分离变量法
- 格式:doc
- 大小:450.50 KB
- 文档页数:8
分离变量法
分离变量法是将一个偏微分方程分解为两个或多个只含一个变量的常微分方程。
将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。
将方程中含有各个变量的项分离开来,从而将原方程拆分成多个更简单的只含一个自变量的常微分方程。
运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程。
利用高数知识、级数求解知识,以及其他巧妙的方法,求出各个方程的通解。
最后将这些通解“组装起来”。
扩展资料
分离变量法的理论基础之一是线性叠加原理,故其只能解决线性定解问题。
在用分离变量法的过程中多次应用叠加原理,不仅方程的解是所有特解的线性叠加,而且处理非齐次方程泛定方程问题时,把方程条件也视为几种类型叠加的结果,从而将其“分解”。
对于线性叠加原理,其物理表述为:“几个物理量共同作用产生的结果,等效于各个物理量单独作用时各自产生效果的总和”。
第八章分离变量法_数学物理方法分离变量法是数学物理方法中的一种重要技术,通常用于求解偏微分方程。
在这一方法中,我们将多元函数表示为一系列单变量函数的乘积形式,然后将其代入到偏微分方程中,从而将多元偏微分方程转化为一系列常微分方程。
接下来,我将详细介绍分离变量法的思想和应用。
1.分离变量法的思想当我们面对一个多元偏微分方程时,通常很难找到它的解析解。
分离变量法的思想就是将多元函数表示为单变量函数的乘积形式,然后将其代入到偏微分方程中,从而将多元偏微分方程转化为一系列常微分方程。
具体来说,设有一个n元函数u(x1, x2, ..., xn),我们希望将其表示为n个单变量函数的乘积形式u(x1, x2, ..., xn) =u1(x1)u2(x2)...un(xn)。
代入偏微分方程后,我们可以得到一系列等式,将等式两边同时除以对应的单变量函数后,得到n个只依赖于一个变量的常微分方程。
然后我们可以分别求解这些常微分方程,得到对应的单变量函数的解析解。
2.分离变量法的应用分离变量法在物理学中有广泛的应用,特别是在描述传热、传质、波动等现象的偏微分方程的求解中。
以下是几个典型的例子:(1)热传导方程热传导方程是描述物体内部温度分布随时间变化的方程。
假设物体的温度分布函数为u(x,t),其中x表示位置,t表示时间。
热传导方程可以写成如下形式:∂u/∂t=a²∇²u其中a是热传导系数。
我们可以将温度分布函数表示为u(x,t)=X(x)T(t),然后代入热传导方程,得到两个常微分方程X''/X=T'/a²T。
分别解这两个方程,可以得到温度分布函数的解析解。
(2)线性波动方程线性波动方程是描述波动现象的方程。
假设波动函数为u(x,t),其中x表示位置,t表示时间。
∂²u/∂t²=v²∇²u其中v是波速。
我们可以将波动函数表示为u(x,t)=X(x)T(t),然后代入线性波动方程,得到两个常微分方程X''/X=v²T''/T。
分离变量法分离变量法又称Fourier 级数方法,而在波动方程情形也称为驻波法。
它是解决数学物理方程定解问题中的一种基本方法,这个方法建立在叠加原理的基础上,其基本出发点是物理学中的机械振动或电磁振动总可分解为一些简谐振动的叠加。
思想:把偏微分方程的求解问题转化为常微分方程的求解。
常微分方程求解:()()()()()P x dx P x dx P x dx y x Ce e Q x e dx−−∫∫∫=+∫一阶非齐次的常微分方程:()(),dy P x y Q x dx+=它的通解为二阶非齐次的常微分方程:()()()y P x y Q x y f x ′′′++=它的通解为21112212()y f y f y x C y C y y dx y dx W W=+−+∫∫其中1212,0.,y y W y y =≠′′12()()0.y P x y y Q x y y ′′′++=两个线性是无关的解和并且常系数齐次的常微分方程:0y py qy ′′′++=它的特征方程20r pr q ++=,假设特征方程的根为12.r r ,(1)特征方程有两个不等的实根:齐次方程通解为:12.r x r xy Ae Be =+(2)特征方程有两个相等的实根:(3)特征方程有一对共轭的复根:12,,r i r i αβαβ=+=−齐次方程通解为()(cos sin ).xy x e A x B x αββ=+1().r xy A Bx e =+第一节有界弦的自由振动22222,(0,),0(,0)(),(,0)(),[0,](0,)(,)0,0t u u a x l t t x u x x u x x x l u t u l t t ϕψ⎧∂∂=∈>⎪∂∂⎪⎪==∈⎨⎪==≥⎪⎪⎩一根长为l 的弦,两端固定,给定初始位移和速度,在没有强迫外力作用下的振动.物理解释:•求解的基本步骤2XT a X T′′′′=第一步:求满足齐次方程和齐次边界条件的变量分离形式的解(,)()()u x t X x T t =把分离形式的解代入方程可得即2()()()()T t X x a T t X x ′′′′=以及上述等式左端是t 的函数,右端是x 的函数,由此可得两端只能是常数,记为()()0(0)()0X x X x X X l λ′′+=⎧⎨==⎩X (x ):2()()0T t a T t λ′′+=T (t ):固有值问题(0)()()()0X T t X l T t ==.λ−从而有情形(A)下对λ的三种情况讨论固有值问题:0λ<(),x x X x AeBe λλ−−−=+0,A B +=其通解为代入边界条件可得0l l Ae Be λλ−−−+=0A B ==只有零解。
分离定理种类及应用方法分离定理是数学中的一个重要定理,用于解决线性偏微分方程的问题。
下面将详细介绍分离定理的种类及应用方法。
一、分离变量法分离变量法是分离定理的一种常见应用方法。
它的基本思想是将多变量的函数表示为各个变量的乘积形式,然后分别求解每个变量的方程,最后将得到的解合并,得到原问题的解。
应用方法:1.设定变量的分离形式:根据问题的具体情况,设定合适的变量分离形式。
通常来说,分离变量法适用于一维的偏微分方程,可以将解表示为一系列的单变量函数或特定的形式。
2.将偏微分方程转化为一系列的常微分方程:将原方程中的多个变量分离开来,得到一系列只包含一个变量的常微分方程。
3.逐个求解每个常微分方程:对于每个常微分方程,根据具体的形式选择适当的求解方法,例如使用分离变量法、常数变易法、变量替换法等。
4.合并得到原问题的解:将每个常微分方程的解合并,得到原问题的解。
二、特解法特解法是分离定理的另一种常见应用方法。
它的基本思想是通过猜测特定的解形式,将原问题转化为常微分方程或代数方程求解。
应用方法:1.设定特定解形式:根据问题的特点和已知条件,猜测合适的特定解形式。
常见的特定解形式有指数函数、幂函数、三角函数等。
2.代入原方程:将猜测的特定解形式代入原方程,得到常微分方程或代数方程。
3.求解方程得到特解:根据具体的形式选择适当的求解方法,例如积分、代数运算等,得到特解。
4.合并特解和通解:特解是原问题的一个解,将其与通解合并,得到原问题的完整解。
三、变量替换法变量替换法是分离定理的一种补充应用方法。
它的基本思想是通过改变变量的形式,将分离变量法或特解法无法解决的问题转化为可以求解的形式。
应用方法:1.寻找合适的变量替换:根据问题的特点和已知条件,寻找合适的变量替换,使得原方程可以转化为容易求解的形式。
2.代入原方程和求解:将变量替换代入原方程,得到新的方程。
根据具体的形式选择适当的求解方法,例如分离变量法、特解法等,求解得到新方程的解。
第八章 分离变量法⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 对于这样的定解问题,我们将介绍分离变量法求解,首先回忆高数中我们如何处理的求解的,高数中处理微分或重积分是把函数分成单元函数分离变量法的思路:对于二阶线性微分方程变换成单元函数来求解,也就是通过分离变量法把x 、t 两个变量分开来,即把常微分方程变化为两个偏微分方程来求解。
分离变量法的思想:先求出具有分离形式且满足边界条件的特解,然后由叠加原理做出这些解的线性组合,最后由其余的定解条件确定叠加系数(叠加后这些特解满足边界条件不满足初始条件,再由初始条件确定通解中的未知的数)。
叠加原理:线性偏微分方程的解的线性组合仍是这个方程的解。
特点:(1)数学上 解的唯一性来做作保证。
(2)物理上 由叠加原理作保证。
