变压器效率特性
- 格式:doc
- 大小:65.50 KB
- 文档页数:3
变压器的技术要求变压器是一种将电能从一个电路传输到另一个电路的电器设备。
它的主要功能是通过改变交流电压的大小而改变电流的大小。
在实际应用中,变压器的技术要求非常重要,一方面是为了保证其正常工作,另一方面是为了提高其效率和可靠性。
首先,变压器的技术要求包括以下几个方面:1.能够承受额定负荷:变压器需要能够承受额定负荷并正常工作,这涉及到变压器的功率、电流和耐热性能等方面。
变压器的额定功率应与电路负载匹配,不能过大或过小。
同时,变压器的铜线和铁芯应具有足够的导电和导磁能力,以确保电流的稳定和磁场的均匀。
2.低损耗:变压器在工作过程中会有一定的损耗,包括铜损和铁损。
铜损耗是指导线内电流通过时产生的热能损耗,而铁损耗是指铁芯中由交变磁场引起的涡流和剩余损耗。
为了降低损耗,变压器应选用低电阻率的铜导线和低磁滞损耗的铁芯,并采取适当的冷却措施,如风冷或油浸冷却。
3.高效率:变压器的效率是指输出功率与输入功率之比。
高效率可以减少能源消耗,降低运行成本,并提高整体系统的效能。
提高变压器效率的方法主要包括降低损耗、减小磁滞、合理设计变压器的磁导率和磁通密度等。
4.良好的温度特性:变压器在使用过程中会产生热量,需要能够良好地散热。
合理的散热设计可以保证变压器在额定负荷下工作时的温度不超过规定的极限值,以确保其安全可靠。
5.良好的绝缘性能:变压器的绝缘性能对于保证其正常工作和安全使用非常重要。
变压器的绕组与铁芯之间、绕组与绕组之间以及绕组与地之间应具有良好的绝缘性能,以防止电流泄漏和击穿现象的发生。
6.可靠性和安全性:变压器的可靠性和安全性是其长期运行的关键要求。
变压器应能够承受各种环境因素的影响,如湿度、温度、振动等,并能够防止漏油、爆炸和火灾等异常情况的发生。
此外,变压器还应具有过载保护、短路保护和漏电保护等功能,以确保正常工作和安全使用。
总结起来,变压器的技术要求主要包括能够承受额定负荷、低损耗、高效率、良好的温度特性、良好的绝缘性能、可靠性和安全性等。
变压器的损耗和效率一、变压器简介变压器是利用电磁感应原理传输电能或电信号的器件,它具有电压变换、电流变化和阻抗变换及电气隔离的作用。
1、理想变压器工作原理理想变压器基于下述两个假设:1、变压器效率等于1,无任何能量损耗。
即忽略了实际铁芯变压器线圈的电阻以及铁芯在交变磁场作用下所产生的能量损耗。
2、铁芯的磁导率μ趋近于无穷大,没有漏磁通。
线圈的互感磁通等于自感磁通,耦合系数K为1,线圈自感系数L1、L2趋于无穷大,但是,L1/L2为常数,数值上等于原副边匝数比的平方。
理想变压器的工作原理如下:图1理想变压器工作原理(变压器)变压器的主要部件是一个铁心和套在铁心上的两个绕组。
两绕组只有磁耦合没电连接。
在一次绕组中施加交变电压,交变电压产生交变电流,交变电流产生交链一、二次绕组的交变磁通Φ,在一次和二次绕组中分别感应出电动势E1、E2。
理想变压器的绕组电阻为零,有:E1=-U1,E2=-U2假设一次和二次线圈的匝数分别为N1和N2,一次和二次绕组铰链的磁链分别为Ψ1和Ψ2,根据电磁感应定律,下述方程组成立:U1=-E1=-dΨ1/dt=d(N1Φ)/dt=N1dΦ/dt(a)U2=-E2=-dΨ2/dt=d(N2Φ)/dt=N2dΦ/dt(b)(a)式除以(b)式,可得:U1/U2=N1/N2(1)理想变压器效率等于1,一次与二次绕组之间在能量传输过程中没有损耗,可知:U1I1=U2I2联立式(1)可得:I1/I2=N2/N1(2)(1)式除以(2)式,可得:(U1/I1)/(U2/I2)=(N1/N2)2U1/I1及U2/I2分别为一次和二次绕组的阻抗,分别记为Z1和Z2,则:Z1/Z2=(N1/N2)2(3)(1)、(2)、(3)三式分别表示了理想变压器的电压变换、电流变换和阻抗变换关系。
