大学物理实验用三线摆法测定物体的转动惯量
- 格式:doc
- 大小:413.00 KB
- 文档页数:7
v1.0 可编辑可修改三线摆实验报告林一仙 一、实验目的1、掌握水平调节与时间测量方法;2、掌握三线摆测定物体转动惯量的方法;3、掌握利用公式法测这定物体的转动惯量。
二、实验仪器三线摆装置 电子秒表 卡尺 米尺 水平器 三、实验原理1、三线摆法测定物体的转动惯量机械能守恒定律:ω2021I mgh =简谐振动:t Tπθθ2sin 0= t TT dt d ππθθω2cos 20==通过平衡位置的瞬时角速度的大小为:T02πθω=; 所以有:⎪⎭⎫⎝⎛=T I mgh 021220πθ根据图1可以得到:()()1212!BC BC BC BC BC BC h +-=-=()()()()22222r R l AC AB BC --=-=从图2可以看到:根据余弦定律可得()()022211cos 2θRr r R C A -+=所以有:()()()()02222112121cos 2θRr r R l C A B A BC -+-=-=整理后可得:12102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-=θθ H BC BC 21≈+;摆角很小时有:2)2sin(00θθ=所以:HRr h 220θ=整理得:2204T H mgRr I π=;又因3b R =,3a r = 所以:22012T Hmgab I π=若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则:2112112)(T H gab M m I π+=待测物的转动惯量为: I= I 1-I 02、公式法测定物体的转动惯量 圆环的转动惯量为:()D D MI 222181+=四、实验内容1、三线摆法测定圆环绕中心轴的转动惯量a 、用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); b 、调节三线摆的悬线使悬盘到上盘之间的距离H 大约50cm 多;c 、调节三线摆地脚螺丝使上盘水平后再调节三线摆悬线的长度使悬盘水平;d 、用米尺测定悬盘到上盘三线接点的距离H ;e 、让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。
量动的转惯线用三摆测量刚体验实七【实验目的】学会正确测量长度、质量和时间。
1.。
2. 学习用三线摆测量圆盘和圆环绕对称轴的转动惯量【实验器材】三线摆仪、米尺、游标卡尺、数字毫秒计、气泡水平仪、物理天平和待测圆环等。
【实验原理】转动惯量是刚体转动时惯性大小的量度,它与刚体的质量分布和转轴的位置有关。
对于质量分布均匀、外形不复杂的刚体,测出其外形尺寸及质量,就可以计算其转动惯量就难以计算,而对于外形复杂、质量分布不均匀的刚体,出其转动惯量;通常利用转动实验来测定。
三线摆就是测量刚体转动惯量的基本方法之一。
是三线摆实验装置示意图。
三线摆是由上、下两个匀质圆盘,用三条等长1图下圆盘的系线点构成等边三角形,连接而成。
(摆线为不易拉伸的细线)上、的摆线三线摆实验装置示意图图1图2 三线摆原理图称为摆盘。
由于三线摆的摆动周OO下盘处于悬挂状态,‘轴线作扭转摆动,并可绕.期与摆盘的转动惯量有一定关系,所以把待测样品放在摆盘上后,三线摆系统的摆动周期就要相应的随之改变。
这样,根据摆动周期、摆动质量以及有关的参量,就能求出摆盘系统的转动惯量。
',时,当它绕OO圆盘的中心位置升高扭转的最大角位移为设下圆盘质量为,?h m o0这时圆盘的动能全部转变为重力势能,有:(为重力加速度)g gh?mE0P,重力势能被当下盘重新回到平衡位置时,重心降到最低点,这时最大角速度为?0全部转变为动能,有:‘是下圆盘对于通过其重心且垂直于盘面的式中OO 轴的转动惯量。
I0如果忽略摩擦力,根据机械能守恒定律可得:12)(1 ?Imgh?0002从上圆盘时,R,当下圆盘转过一角度设悬线长度为,下圆盘悬线距圆心为l?00h所示,则:,如图2前、后下圆盘分别交于C和CB点作下圆盘垂线,与升高122222因为)(R(AC)???r(BC)(?AB)???20sinRr4?)cosRr(1?22所以0??hBCBCBC?BC?11?? 2H,其中,而BC+BC?很小,摆长在扭转角很长时,sin?00l?102222 H=)R?rl?(式中H为上下两盘之间的垂直距离,则2?Rr0(2)?h H2由于下盘的扭转角度很小(一般在5度以内),摆动可看作是简谐振动。
三线摆测转动惯量实验报告实验报告:三线摆测转动惯量实验一、实验目的本次实验的主要目的是通过三线摆的测量,研究物体在不同摆动角度下的转动惯量。
转动惯量是描述物体旋转特性的一个重要参数,对于理解物体的运动规律和动力学性能具有重要意义。
二、实验原理1. 三线摆的构造三线摆是由三条相互垂直的细线组成,其中两条细线固定在同一端点,另一条细线则通过一个支点悬挂。
当三线摆摆动时,细线的张力会产生扭矩,使得摆锤绕支点旋转。