例:有界弦的自由振动1.求两端固定的弦的自由振动的规律⎪⎪⎩⎪⎪⎨⎧≤≤=∂∂=>==><<∂∂=∂∂l x x t x u x x u t t l u t u t l x x u a t u 0)()0,(),()0,(00),(,0),0(0,022222ψϕ 第一步:分离变量(建立常微分方程定解问题) 令)()(),(t T x X t x u =这个思想可从实际的物理现象可抽象出来,比如我现在说话的声音,它的振幅肯定随时间变化,但到达每个同学的位置不同,振幅又是随位置变化,可把声音分成两部分,一部分认为它随时间变化,一部分随位置变化。
第二步:代入方程(偏微分就可写成微分的形式,对于u 有两个变量,但对于X 、T 都只有一个变量))()()()(2t T x X a t T x X ''=''变形得)()()()(2t T a t T x X x X ''=''= λ- 左边与t 无关,右边与x 无关,左右两边相互独立,要想相等,必定等于一个常数。
第二章 分离变量法分离变量法是求解偏微分方程定解问题最常用的方法之一,它和积分变换法一起统称为Fourier 方法. 分离变量法的本质是把偏微分方程定解问题通过变量分离,转化为一个所谓的特征值问题和一个常微分方程的定解问题,并把原定解问题的解表示成按特征函数展开的级数形式. 本章介绍两个自变量的分离变量法,更多变量的情形放在其他章节中专门讨论.§21 特征值问题⋅2.1.1 矩阵特征值问题在线性代数中,我们已学过线性变换的特征值问题. 设为一阶实矩阵,A n 可视为到自身的线性变换。
该变换的特征值问题(eigenvalue problem )A n R 即是求方程:,,n Ax x x R λ=∈(1.1)的非零解,其中为待定常数. 如果对某个,问题(1.1)有非零解C λ∈λ,则就称为矩阵的特征值(eigenvalue),相应的称为矩阵n x R λ∈λA n x R λ∈的特征向量(eigenvector). 一般来讲,特征值问题(1.1)有不多于个相A n 异的特征值和线性无关的特征向量. 但可证明: 任一阶矩阵都有个线性无n n 关的广义特征向量,以此个线性无关的广义特征向量作为的一组新基,矩n n R 阵就能够化为标准型.Jordan 若为一阶实对称矩阵,在线性代数中有一个重要结果,即存在一个正A n 交矩阵使得T , 1T AT D -=(1.2)其中diag 为实对角阵. 设,为矩阵的第列D =12(,,...,)n λλλ12[ ... ]n T T T T =i T T i 向量,则式(1.2)可写为如下形式(1)i n ≤≤ ,1212 [ ... ][ ... ]n n A T T T T T T D =或, 1.i i i A T T i n λ=≤≤(1.3)上式说明,正交矩阵的每一列都是实对称矩阵的特征向量,并且这T A 个特征向量是相互正交的. 由于此结论在一定意义下具有普遍性,我们以定n 理的形式给出.定理1.1 设为一阶实对称矩阵,考虑以下特征值问题A n ,,n Ax x x R λ=∈则的所有特征值为实数,且存在个特征向量,它们是相互正交的A n ,1i T i n ≤≤(正交性orthogonality ),可做为的一组基(完备性completeness ).n R 特征值问题在线性问题求解中具有重要的意义,下面举例说明之.为简单起见,在下面两个例子中取为阶非奇异实矩阵,故的所有特A n A 征值非零,并且假设有个线性无关的特征向量 相应的特征值为A n ,i T ., 1i i n λ≤≤例1.1 设,求解线性方程组 .n b R ∈Ax b =解 由于向量组线性无关,故可做为的一组基. 将按此{1}i T i n ≤≤n R ,x b 组基分别展开为,则等价于11 ,nni i i i i i x x T b bT ====∑∑Ax b =,11nni ii ii i x AT bT ===∑∑或,11nni i ii ii i x T bT λ===∑∑比较上式两边的系数可得i T ,1, 1i i i x b i n λ-=≤≤便是原问题的解.12( ... )n x x x x T =例1.2 设,. 求解非齐次常微0n x R ∈12()((),(),...,()), 0n n f t x t x t x t R t T =∈>分方程组, 0(), (0)dxAx f t x x dt=+=(1.4)其中 . '''12((),(),...,()),0n dx x t x t x t t dtT =>解 类似于上例,将按基分别展开为0,,()x x f t {1}i T i n ≤≤ .0111, , ()()nn n i i i ii i i i i x x T x x T f t f t T ======∑∑∑则(1.4)等价于,0111()() +(), (0), 1n n ni i i i i i i i i i i dx t T x t AT f t T x x i n dt =====≤≤∑∑∑或,011()(()()), (0),1nni i i i i i i i i i dx t T x t f t T x x i n dt λ===+=≤≤∑∑比较上式两边的系数可得i T . 0()()(), (0), 1i i i i i i dx t x t f t x x i n dtλ=+=≤≤(1.5)(1.5)是个一阶线性方程的初始值问题,很容易求出其解.请同学们给出解n 的具体表达式.(),1i x t i n ≤≤2.1.2 一个二阶线性微分算子的特征值问题在这一小节,我们讨论在本章常用的一些特征值问题. 代替上节的有限维线性空间和阶实对称矩阵,在这儿要用到线性空间的某个子空间n R n A [0,]C l 和该子空间上的二阶线性微分算子. 一般地取H A在满足齐次边界条件.2{()[0,]()H X x C l X x =∈0,x l =}(1.6)下面我们讨论二阶线性微分算子的特征值问题. 先取边界条件为22d A dx=-,设是的特征函数,即且满足(0)0,()0X X l ==()X x H ∈A ()0X x ≠.()()AX x X x λ=此问题等价于是下面问题的非零解()X x "()()0, 0(0)()0 .X x X x x l X X l λ⎧+=<<⎨==⎩(1.7)(1.7)便是二阶线性微分算子的特征值问题,即要找出所有使22d A dx=-得该问题有非零解的. 下面求解特征值问题(1.7).λ首先证明要使(1.7)具有非零解,必须非负.λ设是相应于的一个非零解,用乘(1.7)中的方程,并在)(x X λ)(x X 上积分得[]l ,0,0)()()()("=+x X x X x X x X λ,0)()()( 0 2 0 "=+⎰⎰dx x X dx x X x X llλ.0)())(()()( 0 2 0 2'0'=+-⎰⎰dx x X dx x X x X x X lll λ由于,故有0)()0(==l X X ,2'2 0()(())llX x dx X x dx λ=⎰⎰.'22 0(())()0llX x dxX x dx λ=≥⎰⎰(1.8)当时,方程的通解为. 利用边界条件0λ=0)()("=+x X x X λ12()X x c c x =+可得,即. 因此,不是特征值.0)()0(==l X X 120c c ==()0X x =0λ=当时,方程的通解为0λ>0)()("=+x X x X λ. (1.9x C x C x X λλsin cos )(21+=)利用边界条件确定常数如下0)()0(==l X X 21,C C , ,10C =l C l C λλsin cos 021+=或.0sin 2=l C λ由于要求(1.7)中齐次微分方程的非零解,故不能为零. 故有2C .0sin =l λ,从而有0> , ,πλn l =1n ≥, .2)(ln n πλ=1n ≥将代入到(1.8)中,并略去任意非零常数得n C C λ,,212C , .x ln x X n πsin)(=1n ≥故特征值问题(1.7)的解为, , 2(l n n πλ=x ln x X n πsin )(=1n ≥(1.10)注1 特征值问题是分离变量法的理论基础. 上面已求出特征值问题(1.7)的解为. 在高等数学中知道,在一定条件下区间{ sin 1 }n x n lπ≥的任一函数可按特征函数系展开为Fourier 级数. 换言[0 , ]l { sin 1 }n x n lπ≥之,特征函数系是区间上满足一定条件的函数所成无穷维空间的一组基,{ sin 1 }n x n lπ≥[0 , ]l 而且还是该空间上的一组正交基,即有. 