2、实际变压器工作原理实际变压器绕组电阻不为零;实际变压器交变磁通在铁芯中会产生涡流损耗和磁滞损耗;实际变压器铁芯磁导率为有限值,一次绕组产生的磁通会有部分与空气形成磁路,不与二次绕组铰链,称为漏磁通Φσ1,同样,二次绕组也会产生漏磁通Φσ2。
一、变压器的运行特征变压器的运行特征主要有外特征与效率特性,而表征变压器运行性能的主要指标则有电压变化率和效率。
1、电压变化率1)外特性变压器一次侧接上额定电压,二次侧开路时,二次侧空载电压就等于二次侧额定电压,外特性是指一次侧加额定电压,负载功率因数cosφ2一定时,二次侧端电压随负载电流变化的关系,即U2=f (I2)。
变压器在纯电阻和感性负载时,外特性是下降的,而客性负载时可能是上翘的。
2)电压变化率负载电流变化,变压器副边端电压将随着发生变化。
电压调整率是变压器负载时副边端电压变化程度的一种程度。
假定变压器原边接电源电压,副边开路时的端电压为额定值,当副边接入负载后,即使原来电压保持不变,副边端电压不再是额定值,原边电压保持为额定值,负载功率因数为常数,空载和负载的副边端电压之差与副边额定电压的比值,即电压变化的标么值称为电压变化率,用⊿U*表示即⊿U*=(U20-U2)/U2N式中U20—副边空载电压U2—时的副边端电压由于副边空载端电压U20等于副边额定电压U2N,经过折算后,公式1可写成⊿U*=(U20-U2)/U2N=(U'2N-U'2)/U'2N=(U10-U'2)/U1N电压变化率是变压器的主要性能指标之一,负载电流变化时,副边端电压变化的原因,是变压器内部存在电阻和漏抗而引起内部电压降。
副边电压的变化程度,即⊿U*的大小,不仅同变压器本身的阻抗有关,而且与负载的大小和性能有关。
综合上述,负载为感性时,φ2角为正值,故电压变化率为正值,即负载时的副边电压恒比空载电压低;负载为容性,φ2角为负值,故电压变化率有可能为负值,亦即负载时的副边电压可能高于空载电压。
为了保证供电电压的质量,尽可能保持副边电压的稳定,这就需要进行调压。
在电力系统中调压的方法很多,例如调节发电机出口电压,用同步调相机,在负载端并联电容器等。
但采用最多、最普遍的还是变压器调压。
整流变压器的作用及其性能特点说到整流变压器,想必很多人又得犯头疼病了。
整流变压器,简单的来说,就是整流设备里的一种电源变压器,所谓的整流,也就是把所有的电流原封不动的输入进来。
整流变压器被广泛的应用于照明、机械电子设备、医疗设备等上,具有其他变压器所没有的强大功效,给诸多领域带来了无可替代的帮助。
接下来,我们就一起来聊聊它的具体的作用及其性能特点吧。
一、作用:变压器的主要用途是在输配电系统。
作用高压电传输,不仅可以减小输电线的截面积,节约引进人材材料,同时还可减小输电线路的功率损耗。
变压器还可用来改变电流变换阻抗以及产生脉变流。
一、电化学工业这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧二、牵引用直流电源用于矿山或城市电力机车的直流电网。
由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。
为此这类变压器的温升限值和电流密度均取得较低。
阻抗比相应的电力变压器大30%左右。
三、三、传动用直流电源主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。
四、直流输电用。
还有一个很重要的作用就是保护人身安全!隔离危险电压。
隔离是指变压器原副边绕线圈之间是电绝缘的。
变压器的隔离是隔离原副边绕线圈各自的电流。
隔离有很多种,对于低压常见的变压器主要是金属绕线圈外面敷上绝缘漆,然后原副边绕线圈绕在一闸铁心上组成一个变压器。
这种变压器的绕线圈使用的导线很多人就叫其“漆包线”。
原因就是那层绝缘漆。
这时原副边就是靠那层漆绝缘隔离的。
自耦变压器在不需要初、次级隔离的场合都有应用,具有体积小、耗材少、效率高的优点。
二、性能特点:(1)电气性能稳定:产品结合负载特点和电网电压波动、大气过电压情况,根据整流变压器的负载状况,确定合理、可靠的绝缘水平和绝缘模型,充分保证产品的电气性能可靠和稳定。