2. 转动惯量的计算公式转动惯量的计算公式为:I = m * r^2,其中m为物体的质量,r为物体的半径。
在本实验中,我们将通过测量三线摆在不同摆动角度下的周期和角速度,从而求得物体的转动惯量。
三、实验步骤与结果分析1. 实验准备(1) 准备三线摆、计时器、直尺等实验工具。
(2) 将三线摆调整至水平状态,使两条细线的夹角为90°。
(3) 在三线摆的一端挂上质量为m的小球。
(4) 将三线摆调整至合适的初始位置,使其摆动幅度较小。
2. 实验过程与数据记录(1) 以一定的时间间隔记录三线摆的周期T;(2) 以一定的时间间隔记录三线摆的角速度ω。
(3) 根据公式I = 2π/T * ω^2 * r,计算出小球的转动惯量I;(4) 重复以上步骤,分别测量三线摆在不同摆动角度下的数据。
3. 结果分析根据实验数据,我们可以得到以下结论:(1) 随着三线摆摆动角度的增大,其周期T逐渐减小;这是因为在摆动过程中,重力作用在小球上的分力逐渐增大,使得小球受到的回复力减小,从而导致摆动周期变短。
角速度ω也随之增大;这是因为在摆动过程中,小球受到的回复力与重力分力的合力方向始终保持不变,使得小球绕支点做圆周运动的速度不断增大。
因此,我们可以得出结论:物体在不同摆动角度下的转动惯量与其固有属性有关。
《用三线摆法测定物体的转动惯量》简明实验报告实验目的:通过使用三线摆法,测定不同物体的转动惯量,并探究物体质量、几何形状及质心位置对转动惯量的影响。
实验原理:转动惯量是描述物体转动惯性的物理量,表示了物体对转动所表现出的惯性大小。
对于一个质量为m、质心到转轴距离为r的物体,其转动惯量可以通过以下公式计算得出:I=m*r^2而对于一个不规则形状的物体,可以通过将其分解为一组质点,然后分别计算每个质点的转动惯量,并将其求和来得到总转动惯量:I=∑(m_i*r_i^2)在使用三线摆法进行测量时,需要固定物体在转轴上,并通过三根细线将物体悬挂起来。
当物体开始转动时,通过测量物体的摆动周期T和细线长度L,可以利用以下公式计算出转动惯量:I=(T^2*m*g*L)/(4π^2)实验装置:1.一个三线摆装置2.不同形状、不同质量的物体(如圆环、长方体、球体等)3.量角器4.绳子5.计时器6.秤实验步骤:1.将三线摆装置固定在桌面上,并调整好其水平度。
2.选择一个物体,将其通过一根细线绑在摆装置上,并调整好细线的长度,使得物体可以自由摆动。
3.将量角器放在与物体摆动平面垂直的位置,用来测量摆动的振幅角。
4.将绳子固定在物体上,并通过一张纸卡片保持绳子长度不变。
这样可以控制绳子长度的一致性。
5.用计时器测量物体的摆动周期T,反复测量多次以取得平均值。
6.用秤测量物体的质量m,并记录下来。
7.将摆装置往一侧推动,观察物体的摆动情况。
如果摆动不稳定,要重新调整摆装置和细线的位置。
8.重复步骤2-7,测量其他不同形状、不同质量的物体。
实验结果:根据测量得到的摆动周期T、细线长度L、质量m以及重力加速度g,可以计算出物体的转动惯量I。
将测量结果整理成表格,并绘制转动惯量与物体质量、几何形状及质心位置的关系图。
实验讨论:通过实验结果可以看出,质量、几何形状及质心位置都对物体的转动惯量有影响。
质量越大的物体,其转动惯量也越大;几何形状越复杂的物体,其转动惯量也越大;质心离转轴越远的物体,其转动惯量也越大。
三线摆法测试物体的转动惯量引言转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。
转动惯量的大小除与物体质量有关外,还与转轴的位置和质量分布(即形状、大小和密度)有关。
如果刚体形状简单,且质量分布均匀,可直接计算出它绕特定轴的转动惯量。
但在工程实践中,我们常碰到大量形状复杂,且质量分布不均匀刚体,理论计算将极为复杂,通常采用实验方法来测定。
转动惯量的测量,一般都是使刚体以一定的形式运动。
通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。
测量刚体转动惯量的方法有多种,三线摆法是具有较好物理思想的实验方法,它具有设备简单、直观、测试方便等优点。
【一】实验目的1.学会用三线摆测定物体的转动惯量。
2.学会用累积放大法测量周期运动的周期。
3.验证转动惯量的平行轴定理。
【二】实验仪器及使用方法三线摆、水准仪、停表、米尺、游标卡尺、物理天平以及待测物体等。
1. DH 4601转动惯量测试仪 1台 2. 实验机架 1套 3. 圆环 1块 4. 圆柱体 2个仪器操作1. 打开电源,程序预置周期为T=30(数显),即:小球来回经过光电门的次数为T=2n+1次。
2. 据具体要求,若要设置50次,先按“置数”开锁,再按上调(或下调)改变周期T ,再按“置数”锁定,此时,即可按执行键开始计时,信号灯不停闪烁,即为计时状态,当物体经过光电门的周期次数达到设定值,数显将显示具体时间,单位“秒”。
须再执行“50”周期时,无须重设置,只要按“返回”即可回到上次刚执行的周期数“50”,再按“执行”键,便可以第二次计时。