特征函0sinsin 0 , ln m x n m l lππ=≠⎰数系的这两个根本性质:正交性和完备性(基),和定理1.1{ sin1 }n x n lπ≥有限维空间中相应结论很相似,只是现在的特征值和特征函数是无穷个. 另n R 外,若改变(1.7)中的边界条件,其相应的特征值和特征函数也会有所变化.如将边界条件变为,则特征值和特征函数分别为(0)0,'()0X X l ==. 2(21)(21)(),()sin ,022n n n n X x x n l lππλ++==≥该特征函数系也具有和特征函数系类似(21){ sin1 }2n x n l π+≥{ sin 1 }n x n lπ≥的性质,既正交性和完备性.此类问题的一般结果便是著名的Sturm—Liouville定理,有兴趣的同学可参阅参考文献.[1][4]-将以上的结果以定理的形式给出.定理1.2 考虑二阶线性微分算子的特征值问题[1],[4]22d A dx=- "()()()()0 , 0 ,(0)0,()0 .k m X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩(1.11)其中. 则该问题的特征值非负,且满足0,1k m ≤≤.120......n λλλ≤<<<<→∞相应的特征函数系在上是相互正交的. 且对于任一在区间上1{()}n n X x ≥[0,]l [0,]l 分段光滑的函数,可按特征函数系展开为如下的级数()f x 1{()}n n X x ≥Fourier ,1()()n n n f x f X x ∞==∑其中系数为Fourier .20()(), 1()l nn lnf x Xx dxf n Xx dx =≥⎰⎰为后面需要,下面再求解二阶线性微分算子带有周期边界条件的22d A dx=-特征值问题. 在偏微分方程教材中,习惯上用表示周期函数,即考虑下面()θΦ二阶线性微分算子的周期边值问题22d A dx=- "()()0, () (2), .θλθθθπθθ⎧Φ+Φ=-∞<<+∞⎨Φ=Φ+-∞<<+∞⎩(1.12)可证(1.12)和以下问题等价"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩(1.13)和(1.8)的证明相似易得(1.13)中的特征值.当时,0≥λ0λ=, 由周期边界条件可得. 所以为特征函数.12()c c θθΦ=+20c =0()1θΦ=当时,方程通解为0λ>,θλθλθsin cos )(21c c +=Φ求导得.'()c c θΦ=-+由周期边界条件可得112cos(2sin(2c c c c c c ππ⎧=+⎪⎨=-+⎪⎩或1212[1cos(2sin(20sin(2[1cos(20.c c c c ππ⎧--=⎪⎨+-=⎪⎩(1.14)由于要求非零解,故不能同时为零. 因此,齐次方程组(1.14)的系数矩12,c c 阵行列式必为零,即 .解之可得1cos(20-=,2n n =λ()cos sin .n n n c n d n θθθΦ=+此时对每个正特征值,特征函数有二个,既,. 总结所得2n n =λθn cos θn sin 结果为如下定理.定理1.3 考虑二阶线性微分算子带有周期边界条件的特征值问22d A d θ=-题"''()()0, 02(0) (2), (0) (2).θλθθπππ⎧Φ+Φ=≤≤⎪⎨Φ=ΦΦ=Φ⎪⎩则该问题的特征值和特征函数分别为,.00,λ=0()1;θΦ=2n n =λ(){cos ,sin }, 1n n n n θθθΦ=≥§22 分离变量法⋅本节结合具体定解问题的求解来介绍分离变量法(method of separation of variables ). 所举例子仅限于一维弦振动方程,一维热传导方程混合问题以及平面上一些特殊区域上的位势方程边值问题. 对高维问题的处理放在其它章节中介绍.以下多数例子均假定定解问题带有齐次边界条件. 否则,可利用边界条件齐次化方法转化之. 我们以弦振动方程的一个定解问题为例介绍分离变量法.2.2.1 弦振动方程定解问题例2.1求解两端固定弦振动方程的混合问题2(,), 0, 0 (2.1)(0,)0, (,)0, 0 (2.2)(,0)(), (,0)(),0. tt xx t u a u f x t x l t u t u l t t u x x u x x x l ϕψ-=<<>==≥==≤≤ (2.3)⎧⎪⎨⎪⎩解 分四步求解.第一步 导出并求解特征值问题. 即由齐次方程和齐次边界条件,利用变量分离法导出该定解问题的特征值问题并求解.令,并代入到齐次方程中得)()(),(t T x X t x u =,0)()()()(''2''=-t T x X a x X t T 或.''''2()()()()X x T t X x a T t =上式左端是的函数而右端是的函数,要二者相等,只能等于同一常数.x t 令此常数为-,则有λ , ,λ-=)()("x X x X "2()()T t a T t λ=-上面的第一个方程为.0)()("=+x X x X λ利用齐次边界条件(2.2),并结合得0)(≠t T .0)()0(==l X X 由此便得该定解问题的特征值问题为"()()0, 0(0)()0.X x X x x l X X l λ⎧+=<<⎨==⎩其解为特征值:特征函数: 2() , 1 ;n n n lπλ=≥()sin, 1 .n n X x x n lπ=≥第二步 正交分解过程. 即将初值和自由项按特征函数系展成{}1()n n X x ≥Fourier 级数,并将也用特征函数表出.),(t x u {}1()n n X x ≥ ,11()()sinn n n n n n x X x x lπϕϕϕ∞∞====∑∑(2.4), 11()()sinn n n n n n x X x x lπψψψ∞∞====∑∑(2.5), 11(,)()()()sinn n n n n n f x t f t X x f t x lπ∞∞====∑∑(2.6)(2.711(,)()()()sinn n n n n n u x t T t X x T t x lπ∞∞====∑∑)这里,和分别为,和的Fourier 系数,具体表示如n ϕn ψ)(t f n )(x ϕ)(x ψ),(t x f 下,02()sin l n n d l l πϕϕααα=⎰,02()sin l n n d l l πψψααα=⎰,02()(,)sin l n n f t f t d l lπααα=⎰而为待定函数.)(t T n 第三步 待定系数法. 即先将和的Fourier 级数代入到(2.1)),(t x f ),(t x u 中,导出关于满足的常微分方程. 再利用初值条件(2.3)得出满足)(t T n )(t T n 的初始条件.假设(2.7)中的级数可逐项求导,并将(2.6)和(2.7)代入到(2.1)中得,"2"111()()()()()()nnnnn n n n n T t Xx aT t Xx f t X x ∞∞∞===-=∑∑∑,"2111()()()(())()()nnn nnn n n n n T t Xx aT t Xx f t X x λ∞∞∞===--=∑∑∑ . (2.8"211(()())()()()nn n n n n n n T t a T t X x f t X x λ∞∞==+=∑∑)由于Fourier 展式是唯一的,比较(2.8)两端系数得)(x X n(2.9"2()()(), 1.n n n n T t a T t f t n λ+=≥)在(2.7)中令并结合(2.4)得0=t (2.10()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑)比较(2.10)两端系数得)(x X n(0), 1.n n T n ϕ=≥(2.11)类似地可得'(0), 1.n n T n ψ=≥(2.12)结合(2.9),(2.11)和(2.12)便得出关于满足的二阶常系数非齐)(t T n (1)n ≥次方程初始值问题"2'()()(), 0(0), (0).n n n n n n n n T t a T t f t t T T λϕψ⎧+=>⎪⎨==⎪⎩(2.13)第四步 求解关于的定解问题(2.13),并将其结果代入到(2.7)中)(t T n 即可.为简单起见,我们设. 将代入到(2.13)中可得方程的通()0,1n f t n =≥n λ解为, t lan d t l a n c t T n n n ππsin cos)(+=利用初始条件确定常数如下,n n c d.'