产品环境安全系数≥1.67。
(2)动稳定程度高:产品绕组有较高的机械强度,具有较强的抗突发能力,以满足极恶劣的负载环境。
单相变压器空载、短路实验一、实验目的1、学习测定变压器的相对极性、变比。
2、通过空载实验和短路实验计算变压器的主要参数。
3、测定变压器外特性。
4、测定变压器效率特性。
二、实验内容1、测定变压器原副边绕组相对极性。
2、测变压器的变比K。
3、作变压器空载实验,求出空载磁化曲线I0=f(U0)。
4、作变压器短路实验,测短路比。
5、作变压器外特性实验,画出外特性曲线。
6、作变压器效率特性实验,画出变压器效率特性。
三、实验设备MCL-Ⅱ型实验台主控制屏四、实验步骤1、瓦特表的使用瓦特表位于主控制屏的左侧,拥有两组接线柱:一组电流线圈和一组电压线圈。
使用时,将电流、电压线圈的标有*号端用导线短接起来,电流线圈串入回路,电压线圈并入回路。
2、空载实验实验线路如图一所示,所有交流仪表均位于主控制屏左侧,被试变压器选用MCL-Ⅱ型实验台主控制屏右下角的单相变压器,其额定容量P N=77W,U1N/U2N=220/55Ⅴ,I1N /I2N=0.35/1.4A。
变压器的低压线圈2Ul、2U2接电源,高压线圈开路。
选好所有电表量程,调压旋钮调到输出电压为零的位置,合上交流电源并调节调压旋钮,使变压器空载电压U o=1.2U N,然后,逐次降低电源电压,在1.2~0.5U N的范围内,测取变压器的U o、I o、P o,共取5-6组数据,记录于表一中。
其中U=U N的点必须测,并在该点附近测的点应密些。
为了计算变压器的变比,在U N以下测取原边电压的同时测出副边电压,取三组数据记录于表一中。
图一单相变压器空载实验表一3、 实验线路如图二所示,变压器的高压线圈接电源,低压线圈直接短路。
选好所有电表量程,接通电源前,先将交流调压旋钮调到输出电压为零的位置。
接通交流电源,逐次增加输入电压,直到短路电流等于1.lI N 为止,在0.5~1.lI N 范围内测取变压器的U K 、I K 、P K ,共取4-5组数据记录于表二中,其中I =I N 的点必测。
变压器的主要参数有哪些?分别代表什么含义
变压器的主要参数有电压比、频率特性、额定功率和效率等。
(一)电压比n变压器的电压比n与一次、二次绕组的匝数和电压之间的关系如下:n=V1/V2=N1/N2
式中N1为变压器一次(初级)绕组,N2为二次(次级)绕组,V1为一次绕组两端的电压,V2是二次绕组两端的电压。
升压变压器的电压比n小于1,降压变压器的电压比n大于1,隔离变压器的电压比等于1。
(二)额定功率P此参数一般用于电源变压器。
它是指电源变压器在规定的工作频率和电压下,能长期工作而不超过限定温度时的输出功率。
变压器的额定功率与铁心截面积、漆包线直径等有关。
变压器的铁心截面积大、漆包线直径粗,其输出功率也大。
(三)频率特性频率特性是指变压器有一定有工作频率范围,不同工作频率范围的变压器,一般不能互换使用。
因为变压器有其频率范围以外工作时,会出现工作时温度升高或不能正常工作等现象。
(四)效率效率是指在额定负载时,变压器输出功率与输入功率的比值。
该值与变压器的输出功率成正比,即变压器的输出功率越大,效率也越高;变压器的输出功率越小,效率也越低。
变压器的效率值一般在60%~100%之间。
工频变压器的效率1. 引言工频变压器是电力系统中常见的电力设备之一,用于改变交流电的电压等级。
在使用变压器时,我们通常关注的一个重要指标就是其效率。
本文将深入探讨工频变压器的效率,包括定义、计算方法、影响因素以及提高效率的方法等。
2. 效率的定义工频变压器的效率是指输入和输出功率之间的比值。
一般情况下,变压器的输入功率等于输出功率加上损耗功率。
因此,效率可以用下式表示:效率=输出功率输入功率×100%3. 计算方法为了计算工频变压器的效率,我们需要知道输入功率和输出功率。
输入功率可以通过测量输入电流和输入电压的乘积来计算,而输出功率可以通过测量输出电流和输出电压的乘积来计算。