(当断电再开机时,程序从头预置30次周期,须重复上述步骤)【三】实验原理图1是三线摆实验装置的示意图。
上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。
当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。
三线摆法测试物体的转动惯量【一】实验目的1. 学会用三线摆测定物体的转动惯量。
2. 学会用累积放大法测量周期运动的周期。
3. 验证转动惯量的平行轴定理。
【二】实验仪器及使用方法三线摆、水准仪、停表、米尺、游标卡尺、物理天平以及待测物体等。
1. DH 4601转动惯量测试仪 1台 2. 实验机架 1套 3. 圆环 1块 4. 圆柱体 2个仪器操作打开电源, 程序预置周期为T=30(数显), 即: 小球来回经过光电门的次数为T=2n+1次。
据具体要求, 若要设置50次, 先按“置数”开锁, 再按上调(或下调)改变周期T, 再按“置数”锁定, 此时, 即可按执行键开始计时, 信号灯不停闪烁, 即为计时状态, 当物体经过光电门的周期次数达到设定值, 数显将显示具体时间, 单位“秒”。
须再执行“50”周期时, 无须重设置, 只要按“返回”即可回到上次刚执行的周期数“50”, 再按“执行”键, 便可以第二次计时。
(当断电再开机时, 程序从头预置30次周期, 须重复上述步骤)【三】实验原理图1是三线摆实验装置的示意图。
上、下圆盘均处于水平, 悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定, 下圆盘可绕中心轴作扭摆运动。
当下盘转动角度很小, 且略去空气阻力时, 扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴的转动惯量(推导过程见本实验附录)。
2002004T H gRr m I π=(4-1) 式中各物理量的意义如下: 为下盘的质量;、分别为上下悬点离各自圆盘中心的距离;为平衡时上下盘间的垂直距离;为下盘作简谐运动的周期, 为重力加速度(在杭州地区)。
将质量为的待测物体放在下盘上, 并使待测刚体的转轴与轴重合。
测出此时摆运动周期和上下圆盘间的垂直距离。
同理可求得待测刚体和下圆盘对中心转轴轴的总转动惯量为: 212014)(T HgRr m m I π+=(4-2) 如不计因重量变化而引起悬线伸长, 则有。
广 东 海 洋 大 学 学 生 实 样 报 告实验名称 课程名称 物理实验 成绩学院 职业技术学院 专业 数控技术 班级 091学生姓名学号 实验地点实验日期三线摆法测定物体的转动惯量【实验目的及要求】1. 学会用三线摆测量物体的转动惯量.2. 学会基本仪器的使用方法.3. 验证转动惯量的平行轴定理.【实验原理】三线摆的上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。
当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。
2002004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。
测出此时下盘运动周期1T 和上下圆盘间的垂直距离H 。
同理可求得待测刚体和下圆盘对中心转轴O O '轴的总转动惯量为:212014)(T HgRr m m I π+=(2) 如不计因重量变化而引起的悬线伸长, 则有0H H ≈。
那么,待测物体绕中心轴O O '的转动惯量为: ])[(4200210201T m T m m H gRr I I I -+π=-= (3) 因此,通过长度、质量和时间的测量,便可求出刚体绕某轴的转动惯量。
用三线摆法还可以验证平行轴定理。
若质量为m 的物体绕过其质心轴的转动惯量为c I ,当转轴平行移动距离x 时,则此物体对新轴O O '的转动惯量为2'mx I I c oo +=。
这一结论称为转动惯量的平行轴定理。
实验时将质量均为m',形状和质量分布完全相同的两个圆柱体对称地放置在下圆盘上(下盘有对称的两排小孔)。
大学物理实验-用三线摆法测定物体的转动惯量用三线摆法测定物体的转动惯量转动惯量是刚体在转动中惯性大小的量度,它与刚体的总质量、形状大小、密度分布和转轴的位置有关。
对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。
但是,对于形状较复杂的刚体,用数学方法计算它的转动惯量非常困难,大都用实验方法测定。
例如:机械零部件、电机转子及枪炮弹丸等。
因此学会刚体转动惯量的测定方法,具有重要的实际意义。
测量转动惯量,一般是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
常用的测量方法有三线扭摆法、单线扭摆法、塔轮法等。
本实验采用三线扭摆法,由摆动周期及其他参数的测定计算出物体的转动惯量。
为了便于和理论值进行比较,实验中的被测物体一般采用形状规则的物体。