(0), (0)n n n n nn aT c T d lπϕψ====故有. ()cossin n n n l n a n a T t t t l n a lψππϕπ=+最后将上式代入到(2.7)中便得定解问题(2.1)—(2.3)的解为12(,)()sin cos sin l n n n a n u x t d t xlll lπππϕααα∞==∑⎰ (2.14)012()sin sin sin l n n n a n d t x n a l l l πππψαααπ∞=+∑⎰注1 利用分离变量法求解(2.1)—(2.3),需要假设在(2.7)中可通过无穷求和号逐项求导. 而通过号求导要对无穷级数加某些条件,在这里就∑∑不做专门讨论了. 今后遇到此类问题,我们均假设一切运算是可行的,即对求解过程只作形式上的推导而不考虑对问题应加什么条件. 通常称这样得出的解为形式解. 验证形式解是否为真解的问题,属于偏微分方程正则性理论的范围. 一般地讲,偏微分方程定解问题的解大多数是以无穷级数或含参变量积分形式给出的. 对这两类函数可微性的研究需要较深的数学知识,也有一定的难度,有兴趣的同学可查阅参考文献和. 我们约定:本书只求定解问题的形式解.[1][2]注2 当时,由(2.14)可以看出:两端固定弦振动的解是许多(,)0f x t =简单振动的叠加,当时,对任意的(,)()sinn n n u x t T t x l π=(11)k klx x k n n==≤≤-时刻,,即在振动的过程中有个点永远保持不动,所t (,)0n k u x t =(,)n u x t (1)n +以称这样的振动为驻波,而称为该驻波的节点.显然当k x 时,在这些点上振幅最大,称这些点为驻波的21(11)2k x l k n n+=≤≤-sin 1x =腹点. 因此,求特征函数实际上就是求由偏微分方程及边界条件所构定的系统所固有的一切驻波. 利用由系统本身所确定的简单振动来表示一些复杂的振动,便是分类变量法求解波动问题的物理解释.注3 例2.1的求解方法也叫特征函数法(eigenfunction method ),现已成为固定模式,也具有普适性. 初学者似乎会感到有些繁琐,但随着进一步的学习,同学们就会熟练掌握这一方法. 特征函数法的关键之处是求解偏微分方程定解问题相应的特征值问题,而基本思想就是笛卡尔(Descartes )坐标系的思想.如在三维空间中,每个向量可由基的线性组合表出,两个向量3R {,,}i j k 111222 , a i b j c k a i b j c kαβ=++=++相等当且仅当在基下两个向量的坐标相等. 既.{,,}i j k121212 , , a a b b c c ===与此相类似,在例2.1求解中也是比较方程或初始条件两边的系数而得()n X x 到(2.13). 与三维空间相比较,例2.1中特征函数系相当3R { sin1 }n x n lπ≥于3R 中的基,而也就相当于上面的,即定解问题的解{,,}i j k{ T () 1 }n t n ≥111{,,}a b c 关于基函数的坐标. 因此,在具有可数基的无穷维空间中,特{ sin1 }n x n lπ≥征函数法也称为待定系数法.例2.2 设有一均匀细弦,其线密度为. 若端为自由端,端固ρ0x =x l =定.初始速度和初始位移分别为零,并受到垂直于弦线的外力作用,其单位长度所受外力为. 求此弦的振动. sin t ω 解 所求定解问题为(2.1521 sin , 0, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x t u a u t x l t u t u l t t u x u x x l ρω-⎧-=<<>⎪==≥⎨⎪==≤≤⎩)利用特征函数法求解该问题.情形1 非共振问题,即.22, 0n a n ωλ≠≥ 该定解问题的特征值问题为(2.16)"'()()0, 0(0)0, ()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩其解为, , 2(21)()2n n l πλ+=(21)()cos 2n n X x x lπ+=0n ≥将按特征函数展开成Fourier 级数得1sin t ρω-{}0)(≥n n x X , (2.17)11sin ()()n n n t f t X x ωρ∞==∑.021214()sin sin sin sin 2(21)l n n n f t t d t f t l l n ωπααωωρπρ+===+⎰令(,)()()n n n u x t T t X x ∞==∑(2.18)完全类似例2.1的求解过程可得,对于任意满足下面问题0, ()n n T t ≥(2.19"2'()()sin , 0(0)0, (0)0.n n n n n n T t a T t f t t T T λω⎧+=>⎪⎨==⎪⎩)初值问题(2.19)中齐次方程的通解为,12()cos sin n T t c c =+而非齐次方程的一个特解为.22()sin nn n f T t t a ωλω=-因此,(2.19)的通解为. 1222()cos sin sin nn n f T t c c t a ωλω=++-(2.20)由初始条件可确定出120, c c ==最后将所得到的代入到(2.18)中便得(2.15)的解.()n T t 情形2 共振问题,即存在某个 使得.0,n ≥22n a ωλ=不妨假设.此时,在情形1中求解所得到的不变.220a ωλ={ T () 1 }n t n ≥当时,要求解以下问题0n = "2000'00()()sin , 0(0)0, (0)0.T t T t f t t T T ωω⎧+=>⎪⎨==⎪⎩(2.21)(2.21)中齐次方程通解为.012()cos sin T t c t c t ωω=+为求得非齐次方程的一个特解,要将(2.21)中方程的自由項换为,而求0i t f e ω以下问题的一个特解"2000()().i t T t T t f e ωω+=令并代入到上面非齐次方程中可得 ,故有()i t T t Ate ω=02f iA ω=-,00()sin cos 22f t f tT t t i t ωωωω=-取其虚部便得(2.21)中方程的一个特解为. 00()Im(())cos 2f tT t T t t ωω==-结合以上所得结果便可得到(2.21)中方程的通解为,0012()cos sin cos 2f tT t c t c t t ωωωω=+-由初始条件确定出 ,由此可得01220, 2fc c ω==.0002()sin cos 22f f tT t t t ωωωω=-将代入到(2.18)中便得在共振条件下(2.15)的解为()n T t 000102112(,)()()()()()()(sin cos )cos ()()222 (,)(,) .n n n n n n n n n u x t T t X x T t X x T t X x f f t t t x T t X x l u x t u x t πωωωω∞=∞=∞===+=-+=+∑∑∑可以证明: 是有界的. 而在的表达式中取 ,则2(,)u x t 1(,)u x t 2k k t πω=中的基本波函数的振幅当逐渐变大时将趋于无穷大,最1(,)u x t cos2x lπ0()k T t k 终要导致弦线在某一时刻断裂,这种现象在物理上称为共振. 注意到在上面求解过程中我们取周期外力的频率等于系统的第一固有频率ω波函数分量上发生共振. 一般地讲,当周期外力的频率很接近或等于系统的ω某个固有频率时,系统都会有共振现象发生,即弦线上一些点的振幅将随着时间的增大而不断变大,导致弦线在某一时刻断裂.2.2.2 热传导方程定解问题例2.3 求解下面热方程定解问题(2.2220, 0, 0 (0,), (,)sin , 0(,0)0, 0.t xx x u a u x l t u t u u l t t t u x x l ω⎧=<<>⎪==≥⎨⎪=≤≤⎩)解 利用特征函数法求解(2.22).首先将边界条件齐次化,取,并令,则0(,)sin w x t u x t ω=+w u v -=(2.22)转化为(2.2320cos , 0, 0 (0,)0, (,)0, 0(,0), 0.t xx x v a v x t x l t v t v l t t v x u x l ωω⎧-=-<<>⎪==≥⎨⎪=-≤≤⎩)利用分离变量法可得(2.23)的特征值问题为"()()0, 0(0)0, '()0.X x X x x l X X l λ⎧+=<<⎨==⎩特征值和特征函数分别为,2(21)()2n n lπλ+=0≥n .