2
(3)
R (0) < ∞
自然边界条件
u (0, θ ) < +∞ R(0)Φ (θ ) = R(0) Φ (θ ) < +∞
求解特征值问题
Φ′′(θ ) + λΦ (θ ) = 0 (1) (2) Φ (0) = Φ (π ) λ < 0时得(1)的通解为Φ(θ ) = C1e λθ + C2 e
B0 , ( n = 0 ) 其通解为 Tn (t ) = a 2 n 2π 2 t l 2 Bn e , ( n = 1, 2, )
由此,就得到原方程满足边界条件的变 量分离的非零特解:
C , n = 0 0 un ( x, t ) = X n ( x)Tn (t ) = ( anπ ) 2 - 2 t (nπ )2 C e l cos x, n 2 l C =AB
解: 边界条件是非齐次的.本问题中,方程的 自由项与边界条件均与t 无关,所以令 u(x,t)=V(x,t)+W(x)
代入方程及边界条件,有
V 2V 2W = a 2 2 + a 2 2 + A, 0 < x < l , t > 0 x x t V x =0 + W x =0 = 0, V x =l + Wx =l = 0, t > 0 V t =0 + W t =0 = 0, 0 ≤ x ≤ l
l 2 , m = n ≠ 0 l mπ nπ x cos xdx = l m = n = 0 cos ∫0 l l 0 m≠n
nπ x. 由初始条件知 x = u ( x ,0 ) = C 0 + ∑ C n cos l n =1
∞