【实验目的】1、掌握三线扭摆法测量物体转动惯量的原理和方法;2、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系;3、学会正确测量长度、质量和时间的方法。
【实验仪器】FB210型三线摆转动惯量测定仪、游标卡尺、钢卷尺、数字毫秒计、物理天平、待测物体等。
【实验原理】图1是三线摆实验装置的示意图。
上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。
当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。
202004T H gRr m I π= (1) 式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州地区g =9.793m/s 2)。
图1三线摆实验装置图将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。
湖北文理学院物理实验教学示范中心实 验 报 告实验名称: 三线摆法测定物体的转动惯量 实验日期: 实 验 室: N1-103 指导教师: [实验目的]:1、学会用三线摆测定物体的转动惯量;2、学会用累积放大法测量周期运动的周期;3、验证转动惯量的平行轴定理。
[仪器用具]:仪器、用具名称及主要规格(包括量程、分度值、精度等) 1、FB210型三线摆转动惯量实验仪 2、FB210A 型数显计时计数毫秒仪 3、米尺、游标卡尺、物理天平[实验原理]:根据自己的理解用简练的语言来概括(包括简单原理图、相关公式等) 1、待测物体的转动惯量根据能量守恒定律和刚体转动定律,可导出圆盘对中心轴的转动惯量为:200024m g R r I T H π⋅⋅=⋅ (1) 其中,0m ——下盘的质量; ,r R ——上下悬点离各自圆盘中心的距离;0H ——平衡时上下盘间的垂直距离; 0T ——下盘作简谐振动的周期;g ——当地重力加速度(襄阳地区取9.7942m s )将质量为m 的待测物体放在下盘上,并使中心重合。
则其转动惯量为:20112()4m m g R r I T Hπ+⋅⋅=⋅ (2) 其中,H ——放待测物体时上下盘间的垂直距离; 0T ——放待测物体时振动周期; 所以,忽略悬线的伸长,待测物体对中心周的转动惯量为:221001002[()]4g R r I I I m m T m T Hπ⋅⋅=-=⋅+- (3)而圆环对中心轴的转动惯量理论计算公式为:)(m 222121R R I +=2、验证平行轴定理将形状和质量分布完全相同,质量均为,m 的两个圆柱体对称地放置在下圆盘上,测出两小圆柱体和下圆盘对中心轴的转动周期x T ,则每个圆柱体对中心轴的转动惯量为:,2002(2)1[]24x x m m g R r I T I Hπ+⋅⋅=⨯⋅- (4) 如果测出小圆柱中心与下圆盘中心的距离x 以及小圆柱的半径x R ,则由平行轴定理可求得其转动惯量为:,,2,212x x I m x m R =⋅+⋅ (5)[实验内容]: 简述实验步骤和操作方法 1、调整三线摆装置。
大教物理真验之用三线摆测物体的转化惯量之阳早格格创做1、相识三线摆本理,并以此测物体的转化惯量.2、掌握秒表、游标卡尺等丈量工具的使用要领,掌握测周期的要领.3、加深对于转化惯量观念的明白.1、三线摆测转化惯量的本理.2、准确丈量三线摆扭摆周期.道授、计划取演示相分离.3教时.转化惯量是刚刚体转化惯性的量度,它的大小取物体的品量及其分散战转轴的位子有闭.对于品量分散匀称、形状准则的物体,通过形状尺寸战品量的丈量,便不妨算出其绕定轴的转化惯量,而品量分散没有匀称、形状没有准则物体的转化惯量则要由真验测出.本真验利用三线摆测出圆盘战圆环对于核心轴的转化惯量并取表面值举止比较.三线扭摆法丈量转化惯量的便宜是:仪器简朴,支配便当、粗度较下.一、真验手段1、相识三线摆本理,并以此测物体的转化惯量.2、掌握秒表、游标卡尺等丈量工具的使用要领,掌握测周期的要领.3、加深对于转化惯量观念的明白.二、真验仪器三线摆仪,秒表,游标卡尺,钢曲尺,程度器,待测圆环.三、真验本理三线摆真验本理如图所示,圆盘(下盘)由三根悬线悬挂于开用盘(上盘)之下,二圆盘圆心位于共一横曲轴上.沉扭上盘,正在悬线扭力的效率下、圆盘可绕其核心横轴做小幅扭摆疏通.设圆盘的品量为m 0、上下盘的间距为H 、上下盘的受力半径为r 取R 、圆盘的扭摆角为θ(θ很小).由于θ很小,所以圆盘正在扭摆中降起的下度很小,不妨认为正在此历程中上下盘的间距H 脆持没有变.正在此情况下,根据三角闭系不妨导出悬线推力N 对于圆盘的扭力矩为:0/M m gRrSin H θ=.果为Sin θθ≈,所以0/M m gRr H θ=.设圆盘的转化惯量为J 0,且M 取角位移θ的目标好异,根据转化定律可得: 由此可知圆盘的扭摆为简谐振荡,解此微分圆程得圆盘的振荡周期为:于是: 200024m gRrT J Hπ= 此即为圆盘对于核心横轴转化惯量的真验公式.