(21)()sin 2n n X x x lπ+=0≥n 将,按特征函数展成Fourier 级数(,)cos f x t x t ωω=-0)(u x -=ϕ{}0)(≥n n x X 得, (2.24)cos ()()n n n x t f t X x ωω∞=-=∑,02(21)()(1)cos sin cos 2l n n n f t t d f t l lπωαωααω+=-=⎰其中. 1228(1)(12)n n l f n ωπ+-=+ , (2.25)00n n n u X ϕ∞=-=∑其中.00042(21)()sin 2(12)l n u n u d l l n πϕααπ-+=-=+⎰令(2.26)(,)()(), n n n v x t T x X x ∞==∑并将(2.26)代入到(2.23)中的方程得,'2"()()()()cos ()nnnnn n n n n T t Xx aT t Xx f tX x ω∞∞∞===-=∑∑∑.'2(()())()cos ()nn nnn n n n T t a T t Xx f tX x λω∞∞==+=∑∑在(2.26)中令并结合(2.25)得0=t .()(0)()()n n n n n n x T X x X x ϕϕ∞∞====∑∑比较上面两式中特征函数的系数便得()n X x(2.27'2()()cos , 0(0).n n n n n n T t a T t f t t T λωϕ⎧+=>⎪⎨=⎪⎩)(2.27)是一阶常系数常微分方程初值问题.齐次方程通解为.t a n n Ce t T λ2)(-=令,并利用待定系数法求特解可得()cos sin n T t A t B t ωω=+ ,2242242()cos sin n n nn n na f f T t t t a a λωωωωλωλ=+++故有(2.2822242242()cos sin n a tn n nn n na f f T t Cet t a a λλωωωωλωλ-=++++)在上式中代得0t =,2242n nn na f C a λϕωλ=++ . 2242n nn na f C a λϕωλ=-+最后将(2.28)代入到(2.26)中便得(2.23)的解为.0(21)(,)()sin2n n n v x t T t x lπ∞=+=∑故(2.21)的解为),(),(),(t x w t x v t x u +=0 (,)sin v x t u x t ω=++其中由(2.28)给出. )(t T n2.2.3 平面上位势方程边值问题考虑矩形域上Poisson 方程边值问题1212(,), , (,)(), (,)(), (,)(), (,)(), .xx yy u u f x y a x b c y d u a y g y u b y g y c y d u x c f x u x d f x a x b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2.29)我们假设或. 否则,利用边界条件齐次化方法0)()(21==x f x f 0)()(21==y g y g 化非齐次边界条件为齐次边界条件. 当然,也可以利用叠加原理将(2.29)分解为二个问题,其中一个关于具有齐次边界条件,而另一个关于具有齐次边x y 界条件.例2.4 求解Dirichlet 问题(2.300, 02, 0 1 (0,)0, (2,)0, 01(,0)1, (,1)(1), 0 2.xx yy u u x y u y u y y u x u x x x x +=<<<<⎧⎪==≤≤⎨⎪==-≤≤⎩)解 令并将其代入到(2.29)中齐次方程得)()(),(y Y x X y x u =,0)()()()(""=+y Y x X y Y x X ,λ-=-=)()()()(""y Y y Y x X x X (2.31"()()0, 0 2(0)0, (2)0.X x X x x X X λ⎧+=<<⎨==⎩)0)()("=-y Y y Y λ(2.32)(2.31)便是(2.30)的特征值问题,其解为, , .2)2(πλn n =x n x X n 2sin)(π=1≥n 将代入到(2.32)中得n λ ,0)()("=-y Y y Y n λ(2.33)该方程有两个线性无关解,. 由于,也是(2.33)的y n e2πy n e2π-2n shy π2n ch y π解且线性无关,故(2.33)通解为.y n ch d y n shc y Y n n n 22)(ππ+=令(2.34)11(,)()()()sin 222n n n n n n n n n u x y X x Y y c shy d ch y x πππ∞∞====+∑∑则满足(2.30)中方程和关于的齐次边界条件. 利用关于的边界条),(y x u x y 件可如下确定,,n c n d ,∑∞==12sin1n n x n d π . (2.35))1(1(22sin12220n n n d n d --=⨯=⎰πααπ),x n n ch d n shc x x n n n ∑∞=+=-12sin )22()1(πππ . 22))1(1(22)1(416)1(163322ππππππn sh n chn n sh n n c n nnn -------=(2.36)故(2.30)解为(2.371(,)()sin ,222n n n n n n u x y c shy d ch y x πππ∞==+∑)其中,由(2.36)和(2.35)确定.n c n d 对于圆域,扇形域和圆环域上的Poisson 方程边值问题,求解方法和矩形域上的定解问题无本质区别,只是在此时要利用极坐标.同学们自己可验证:令,作自变量变换,则有θρcos =x θρsin =y .θθρρρρρu u u u u yy xx 211++=+令,将其代入到极坐标下的Laplace 方程中得)()(),(θρθρΦ=R u 222330216(1)164(1)(1)sin ,2222n nn n n n n n c sh d ch d n ππππααααπ----+=-=⎰,"'"211()()()()()()0R R R ρθρθρθρρΦ+Φ+Φ=,"'"211(()())()()()0R R R ρρθρθρρ+Φ+Φ=,"'"21()()()1()()R R R ρρθρλθρρ+Φ=-=-Φ故有, (2.380)()("=Φ+Φθλθ). (2.390)()()('"2=-+ρλρρρρR R R )方程(2.38)结合一定的边界条件便得相应定解问题的特征值问题,而(2.39)是欧拉(Euler )方程. 对(2.39)作自变量变换可得s e =ρ , ,s e =ρρln =s ,'1s dR dR ds R d ds d ρρρ==.2222'''2222211()ss s d R d R ds dR d s R R d ds d ds d ρρρρρ=+=-将以上各式代入到(2.39)得. (2.40''0ss R R λ-=)例2.5 求下面扇形域上Dirichlet 问题(2.4122220, 0, 0, 4(,0)0, 0 2(0,)0, 0 2 (,), 4. xx yy u u x y x y u x x u y y u x y xy x y ⎧+=>>+<⎪=≤≤⎪⎨=≤≤⎪⎪=+=⎩)的有界解.解 令,作自变量变换,(2.41)转化为θρcos =x θρsin =y(2.42)2110, 0, 0 2 2(,0)0, (,0, 022(2,)2sin 2, 0.2u u u u u u ρρρθθπθρρρπρρρπθθθ⎧++=<<<<⎪⎪⎪==≤≤⎨⎪⎪=≤≤⎪⎩令代入到(2.42)中的方程,并结合边界条件可得)()(),(θρθρΦ=R u"()()0, 0<</2(0)0, (/2)0.θλθθππ⎧Φ+Φ=⎨Φ=Φ=⎩(2.43). (2.440)()()('"2=-+ρλρρρρR R R )(2.43)便是(2.42)的特征值问题.求解特征值问题(2.43)可得, , .224)2/(n n n ==ππλθθn n 2sin )(=Φ1≥n 将代入到(2.44)中,并令作自变量变换可得n λs e =ρ,"240ss R n R -=.2222()ns ns n n n n n n n R c e d e c d ρρρ--=+=+由于是求(2.42)的有界解,故有,即. 