在实际应用中,我们可以使用电力仪表或者功率计来进行测量。
4. 影响因素工频变压器的效率受多种因素的影响。
以下是几个主要的影响因素:4.1 铁心损耗铁心损耗是指在变压器的铁心中由于磁化和磁滞而产生的能量损耗。
这部分损耗与变压器的磁路特性有关,包括铁心材料的选择、铁心的设计和制造工艺等。
通常情况下,我们可以通过控制铁心的质量和减小磁通密度来降低铁心损耗,从而提高变压器的效率。
4.2 铜线损耗铜线损耗是指由于变压器的线圈内电流通过导线时产生的电阻损耗。
这部分损耗与变压器的线圈材料、线圈的设计和制造工艺等有关。
为了降低铜线损耗,我们可以选择低电阻率的线圈材料、合理设计线圈的截面积和长度,并采用良好的制造工艺。
4.3 空载损耗空载损耗是指在变压器没有输出负载时消耗的功率。
这部分损耗主要来自于铁心损耗和激磁电流的功率损耗。
为了降低空载损耗,我们可以选择低损耗的铁心材料、合理设计变压器的磁路和减小激磁电流。
4.4 负载损耗负载损耗是指在变压器有输出负载时消耗的功率。
这部分损耗主要来自于铜线损耗和额定负载时的铁心损耗。
为了降低负载损耗,我们可以选择低电阻率的线圈材料、合理设计线圈的截面积和长度,并控制变压器的额定负载。
4.5 温升温升是指变压器工作时温度的升高。
变压器运行特性分析与效率曲线
二、理论分析
2.效率和效率特性
变压器运行时将产生损耗。
变压器的损耗分为铜耗和铁耗,每一类又包括基本损耗和杂散损耗。
其中铁耗可视为不变损耗。
基本铜耗是指电流流过绕组时所产生的直流电阻损耗。
杂散铜耗主要是指漏磁场引起电流集肤效应,使绕组的有效电阻增大所增加的铜耗,以及漏磁场在结构部件中所引起的涡流损耗等。
变压器的总损耗为
''22
k Fe Cu Fe R mI p p p P +=+=∑ 式中,电阻。
为归算到二次侧的短路为相数;''
R k m
变压器的输入有功功率为1P ,输出功率为2P ,总损耗功率为P ∑,所以效率为 P P
P P P ∑+==2212η 由于电力变压器的效率很高,用直接负载法测量1P 和2P 在算出效率,很难得到准确的结果,因此工程上常采用间接法来计算效率,由空载试验测出铁耗,由短路试验测出铜耗在计算效率。
此时效率为
kN
O N kN O P I P I S P I P P P 2222221cos 11***+++-=∑-=ϕη 给定以上的参数即可绘制效率曲线。
图3.变压器的效率曲线
有数学分析
2
=
dI
dη
可知在变压器的铜耗等于铁耗时,变压器的效率达到最
大。
图4.效率曲线的最大值
说明:图中铁耗与铜耗值与对应的坐标值并不一一对应。
附程序源代码
3.变压器的效率曲线
function xiaolv1
p0=2.4;
pk=11.6;
sn=1000;
j=0.8;
a=zeros(1,1000);
b=zeros(1,1000);
for i=2:1:1000
a(i)=a(i-1)+0.001;
b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); end
hold on
plot(a,b)
xlabel('I2的标幺值 ')
ylabel('效率 ')
4.效率曲线的最大值
function xiaolv2
p0=2.4;
pk=11.6;
sn=1000;
j=0.8;
a=zeros(1,1000);
b=zeros(1,1000);
cu=zeros(1,1000);
fe=zeros(1,1000);
for i=2:1:1000
a(i)=a(i-1)+0.001;
b(i)=1-(p0+(a(i)^2)*pk)/(a(i)*sn*0.8+p0+(a(i)^2)*pk); fe(i)=p0;
cu(i)=(a(i)^2)*pk;
end
fe2=fe/14;
cu2=cu/20;
hold on
plot(a,b,'r-')
plot(a,fe2,'g:')
plot(a,cu2,'b-')。