正在圆盘上共心叠搁上品量为m 的圆环后,测出盘环系统的扭摆周期T ,则盘环系统的转化惯量为: 2002()4m m gRrT J J J Hπ+=+=总 由此可得圆环转化惯量的真验公式:()22000024gRr J J J m m T m T Hπ⎡⎤=-=+-⎣⎦总圆盘、圆环转化惯量的表面公式为:200012J m R =’、22121()2J m R R =+’式中R 0、R 1、R 2分别为圆盘半径及圆环的内中半径. 四、真验真量及步调1、用程度器调三线摆仪底座火仄及下盘火仄.2、使下盘停止,而后往共一目标沉转上盘,使下盘做小幅扭摆.统造摆角没有超出5.3、待下盘扭摆宁静后,用秒表测出连绝摆动50个周期的时间,沉复5次,而后算出周期T 0的仄衡值.4、将圆环共心底搁置于圆盘上,沉复步调2、3,测出周期T 的仄衡值.5、用钢曲尺正在分歧位子丈量上下盘之间的笔曲距离5次.用游标卡尺正在分歧位子分别丈量上下盘悬线孔间距各5次. 估计H 、a 、b 的仄衡值,并由此算出受力半径r 取R 的仄衡值.6、用游标卡尺沿分歧目标丈量圆盘曲径、圆环内中径各5次.算出2R 0、2R 1、2R 2的仄衡值.7、记录圆盘、圆环的品量m 0、m 及当天的沉力加速度g. 五、注意事项1、调下圆盘火通常,紧开牢固悬线的螺母后要注意统造住安排悬线少度的螺母,防止悬线滑降.2、圆盘(或者盘环)要正在停止状态下开初开用,以预防正在扭摆时出现摆动,圆盘扭摆的角度θ须≤50.3、圆盘(或者盘环)开用后可连绝测完5个50次周期,没有必屡屡沉新开用.4、注意游标卡尺的整面建正、秒表取米尺的最小分度值及估读. 六、课堂指挥1、圆盘火仄的安排要领.2、圆盘开摆的央供、要领及摆幅统造.3、圆盘扭摆周期的瞅察要领.4、游标卡尺的使用要领. 七、思索题1、三线摆的振幅受气氛的阻僧会渐渐变小,它的周期也会随时间变更吗?问:振幅反映出谐振的强度;周期反映的是谐振的频次,那是二个意思分歧的物理量.阻僧振荡的周期T =β是常数,所以周期没有随时间而变更.2、试分解:加了待测物之后,三线摆的扭摆周期是可一定大于空盘的扭摆周期?问:纷歧定.∵()00J J J +>,∴()22000m m T m T +>,或者00m m m ⎛⎫+ ⎪⎝⎭·20T T ⎛⎫ ⎪⎝⎭>1.果为00m m m +>1,所以0T T 纷歧定大于1,即T 纷歧定大于0T (不妨大于、等于或者小 于).八、数据处理1、数据记录及表格①下盘品量m0= 1.163 (kg);园环品量m= 0.371 (kg);g = 9.781 m/s2②几许尺寸丈量:钢曲尺最小分度值 1 mm;游标卡尺最小分度值 0.02 mm;整面建正值 0.00 mm③班级序号姓名西席签名日期2、数据处理①估计圆盘、圆环转化惯量的真验值J、J②估计圆盘、圆环转化惯量的表面值J’、J’③估计真验值取表面值的相对于缺面九、教教后记1、用程度仪调圆盘火通常需要本领,须对于教死证明.2、真验中要注意巡视,瞅察教死的支配,随时指出他们的问题.3、周期丈量是可准确对于真验截止的效率最大,其次是孔间距.要证明圆盘(或者盘环)开摆的央供战要领,以及摆幅的央供.惟有圆盘(或者盘环)的扭摆合乎央供,才搞包管周期丈量的准确性.测孔间距本量上是测二线孔中悬线间的距离,所以正在丈量中尺要注意对于准悬线的位子.。
大学物理实验教案实验名称:三线摆法测定物体的转动惯量1 实验目的1)掌握水平调节与时间测量方法;2)掌握三线摆测定物体转动惯量的方法; 3)掌握利用公式法测定物体的转动惯量。
2 实验仪器三线摆装置 计数器 卡尺 米尺 水平器 3 实验原理3.1 三线摆法测定物体的转动惯量机械能守恒定律:ω20021I mgh =简谐振动:tT πθθ2sin0= t T T dt d ππθθω2cos 20==通过平衡位置的瞬时角速度的大小为:T 002πθω=; 所以有:⎪⎭⎫⎝⎛=T I m gh 02122πθ根据图1可以得到:()()1212!BC BC BC BC BC BC h +-=-=()()()()22222r R l AC AB BC --=-=从图2可以看到:根据余弦定律可得()()022211cos 2θRr r R C A -+= 所以有:()()()()02222112121cos 2θRr r R l C A B A BC -+-=-= 整理后可得:102102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-=θθH BC BC 21≈+;摆角很小时有:2)2sin(00θθ= 所以:H Rr h 220θ=整理得:2204T H mgRr I π=;又因3b R =,3a r = 所以:22012T H mgab I π=若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则:2112112)(T H gab M m I π+=待测物的转动惯量为: I= I 1-I 03.2 公式法测定物体的转动惯量圆环的转动惯量为:()D D M I 222181+=4 教学内容4.1 三线摆法测定圆环绕中心轴的转动惯量1)用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); 2)调节三线摆底坐前两脚螺丝使上盘水平3)调节三线摆悬线使悬盘到上盘之间的距离H 大约50cm 左右,并调节悬盘水平; 4)用米尺测定悬盘到上盘三线接点的距离H ;5)让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。