从而有∞<)0(R 0=n d .n n n c R 2)(ρρ= 上面求出的对每个都满足(2.42)中的方程和齐(,)()()n n n u R ρθρθ=Φ1n ≥次边界条件,由叠加原理得, (2.45∑∑∞=∞==Φ=1212sin )()(),(n n n n n n n c R u θρθρθρ)也满足(2.42)中的方程和齐次边界条件.为使(2.42)中的非齐次边界条件得以满足,在(2.45)中令得(2,)2sin u θθ=2ρ= ,212sin 22sin 2n n n c n θθ∞==∑(2.46)比较上式两边特征函数的系数得θθn n 2sin )(=Φ , .112c =1)( 0≠=n c n 将,代入到(2.45)中便得(2.42)的解为1c 1)(≠n c n . θρθρ2sin 21),(2=u 例2.6 求解圆域上Dirichlet 问题2110, 0, 02(,)(), 02.u u u a u a ρρρθθρθπρρθϕθθπ⎧++=<<≤<⎪⎨⎪=≤≤⎩(2.47)解 圆域上的函数相当于关于变量具有周期. 令(,)u ρθθ2π并代入到(2.46)中的方程可得)()(),(θρθρΦ=R u(2.48"()()0() (2).θλθθπθ⎧Φ+Φ=⎨Φ=Φ+⎩). (2.490)()()('"2=-+ρλρρρρR R R )(2.48)是定解问题(2.47)的特征值问题. 由定理1.3知(2.48)的解为.2, ()cos sin , 0n n n n n c n d n n λθθθ=Φ=+≥将代入到(2.49)中可得(要利用自然边界条件)n λ(0,)u θ<∞,,00)(c R =ρn n n c R ρρ=)(1≥n 利用叠加原理可得(2.47)的如下形式解.∑∞=++=10)sin cos (),(n n n n n d n c c u θθρθρ(2.50)根据边界条件得)(),(θϕθ=a u ,01()(cos sin )n n n n c a c n d n ϕθθθ∞==++∑其中,2001()2c d πϕττπ=⎰,⎰=πτττϕπ20cos )(1d n a c n n .⎰=πτττϕπ20sin )(1d n a d n n 将以上各式代入到(2.50)中便得(2.47)的解为2 2 0 0111(,)()()(()cos cos 2n n u d n d n a ππρρθϕττϕτττθππ∞==+∑⎰⎰ .)sin sin )(12 0 ⎰+πθτττϕπn d n (2.51)注4 利用等式可将(2.51)化为如下形)Re()(cos 1)(1∑∑∞=-∞==-n in n n n e c n c τθτθ式(2.522222201()()(,),22cos()a u d a a πρϕτρθτπρρθτ-=+--⎰)式(2.52)称为圆域上调和函数的Poisson 公式. 在后面学习中还将用其它方法导出它. 注5 在例2.5和例2.6中,如果方程中自由项不为零,若),(θρf 特殊,可用函数代换将自由项化为零而转化齐次方程. 对于一般的),(θρf ,要利用特征函数方法求解.),(θρf 注6 上面例2.3—例2.6几个定解问题的求解思想和主要过程,是伟大的数学家和物理学家Fourier 给出的,详细内容见参考文献. 在这部著名论著[5]中,Fourier 首次利用偏微分方程来研究热问题,并系统地介绍了分离变量法的基本思想和主要步骤. 结合本节所举例子,请同学们小结一下在本章所学过的特征值问题,二阶常系数非齐次常微分方程和欧拉方程的求解方法. 习 题 二1. 设有如下定解问题2(,), 0, 0 (0,)0, (,)0, 0(,0)(), (,0)(), 0.tt xx x t u a u f x t x l t u t u l t t u x x u x x x l ϕψ⎧-=<<>⎪==≥⎨⎪==≤≤⎩利用分离变量法导出该定解问题的特征值问题并求解.2.求解下列特征值问题 (1) "''()()0, 0 (0)()0.X x X x x l X X l λ⎧+=<<⎪⎨==⎪⎩ (2) "()()0, 1 1 (1)0,(1)0X x X x x X X λ⎧+=-<<⎨-==⎩ (3) "()()0, 0 '(0)0, ()0.X x X x x l X X l λ⎧+=<<⎨==⎩ (4) "()()0, 02 (0)(2), '(0)'(2).X x X x x l X X l X X l λ⎧+=<<⎨==⎩3 考虑下面特征值问题*"()()0, 0 (0)0, '()()0.X x X x x l X X l X l λ⎧+=<<⎨=+=⎩(1)证明一切特征值0.λ>(2)证明不同的特征值对应的特征函数是正交的.(3)求出所有的特征值和相应的特征函数.4. 设在区间一阶连续可导且 考虑如下特(),()p x q x [0,]l ()0,()0.p x q x >≥征值问题[()()]()()(), 0 (0)0, ()0.d d p x X x q x X x X x x l dx dx X X l λ⎧-+=<<⎪⎨⎪==⎩(1)证明一切特征值0.λ≥(2)证明不同的特征值对应的特征函数是正交的.5.求解下列弦振动方程的定解问题(1)20, 0<, 0(0,)0, (,)0, 0(,0), (,0)0, 0.tt xx x x t u a u x l t u t u l t t u x x u x x l ⎧-=<>⎪==≥⎨⎪==≤≤⎩ (2) 20, 0<, 0(0,)0, (,)0, 035(,0)sin , (,0)sin , 0.22tt xx x t u a u x l t u t u l t t u x x u x x x l l l ππ⎧⎪-=<>⎪==≥⎨⎪⎪==≤≤⎩(3) 240, 0<1, 0(0,)0, (1,)0, 0(,0), (,0)0, 0 1.tt xx t u u u x t u t u t t u x x x u x x ⎧-+=<>⎪==≥⎨⎪=-=≤≤⎩(4) 242sin , 0<, 0(0,)0, (,)0, 0(,0)0, (,0)0, 0.tt xx x x t u u u x x t u t u t t u x u x x πππ⎧--=<>⎪==≥⎨⎪==≤≤⎩(5) 22, 0, 0 (0,) (,)0, 0(,0)0, (,0), 0.tt xx x t u a u x l t u t u l t t u x u x A x l ⎧-=<<>⎪==≥⎨⎪==≤≤⎩6.求解下列热传导方程的定解问题(1) 2cos , 0<, 02(0,)1, (,), 0(,0)0, 0<.t xx x x u a u x t u t u t t u x x ππππ⎧-=<>⎪⎪==≥⎨⎪=<⎪⎩(2) 22, 0<1, 0(0,)0, (1,)0, 0(,0)sin , 0< 1.t xx x u a u u x t u t u t t u x x x π⎧-=<>⎪==≥⎨⎪=<⎩(3) 220, 0<, 0(0,)0, (,)0, 0(,0)(), 0.t xx u a u b u x l t u t u l t t u x x x l ϕ⎧-+=<>⎪==≥⎨⎪=≤≤⎩(4) 2, 0, 0 (0,)0, (,)0, 0(,0)1, 0.t xx x x u a u xt x l t u t u l t t u x x l ⎧-=<<>⎪==≥⎨⎪=≤≤⎩7. 求解下面位势方程定解问题(1) , 0, 0 (,0)0, (,)0, 0(0,)0, (,), 0.xx yy y y u u x x a y b u x u x b x a u y u a y Ay y b +=<<<<⎧⎪==≤≤⎨⎪==≤≤⎩(2)22220, 0, , 4 (,0)0, 02, (,)0, 0(,), 4.xx yy u u y x y x y u x x u x x x u x y x y x y ⎧+=>>+<⎪⎪=≤≤=≤≤⎨⎪=++=⎪⎩(3) 22220, 4 (,)1, 4.xx yy u u x y u x y x x y ⎧+=+<⎪⎨=++=⎪⎩(4) 222222, 1< 4 (,)0, 1 (,), 4.xx yy u u xy x y u x y x y u x y x y x y ⎧+=+<⎪⎪=+=⎨⎪=++=⎪⎩8 设在区间的Fourier 展开式为 *()x ϕ[0,]l 1()sin ,k k k x x c l πϕ∞==∑(6.1)其部分和为 求解或证明以下结果.1()sin ,n n k k k x S x c l π==∑(1)设,求.