的熵,信息编码,信息的可计量性,信息传输,信息和随机性,信息
编译,信息安全,信息认证,解码准确性,信息的保密,校验,系统复杂性,信息的加密等。
信源编码是一种在信息论中常用的编码技术,其目的是用最少的信息
量表示最多的信息内容,以提高信息发送效率。
它主要包括概率信息源编
码和确定性信息源编码两种。
概率信息源编码是根据一个信息源的发生概率来编码,是根据发出信
息的概率来决定编码方式的。
它根据一个消息源中发出的不同信息的概率
来决定信息的编码,并确定每种信息的编码长度。
在这种情况下,越高概
率的信息,编码长度越短。
确定性信息息源编码,是根据一个消息源中出现特定信息的概率确定
编码方式的。
在这种情况下,编码长度取决于消息源的熵,也就是期望的
信息量。
信源编码的基本思想是以最小的编码来传输最多的信息量。
信源编码概述信源编码是信息论的一个重要概念,用于将源信号转换成一系列编码的比特流。
在通信系统中,信源编码被广泛用于提高信息的传输效率和可靠性。
本文将介绍信源编码的基本概念、常见的信源编码方法和应用。
基本概念信源在通信系统中,信源是指产生信息的原始源头。
信源可以是任何可以生成离散或连续信号的设备或系统,比如人的语音、文本、图像等等。
信源编码信源编码是指将信源产生的原始信号转换成一系列编码的比特流。
它的主要目的是通过消除冗余、提高信号的压缩率以及提高传输的可靠性。
码字信源编码中的最小单位被称为码字(codeword)。
码字由编码器根据特定规则生成,每个码字可以表示一个或多个原始信号。
码长码长是指每个码字中的比特数。
它决定了编码器产生的每个码字传输所需的比特数,码长越短,传输效率就越高。
码率码率是指信源编码中每秒传输的码字数量。
它可以用比特/秒(bps)来表示,码率越高表示每秒传输的信息量越大。
常见的信源编码方法均匀编码均匀编码是一种简单的信源编码方法,它将每个原始信源符号映射到固定长度的码字上。
均匀编码适用于信源符号概率分布均匀的情况,例如二进制信源。
霍夫曼编码霍夫曼编码是一种基于信源符号概率分布的编码方法。
它通过将频率较高的信源符号映射到较短的码字,频率较低的信源符号映射到较长的码字来实现压缩。
高斯混合模型编码高斯混合模型编码是一种适用于连续信源的编码方法。
它假设源信号是由多个高斯分布组成的,通过对这些高斯分布进行建模来实现有效的压缩。
游程编码游程编码是一种用于压缩离散信号的编码方法,它基于信源连续出现相同符号的特性。
游程编码将连续出现的相同符号替换为一个计数符号和一个重复符号,从而实现压缩。
信源编码的应用数据压缩信源编码在数据压缩中起着关键作用。
通过使用有效的信源编码方法,可以大大减少传输数据的比特数,从而提高数据传输的效率和速率。
影音编码在数字媒体领域,信源编码常用于音频和视频的压缩。
通过采用适当的信源编码方法,可以减小音频和视频文件的大小,从而节省存储空间和传输带宽。
信源编码定理的内容和其意义
信源编码定理(Source Coding Theorem)是信息论的基本定理之一,由克劳德·香农于1948年提出。
该定理指出,对于一个字符的离散无记忆源,其熵是它的平均编码长度的下限。
具体来说,设X为离散无记忆源,其有N个可能输出符号
x_1, x_2, ..., x_N,相应的输出概率分布为P(X=x_1),
P(X=x_2), ..., P(X=x_N)。
则X的熵H(X)定义为:
H(X) = -Σ(P(X=x_i) * log2(P(X=x_i)))
信源编码定理表述如下:
对于给定的源,如果存在一种编码方式,使得该编码方式满足以下两个条件:
1. 平均编码长度L满足L ≤ H(X) + ε,其中ε为正数。
2. 随着编码长度的增加,编码方式的错误率趋近于0。
那么,对于任意小的ε和δ,当信号序列长度n足够大时,就能以概率大于1-δ找到一种编码方式,使得产生的编码序列长度为n的平均长度小于L+ε,并且错误率小于δ。
信源编码定理的意义在于,它告诉我们通过对信息进行适当的编码,可以将信息压缩到接近其熵的程度,从而提高信息的传输效率。
例如,在通信领域中,信源编码定理的应用可以帮助
我们设计更高效的编码算法,减小数据传输所需的带宽和存储空间,提高数据压缩的效果。
此外,信源编码定理也为信息论的其他重要结果提供了基础,如信道编码定理等。
信源编码贺志强信源编码:将信源符号序列按一定的数学规律映射成由码符号组成的码序列的过程。
成由码符号组成的码序列的过程信源译码:根据码序列恢复信源序列的过程。
信源译码根据码序列恢复信源序列的过程无失真信源编码:即信源符号可以通过编码序列无差错地恢复。
无差错地恢复(适用于离散信源的编码)限失真信源编码:信源符号不能通过编码序列无差错地恢复。
差错地恢复(可以把差错限制在某一个限度内)信源编码的目的:提高传输有效性,即用尽可能短的码符号序列来代表信源符号。
号序列来代表信源符号无失真信源编码定理证明,如果对信源序列进行编码,当序列长度足够长时,存在无失真编码使得传送每信源符号存在无失真编码使得传送每信源符号所需的比特数接近信源的熵。
因此,采用有效的信源编码会使信息传输效率得到提高。
会使信息传输效率得到提高概述一、信源编码器二、信源编码的分类三分组码三、分组码分组码单符号信源编码器符号集符号集AA 1{,,}q a a ii c a 编为1{,,}q c c 编码器码字集合信源序列码符号集1{,}r b b分组码单符号译码器1{,,}q c c 信源序列码字集合1{,,}q a a 译码器1{,}r b b 码符号集简单信源编码器摩尔斯信源编码器将英文字母变成摩尔斯电码将摩尔斯电码变成二进码信源编码器信源编码器(1)信源符号{英文字母英文字母}}(2)二进信道码符号集点、划、字母间隔、单词间隔信道基本符号{0,1}符号点划字母间隔单词间隔电平+ -+++ ---------二进代码 1 0111000000000摩尔斯信源编码器原信源的次扩展码原信源的N N将N个信源符号编成一个码字。
相当于对原信源的N次扩展源的信源符号进行编码。
例信源X={0,1}的二次扩展源的二次扩展源X X 2的符号集为:信源X={0,1}。
对X X2编码,即为原信源编码,即为原信源X X的二{00,01,10,11}。
对{00,01,10,11}编码即为原信源X {00011011}对即为原信源次扩展码。