三线摆法测量物体的转动惯量实验报告一、实验目的。
本实验旨在通过三线摆法测量物体的转动惯量,探究物体的转动惯量与其质量、转动半径的关系,并通过实验数据的处理和分析,验证转动惯量的计算公式。
二、实验原理。
1. 转动惯量。
物体的转动惯量是描述物体对转动运动的惯性大小的物理量,通常用符号I表示。
对于质量均匀分布的物体,其转动惯量可由公式I=mr^2计算得出,其中m为物体的质量,r为物体的转动半径。
2. 三线摆法。
三线摆法是一种用来测量物体转动惯量的实验方法。
实验装置由一根轻绳和两个固定在同一直线上的固定点组成,物体通过轻绳悬挂在固定点上,并形成一个等腰三角形。
当物体受到外力作用时,将产生转动运动,通过测量物体的角加速度和转动半径,可以计算出物体的转动惯量。
三、实验装置。
1. 实验仪器,三线摆装置、计时器、测量尺、质量秤。
2. 实验器材,小球、细绳。
四、实验步骤。
1. 悬挂小球,将小球用细绳悬挂在三线摆装置上,并调整细绳的长度,使小球形成一个等腰三角形。
2. 测量转动半径,使用测量尺测量小球的转动半径r。
3. 施加外力,将小球摆开一个小角度,并释放,记录小球摆动的周期T。
4. 重复实验,重复以上步骤3次,取平均值作为最终实验数据。
五、实验数据处理与分析。
1. 计算角加速度,根据实验数据计算小球的角加速度α。
2. 计算转动惯量,利用公式I=mr^2,结合实验数据计算小球的转动惯量I。
3. 数据分析,对实验数据进行统计分析,绘制实验数据的图表,并进行数据的比较和讨论。
六、实验结果与结论。
通过实验数据处理和分析,得出小球的转动惯量I为x kg·m^2。
实验结果表明,物体的转动惯量与其质量和转动半径的平方成正比,验证了转动惯量的计算公式I=mr^2。
七、实验心得体会。
本次实验通过三线摆法测量物体的转动惯量,加深了对物体转动惯量的理解,同时也锻炼了实验操作和数据处理的能力。
在实验中,我们也发现了一些问题和不足之处,对于实验过程中的误差和影响因素,需要进一步探讨和改进。
三线摆实验报告【1】创作者(人):凤中句 日 期: 贰零贰贰 年1月7日林一仙 一、实验目的1、掌握水平调节与时间测量方法;2、掌握三线摆测定物体转动惯量的方法;3、掌握利用公式法测这定物体的转动惯量。
二、实验仪器三线摆装置 电子秒表 卡尺 米尺 水平器 三、实验原理1、三线摆法测定物体的转动惯量机械能守恒定律:ω2021I mgh =简谐振动:t Tπθθ2sin 0= t TT dt d ππθθω2cos 20==通过平衡位置的瞬时角速度的大小为:T02πθω=;所以有:⎪⎭⎫⎝⎛=T I mgh 02122πθ根据图1可以得到:()()1212!BC BC BC BC BC BC h +-=-=()()()()22222r R l AC AB BC --=-=从图2可以看到:根据余弦定律可得()()022211cos 2θRr r R C A -+=所以有:()()()()02222112121cos 2θRr r R l C A B A BC -+-=-=整理后可得:12102sin 4)cos 1(2BC BC Rr BC BC Rr h +=+-=θθ H BC BC 21≈+;摆角很小时有:2)2sin(00θθ=所以:HRr h 220θ=整理得:2204TH mgRr I π=;又因3b R =,3a r = 所以:22012T Hmgab I π=若其上放置圆环,并且使其转轴与悬盘中心重合,重新测出摆动周期为T 1和H 1则:2112112)(T H gab M m I π+=待测物的转动惯量为: I= I 1-I 02、公式法测定物体的转动惯量 圆环的转动惯量为:()D D MI 222181+=四、实验内容1、三线摆法测定圆环绕中心轴的转动惯量a 、用卡尺分别测定三线摆上下盘悬挂点间的距离a 、b (三个边各测一次再平均); b 、调节三线摆的悬线使悬盘到上盘之间的距离H 大约50cm 多;c 、调节三线摆地脚螺丝使上盘水平后再调节三线摆悬线的长度使悬盘水平;d 、用米尺测定悬盘到上盘三线接点的距离H ;e 、让悬盘静止后轻拨上盘使悬盘作小角度摆动(注意观察其摆幅是否小于10度,摆动是否稳定不摇晃。
三线摆法测量物体的转动惯量实验报告三线摆法测量物体的转动惯量实验报告引言:转动惯量是描述物体绕轴旋转时所具有的抗拒转动的性质,是物体旋转动力学性质的重要参数之一。
本实验通过三线摆法测量不同物体的转动惯量,旨在探究物体的形状、质量和转动轴的位置对转动惯量的影响。
实验装置与方法:实验装置主要包括一个三线摆装置、一组不同形状和质量的物体、一台计时器以及一组测量工具。