()[0,]x C l ϕ∈20[()()]l n x S x dx ϕ-⎰(2)证明下面贝塞尔(Bessel )不等式 22012().l k k c x dx l ϕ∞=≤∑⎰(6.2)(3)设,的二阶导数的Fourier 展开式为2()[0,]x C l ϕ∈()x ϕ1''()sin ,n n n x x d l πϕ∞==∑如果 ,利用分部积分法证明(0)()0l ϕϕ==2, 1,n n d An c n =≥(6.3)其中为正常数.A (4)利用(6.2)和(6.3)证明(6.1)中的三角级数在区间上一致[0,]l 收敛,并且可以逐項求导.9 考虑如下定解问题* 2, 0, 0 (0,)0, (,)0, 0(,0)(), 0.t xx x x u a u x l t u t u l t t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)当经过充分长的时间后,导热杆上的温度分布如何?(,)u x t (3)求极限.lim (,)t u x t →+∞10 考虑如下定解问题*2, 0, 0 (0,), (,), 0(,0)(), 0.t xx x u a u x l t u t A u l t B t u x x x l ϕ⎧=<<>⎪==≥⎨⎪=≤≤⎩(1)给出该定解问题的物理解释.(2)求极限.lim (,)t u x t →+∞11 考虑下面定解问题 *20, 0<, 0(0,)(,)0, 0(,0), (,0)0, 0.tt xx t t u u u u x t u t u t t u x x u x x πππ-++=<>⎧⎪==≥⎨⎪==≤≤⎩(1)解释该定解问题方程中各项的物理意义.(2)推导出问题的特征值问题并求解.(3)写出该问题解的待定表示式并求出表达式中第一特征函数的系数.12 考虑下面定解问题 * (,), 0<, 0(0,)(,)0, 0(,0)(), (,0)(), 0.tt xx x x t u u f x t x t u t u t t u x x u x x x ππϕψπ-=<>⎧⎪==≥⎨⎪==≤≤⎩(12.1)(1)写出该定解问题的特征值和特征函数 ,(),0.n n X x n λ≥(2)如果,而,求解该定解问题.()0,()0x x ϕψ==(,)f x t t =(3)如果,证明 ,下面等式(,)0f x t =0τ∀>,222200[(,)(,)][()()]l l t x x u x u x dx x x dx ττψϕ+=+⎰⎰(12.2)成立,解释该等式的物理意义.(4)证明(12.1)的解是唯一的.。
分离变量法的基本步骤分离变量法是常微分方程求解中常用的一种方法,它的基本思想是将未知函数表示为两个单变量函数的乘积形式,然后通过对两个函数分别积分得到方程的通解。
下面将详细介绍分离变量法的基本步骤。
1. 确定待求解的常微分方程首先需要明确要求解的常微分方程是什么,也就是确定方程的形式和各项系数。
2. 将未知函数表示为两个单变量函数的乘积形式通常情况下,我们会将未知函数表示为两个单变量函数的乘积形式,即y(x)=u(x)v(x)。
这里 u(x) 和 v(x) 分别表示关于变量 x 的两个函数。
这样做的好处是可以将常微分方程转化为两个单变量函数的函数关系,从而利用积分求解。
3. 对 y(x) 分别求导对 y(x)=u(x)v(x) 两边分别求导,得到:y'(x) = u'(x)v(x) + u(x)v'(x)4. 代入常微分方程中,进行化简将 y(x) 和 y'(x) 代入常微分方程中,得到:F(x,y(x),y'(x))=0转化为:F(x,u,v,u'v+uv')=0进一步化简得到:其中 g(x) /v(x) 表示方程中与 u(x) 无关的部分。
5. 将方程分离为两个积分形式变形后得到 u'(x)v(x)=g(x) / u(x) - v'(x)u(x),将 g(x) / u(x) 看做一个整体,两边同时乘以 dx,得到:将等式两边分别积分:得到:其中 C1 为任意常数。
6. 求解得到 u(x) 和 v(x) 的表达式将第五步中得到的式子代入 y(x)=u(x)v(x) 中,即可得到 y(x) 的表达式。
7. 加入边界条件求解特解在确定了通解后,需要再根据边界条件来求出特解。
通常情况下,边界条件是指在某一特定点或者几个特定点上函数的取值或者导数的取值。
将特殊条件带入通解中求解,得到特解。
以上就是分离变量法的基本步骤,需要注意的是,在某些情况下,可能需要先利用变量代换等方法将常微分方程转化为可分离变量的形式,方可应用此方法求解。
分离变量法的
分离变量法是一种统计学理论,它是一种实验设计的常用策略,可以帮助研究
者更好的分析现象中的潜在关系和因果性。
分离变量法的基本原理是将实证研究中的所有变量被系统地组织起来,以便为
研究者提供有效而合理的实验设计,以更加精确地检验每一个变量的影响。
分离变量法是通过安排控制实验来识别变量之间的相互关系。
这种方法有助于研究者发现各种影响及事件的病理机制,从而帮助他们分析解
释一个现象的发展历史,其中包括看不见的因素以及它们之间的相互作用。
而且,通过识别自变量、因变量及其他变量之间的关系,研究者可以鉴定和认识不同文化、不同地域、不同时期但是有着同种现象的拥有相同因素的历史事件。
另外,分离变量法也有助于帮助研究者避免陷入潜在的偶然性结果,这样他们
可以获得有着实证依据的调查结论。
另外,在使用该方法的过程中,也可以有效避免受试者的建议影响,从而使实验能够更加有效地实施和衡量。
从以上可以看出,分离变量法是一种重要而有效的实证研究方法,它是通过对
实验变量的有效且系统化排列,对实验结果带来重要的影响。
它不仅有助于研究者从现象的发展历史中获取有用的信息,还能够帮助他们避免陷入偶然性结果的陷阱,从而使他们获得实证依据的结果。
分离变量法步骤
“同学们,今天咱们来好好讲讲分离变量法步骤。
”我站在讲台上对学生们说道。
那什么是分离变量法呢?简单来说,就是把一个偏微分方程分解成几个常微分方程来求解。
下面我具体给大家讲讲步骤。
第一步,要确定方程的类型。
比如说,对于一个波动方程或者热传导方程等,这些常见的偏微分方程都可以考虑用分离变量法。
就拿最简单的一维热传导方程来举例吧,比如 u_t = a^2 u_xx。
第二步,假设解的形式。
这一步很关键哦,我们假设解可以表示成两个函数的乘积,一个只与变量 x 有关,一个只与变量 t 有关,即 u(x,t) =
X(x)T(t)。
第三步,把假设的解代入到原方程中。
这样就会得到一个关于 X 和 T 的等式。
然后通过一些运算和化简,把它分成两个只含有一个变量的常微分方程。
第四步,求解这些常微分方程。
这可能需要用到一些常微分方程的求解方法和技巧。
第五步,根据边界条件和初始条件确定解中的常数。
这个也非常重要,只有满足这些条件的解才是我们真正需要的解。
比如说,有一个两端固定的均匀细杆的热传导问题,杆长为 L,初始温度分布已知。
我们就可以用分离变量法来求解这个问题。
通过前面几步得到一系列的解,再根据边界条件确定出具体的解。
同学们,分离变量法是一种非常重要和常用的方法,在很多物理问题、工程问题中都有广泛的应用。
大家一定要好好掌握。
以后遇到类似的问题,就可以试着用这种方法去求解,相信你们会发现它的神奇之处的。
好了,今天就讲到这里,大家要是有什么不明白的地方随时问我。
数学物理学中的分离变量法在数学物理学中,分离变量法是解决偏微分方程的一种常用方法。
它的核心思想是将多变量的问题转化为单变量的问题,从而简化求解过程。
本文将介绍分离变量法的基本原理和应用,并通过案例来说明它在数学物理学中的重要性。
一、分离变量法的基本原理分离变量法的基本原理是将多变量方程分解为单变量方程的乘积形式,然后令每个变量对应的因子等于一个常数。
具体的步骤如下:1. 假设多变量方程为一个未知函数的乘积形式,即u(x,y)=X(x)Y(y)。
2. 将乘积形式代入原方程中,得到两个只包含单变量的方程。
3. 求解得到每个单变量方程的解析解。
4. 将每个单变量的解析解组合起来,得到多变量方程的解析解。
二、分离变量法的应用分离变量法被广泛应用于数学物理学中各个领域,如热传导方程、波动方程、拉普拉斯方程等。
下面以热传导方程为例,来说明分离变量法的应用过程。
热传导方程是描述物体内部温度分布随时间变化的偏微分方程。
假设物体为长方形平板,边界条件为一侧保持恒温,另一侧绝热。
方程可以表示为:∂u/∂t = α(∂²u/∂x² + ∂²u/∂y²)其中u表示温度,t表示时间,α表示热扩散系数。
为了求解上述方程,可以假设温度分布可用分离变量法表示。