实验步骤如下:1. 将三线摆装置固定在实验台上,并调整摆线的长度和角度,使其保持稳定。
2. 选择一个物体,将其绑在摆线的下端,确保物体能够自由摆动。
3. 用计时器测量物体在摆动过程中的周期,重复多次测量并取平均值。
4. 更换其他物体,重复步骤2和3,直到测量完所有物体。
5. 根据实验数据计算每个物体的转动惯量。
实验结果与分析:我们选择了三个不同形状和质量的物体进行实验:一个长方体、一个圆柱体和一个球体。
通过测量得到的周期数据,我们计算出了每个物体的转动惯量。
首先,我们观察到不同形状的物体在摆动过程中具有不同的周期。
长方体的周期最短,球体的周期最长,圆柱体的周期位于两者之间。
这是因为不同形状的物体在摆动过程中所受到的阻力和惯性力的大小不同,从而影响了摆动的周期。
其次,我们发现物体的质量对转动惯量也有影响。
通过比较相同形状但不同质量的物体,我们发现质量越大,转动惯量也越大。
这是因为质量的增加使物体具有更大的惯性,从而抗拒转动的能力增强。
最后,我们研究了转动轴的位置对转动惯量的影响。
在实验过程中,我们将物体绑在摆线的不同位置,并测量了相应的周期。
结果显示,转动轴离物体质心越远,转动惯量越大。
这是因为转动轴离质心越远,物体的质量分布越分散,惯性矩也越大。
结论:通过三线摆法测量不同物体的转动惯量,我们得出了以下结论:1. 不同形状的物体具有不同的转动惯量,长方体的转动惯量最小,球体的转动惯量最大。
2. 物体的质量对转动惯量有影响,质量越大,转动惯量越大。
实验七用三线摆法测定物体的转动惯量摆法测定物体转动惯量是物理学中常见的实验之一,该实验可以帮助学生加深对物体转动惯量的理解,掌握机械学的基础原理和实验操作技能。
在本实验中我们将采用三线摆法来测定物体的转动惯量。
1.实验原理物体绕固定轴线旋转时,具有旋转惯量,即转动惯量。
对于一根固定轴线,围绕其转动的平面内的点质量越分散,它的转动惯量越大。
绕固定轴旋转的物体,平面内距轴线最远的点的到轴线距离原则上可以任选一个点来计算,但固定点的选取会使计算过程变得简单。
黄铜丝由于具有一定的弹性,所以作为固定轴的黄铜丝实验延长杆,必须修正其转动惯量,而加入之修正电子秤的质量必须加入考虑范围内以保证测量数据的准确性。
在实验过程中,需要通过三线摆法来测定固体圆柱的转动惯量,我们可以利用固定轴线到重心的距离、摆的周期和摆长等参数来计算转动惯量,转动惯量的计算公式如下:I = (mD² + m(L/2)²)T²/4π²其中,I为转动惯量,m为物体质量,D为固定轴线到重心点的距离,L为黄铜丝的总长度,T为摆的周期。
2.实验器材Ⅰ) 数字示波器Ⅱ) 固定轴线的黄铜丝Ⅲ) 固体圆柱Ⅳ) 科学计时器Ⅴ) 数据采集卡Ⅵ) 实验立杆3.操作步骤(一)实验前的准备将立杆装到三脚架上,将黄铜丝固定在立杆上,使其垂直于桌面,用超额重量调整器进行平衡调整后验重,保证黄铜丝处于稳定竖直状态。
(二)测量黄铜丝的直径和长度使用量规和卷尺测量黄铜丝的直径和长度,将测得的数据记录下来。
(三)固体圆柱质量的测定使用精密天平,测量固体圆柱的质量。
用卷尺测量固体圆柱的半径,并记录下来。
将固体圆柱放在平衡台上,测量固体圆柱的质心距离固定轴线的距离,记录下测量值。
(六)测量摆杆的长度(七)测量黄铜丝的弹性系数在执行实验时,要记录黄铜丝的弹性系数,即黄铜丝的直径。
悬挂固体圆柱后,通过小往复角的周期性转动,测量摆的周期,而后进行多次测量记录。
姓名:;学号;班级;教师________;信箱号:______预约时间:第_____周、星期_____、第_____~ _____节;座位号:_______一、实验名称三线摆测物体的转动惯量二、实验目的(1) 学会用三线摆测定物体的转动惯量.(2) 学会用累积放大法测量周期运动的周期.(3) 验证转动惯量的平行轴定理.三、实验原理(基本原理概述、重要公式、简要推导过程、重要图形等;要求用自己的语言概括与总结,不可照抄教材)1.测圆盘B的转动惯量B圆盘的转动惯量:待测刚体绕中心轴的转动惯量:理论上圆环转动惯量:预习操作实验报告总分教师签字其中R1和R2为圆环的内、外半径,m1为环的质量。
理论上圆盘转动惯量:2.验证平行轴定理将二质量、半径均为m2和r2的相同圆柱体,对称地放在圆盘B上。
如果圆柱中心到B 盘中心的距离为d,盘与柱体一起共同振动的周期为T2,则二柱体绕其中心轴的转动惯量:平行轴定理理论公式:四、实验内容和步骤(要求用自己的语言概括与总结,不可照抄教材)1.用三线摆测定圆环对通过其质心且垂直于环面轴的转动惯量2.用三线摆验证平行轴定理(1)调整下盘水平:将水准仪置于下盘任意两悬线之间,调整小圆盘上的三条粗线,改变三悬线的长度,直至下盘水平.(2)测量空盘绕中心轴OO′转动的运动周期T0:轻轻转动上盘,带动下盘转动,这样可以避免三线摆在做扭摆运动时发生晃动.注意扭摆的转角控制在5⁰以内.用累积放大法测出扭摆运动的周期.(用秒表测量累积30~50次的时间,然后求出其运动周期,测量时间时,应在下盘通过平衡位置时开始计数,并默读5、4、3、2、1、0,当数到“0”时启动停表,这样既有一个计数的准备过程,又不至于少数一个周期.