1. 假设温度分布为u(x,y,t)=X(x)Y(y)T(t)。
2. 将分离变量形式代入热传导方程中,得到三个单变量方程:X''(x)/X(x) + Y''(y)/Y(y) = T'(t)/(αT(t))3. 分别求解X(x)、Y(y)、T(t)的单变量方程,得到它们的解析解。
4. 将X(x)、Y(y)、T(t)的解析解组合起来,得到温度分布的解析解。
通过以上步骤,我们可以得到温度分布随时间变化的解析解,从而揭示了物体内部温度分布的特点。
三、分离变量法的重要性分离变量法在数学物理学中具有重要的地位和作用。
dxdy dx x 5=y dy dxy 5=x dy dx5=y x y 分离变量法分离变量法是是一个特别的解微分方程方法微分方程 是有 函数 及其一个或以上的 导数 的方程:dy dx5=微分方程(导数)yx 例子:有函数 y 和其导数的方程 dy dx什么时候可以用?在以下的情形可以应用分离变量法:所有 y 项(包括 dy)可以被移到方程的一边,所有 x 项(包括 dx)可以被移到另一边。
方法方法有三步:一、把所有 y 项(包括 dy)移到方程的一边,把所有 x 项(包括 dx)移到另一边。
二、把一边对 y 积分,另一边对 x 积分。
不要忘了 "+ C" (积分常数)。
三、简化例子:解(k 是常数)dydx= ky 一、分离变量:把所有 y 项移到方程的一边,把所有 x 项移到方程的另一边。
每边乘以 dx: dy = ky dx每边除以 y:dyy= k dx 二、每边分开来求积分:积分符号放在前面:∫ dy y= ∫k dx求左边的积分: ln(y) + C = ∫k dx 求右边的积分:ln(y) + C = kx + DC 是积分常数。
用D 来代表另一个(不同的)积分常数。
三、简化合并两个常数为一个(a=D−C):ln(y) = kx + ae(ln(y)) = y,所以我们取每边的幂:y = e kx + ae kx + a = e kx e a,所以这是:y = e kx e ae a 是个常数,我们用 c 来代替它y = ce kx解了:y = ce kx这是个一般的一阶微分方程,在很多不同的实际情况下都会出现。
在上面我们用了 y 和 x,用其他的名字来代表变量也是可以的:例子:兔子!有越多兔子就会越多小兔子,小兔子长大后又会生小兔子。
这样,兔子的数量会增长得越来越快!重要的信息是:在任何时间 t 时兔子的数量 N增长率 r数量变化率 dN dt在任何时间的变化率是增长率乘以在那一刻的数量:dN= rNdt慢着!这和上面 例子是同一个方程,只不过字母不同:是 N, 不是 y是 t, 不是 x是 r, 不是 k所以解是(同上):N = ce rt举个例子,这是 N = 0.3e2t 的图:指数式增长还有其他类似的方程,例如 连续复利。
<<电磁场与电磁波>>读书报告
姓 名:
学 院: 学 号:
专 业:
题 目:分离变量法在求静态场的解的应用 成 绩:
二〇一四年四月
Xxx
工程学院
电子工程类
一.引言
分离变量法是在数学物理方法中应用最广泛的一种方法。
在求解电磁场与电磁波的分布型问题和边值型问题有很重要的应用。
分布型问题是指已知场源(电荷分布、电流分布)直接计算空间各点和位函数。
而边值型问题是指已知空间某给定区域的场源分布和该区域边界面上的位函数(或其法向导数),求场内位函数的分布。
求解这两类问题可以归结为在给定边界条件下求解拉普拉斯方程或泊松方程,即求解边值问题。
这类问题的解法,例如镜像法,分离变量法,复变函数法,格林函数法和有限差分法,都是很常用的解法。
这里仅对在直角坐标系情况下的分离变量法作简单介绍。
二.内容
1.分离变量法的特点:
分离变量法是指把一个多变量的函数表示成几个单变量函数乘积,从而将偏微分方程分离为几个带分离常数的常微分方程的方法,属于解析法的一种。
它要求要求所给边界与一个适当的坐标系的坐标面重合.在此坐标系中,待求偏微分方程的解可表示成三个函数的乘积,每一函数仅是一个坐标的函数。
我们仅讨论直角坐标系中的分离变量法.
2.推导过程:
直角坐标系中的拉普拉斯方程:
222
222
0 x y z
ϕϕϕ
∂∂∂
++=∂∂∂
我们假设是三个函数的乘积,即
(,,)()()()x y z X x Y y Z z ϕ=
其中X 只是x 的函数,同时Y 是y 的函数Z 是z 的函数,将上式带入拉普拉斯方程,得
然后上式同时除以XYZ ,得
0X Y Z X Y Z
''''''
++= 上式成立的唯一条件是三项中每一项都是常数,故可分解为下列三个方程:
即
α,β,γ为分离常数,都是待定常数,与边值有关但不能全为实数或全为虚数 。
由上式得2220αβγ++=,下面以X ”/X =α2式为例,说明X 的形式与α的关系 当α2=0时,则
当α2
<0时,令α=jk x
(k x
为正实数),则
或
当α2
>0时,令α=k x ,则
或 a ,b ,c ,d 为积分常数,由边界条件决定Y(y)Z(z)的解和X(x)类似。
3解题步骤
1,2λα
=±00
()X x a x b =+12()x x jk x jk x
X x b e b e -=+12()sin cos x x X x a k x a k x
=+12()x x k x k x
X x d e d e -=+12()
s x x X x c hk x c chk x
=+
分离变量法的求解步骤:
建立正确的坐标系,确定变量的个数;
求方程的通解;
利用边界条件求方程的定解,即求出待定系数。
解题关键是确定积分常数,积分常数的大致确定方法:
若在某一个方向(如x方向)的边界条件是周期的,则分离常数是虚数,其解选三角函数;
若在某一个方向的边界条件是非周期的,则分离常数是实数,其解选双曲函数或者指数函数。
其中:有限区域选双曲函数,无限区域选指数衰减函数;
若位函数与某一坐标无关,则沿该方向的分离常数为零,其解为常数。
分离变量法的求解步骤:
建立正确的坐标系,确定变量的个数;
求方程的通解;
利用边界条件求方程的定解,即求出待定系数
4补充作业的解题过程
如右图所示一个沿z轴无限长的横截面为矩形的金属管,其中三个边的电
位为零,第四边与其它边绝缘,电位是
sin
x
U
a
,求管内的电位。
解:导体槽内为无源区,故电位满足拉普拉斯方程和边界条件:
0,(0,)0
(1),(,)0(2)0,(,0)0
(3)
,(,)sin (4)
x y
x a a y y x x
y b x b U a
ϕϕϕπϕ==⎧⎪==⎪⎪
⎨==⎪
⎪==⎪⎩
用分离变量法求解过程:
2
0ϕ∇=⇒
2222
220x y z
ϕϕϕ
∂∂∂++=∂∂∂
已知边界条件:0,(0,)0(1) ,(,)0(2) 0,(,0)0(3)
,(,)
sin(4) x y
x a a y
y x
x
y b x b U
a
ϕ
ϕ
ϕ
π
ϕ
==
⎧
⎪==
⎪⎪
⎨==
⎪
⎪==
⎪⎩
由条件(4)得: 1
sin
sin()()n
n x
n n U A x sh b a
a a
πππ
∞
='=∑ 将此式按傅立叶级数展开,即等式两边同乘以 sin()m x a
π
再对x 从0到a 积分,得
001sin()sin()s ()sin()sin()a
a n n x
m n n m U x dx A h b x x dx a a a a a πππππ∞=⎡⎤
'=⎢⎥⎣⎦∑⎰⎰ 利用三角函数的正交性质
00
sin()sin()2
a
m n n m x x dx a a a m n ππ≠⎧⎪⎡
⎤=⎨⎢⎥=⎣⎦⎪⎩⎰
等式左边 =2
a
U , 由此知:m 等于1,m 不等于1时无解 等式右边12a b A sh a π⎛⎫
'= ⎪⎝⎭
因此'
1
(
)
U A b sh a π=
所以,接地导体槽内部电位分布为
sin()(
)
(
)
U x
y
sh b
a
a
sh a
ππϕπ=
三.心得体会
分离变量法是将一个多元函数表示成几个单变量函数的乘积,从而将偏微分方程分离为几个带分离常数的常微分方程的方法.用分离变量法求解边值型问题,首先要根据边界形状选择适当的坐标系;然后将偏微分方程在特定的坐标系下分离为几个常微分方程,并得出位函数的通解;最后由边界条件确定通解中的待定常数.
在用分离变量法求解静态场的边值问题时,常需要根据边界条件来确定分离常数是实数、虚数或零。
若在某一方向(如x方向)的边界条件是周期的,则其解要选三角函数;若在某一个方向的边界条件是非周期的,则该方向的解要选双曲函数或者指数函数,在有限区域选双曲函数,无限区域选指数衰减函数;若位函数与某一坐标无关,则沿该方向的分离常数为零,其解为常数。