(3)测出待测圆环与下盘共同转动的周期T1:将待测圆环置于下盘上,注意使两者中心重合,按同样的方法测出它们一起运动的周期T1.(4)测出两个小圆柱体(对称放置)与下盘共同转动的周期Tx.(5)测出上、下圆盘三悬点之间的距离a和b,然后算出悬点到中心的距离r和R(等边三角形外接圆半径).(6)其他物理量的测量:用米尺测出两圆盘之间的垂直距离0H和放置两小圆柱体小孔间距2x;用游标卡尺测出待测圆环的内、外直径2R1、2R2和小圆柱体的直径2Rx.(7)记录各刚体的质量.五、数据记录1.实验仪器(记录实验中所用仪器的名称、型号、精度等级等参数)蒸盘,粗线,透明圆柱塑料水杯2个,直尺,米尺,手机秒表。
用三线摆法测定物体的转动惯量转动惯量是刚体在转动中惯性大小的量度,它与刚体的总质量、形状大小、密度分布和转轴的位置有关。
对于形状较简单的刚体,可以通过数学方法算出它绕特定轴的转动惯量。
但是,对于形状较复杂的刚体,用数学方法计算它的转动惯量非常困难,大都用实验方法测定。
例如:机械零部件、电机转子及枪炮弹丸等。
因此学会刚体转动惯量的测定方法,具有重要的实际意义。
测量转动惯量,一般是使刚体以一定形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。
常用的测量方法有三线扭摆法、单线扭摆法、塔轮法等。
本实验采用三线扭摆法,由摆动周期及其他参数的测定计算出物体的转动惯量。
为了便于和理论值进行比较,实验中的被测物体一般采用形状规则的物体。
【实验目的】1、掌握三线扭摆法测量物体转动惯量的原理和方法;2、研究物体的转动惯量与其质量、形状(密度均匀时)及转轴位置的关系;3、学会正确测量长度、质量和时间的方法。
【实验仪器】FB210型三线摆转动惯量测定仪、游标卡尺、钢卷尺、数字毫秒计、物理天平、待测物体等。
【实验原理】图1是三线摆实验装置的示意图。
上、下圆盘均处于水平,悬挂在横梁上。
三个对称分布的等长悬线将两圆盘相连。
上圆盘固定,下圆盘可绕中心轴O O '作扭摆运动。
当下盘转动角度很小,且略去空气阻力时,扭摆的运动可近似看作简谐运动。
根据能量守恒定律和刚体转动定律均可以导出物体绕中心轴O O '的转动惯量(推导过程见本实验附录)。
2002004T H gRrm I π= (1)式中各物理量的意义如下:0m 为下盘的质量;r 、R 分别为上下悬点离各自圆盘中心的距离;0H 为平衡时上下盘间的垂直距离;T 0为下盘作简谐运动的周期,g 为重力加速度(在杭州地区g =9.793m/s 2)。
将质量为m 的待测物体放在下盘上,并使待测刚体的转轴与O O '轴重合。
测出此时下盘运动周期1T 和上下圆盘间的垂直距离H 。
三线摆测量物体的转动惯量一、实验目的1.学会用三线摆法测量物体的转动惯量。
2.学会用累积放大法测量物体运动的周期。
二、实验仪器三线摆(含待测圆环),米尺,游标卡尺,电子停表等三、实验原理当上、下圆盘水平时,将上圆盘绕竖直的中心轴线转动一个小角度,借助悬线的张力使悬挂的大圆盘绕中心轴作扭转摆动。
同时,下圆盘的质心O将沿着转动轴升降,如上图中右图所示。
H是上、下圆盘中心的垂直距离;h是下圆盘在振动时上升的高度;α是扭转角。
显然,扭转的过程也是圆盘势能与动能的转化过程。
扭转的周期与下圆盘(包括置于上面的刚体)的转动惯量有关。
(8)只要准确测出三线摆的有关参数、R、r、H和周期,就可以精确地求出下圆盘的转动惯量。
如果要测定一个质量为m的物体的转动惯量,可先测定无负载时下圆盘的转动惯量,然后将物体放在下圆盘上,并注意,必须让待测物的质心恰好在仪器的转动轴线上。
测定整个系统的转动则后期,则系统的转动惯量可由下式求出:(9)式中为放了待测物之后的上、下圆盘间距,一般可以认为。
待测物的转动惯量I为:(10) 用这种方法,在满足实验要求的条件下,可以测定任何形状物体的转动惯量。
四、实验内容和步骤1、测定仪器常数上下圆盘之间的距离H、下圆盘悬点到中心的距离R、上圆盘悬点到中心的距离r2、测量下圆盘的转动惯量3、测量圆环的转动惯量五、数据表格和数据处理表1 有关长度测量的实验数据表待测物理量数值上圆盘与悬盘之间的垂直距离H/mm 408.5上圆盘悬孔间距a/mm 78悬盘悬孔间距b/mm 170.7圆环内直径D1/mm 163.96圆环外直径D2/mm 187.20上圆盘r/mm 45.0352悬盘R/mm 98.561表2 测摆动周期测量次数 1 2 3 4 平均值转动周期的平均值T /s 26.68 26.36 27.00 26.78 26.705 1.33525 20T20T/s 30.48 30.49 30.48 30.47 30.48 1.524 1计算有关长度:(1)上圆盘悬点距盘心距离r=78/√3=45.0351mm(2)悬盘悬点距盘心距离R=170.7/√3=98.561mm)已知圆环和下圆盘的质量分别是385.5g(m)和358.5g(m六、思考题第1题、分析三线摆法测量物体转动惯量实验中可能存在的系统误差。