完整word版有限元分析轴对称问题
- 格式:doc
- 大小:219.49 KB
- 文档页数:4
有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。
该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。
二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。
因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。
(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。
(6)模型施加约束:约束采用的是对底面BC 全约束。
大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。
以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。
肯定有bug。
仅供参考。
1401052200隐式方法与显式方法:==静态隐式方法:不适用于短时高速下的大变形。
基于虚功原理,一般需要迭代(除迭代法外还有直接法)。
可能遇到迭代过程不收敛,以及方程组病态无确定解的问题。
ANSYS默认使用的方法。
动态显式方法:可用于短时、高速下的大变形。
基于动力学方程,每步计算形成新的刚度矩阵,无需迭代,不存在收敛性问题。
LS-DYDA模块(ANSYS中也包含)默认使用。
如何判断有限元的分析结果是正确的?1.有限元分析的结果能否与模型简化后存在的解析解对应;2.有限点处的计算结果与实验结果吻合;3.结果收敛;4.与实际经验吻合;……【结合书上P168】力学应力、温度热学分析提倡使用对称性,但不是所有的情况都能使用对称性,比如结构件的振动。
有限元方法:求解偏微分方程,基础为加权残值法。
求解有限元方程本质为解线性方程组。
ADD:要求所ADD的为同一种材料。
低阶单元:只有角节点,没有边中点或面内点的单元。
(目前已不使用面内点)高阶单元:不但有角节点,还有边中点或面内点的单元。
静态小变形使用高阶单元。
动态大变形使用低阶单元。
连续介质单元:求解得到位移。
结构单元:求解得到位移和转角。
求解结果的位移精度大于应力精度。
网格类型:三角形,四边形;四面体(三棱锥),五面体(三棱柱),六面体。
根据自由度关系,单元节点间存在铰接(自由度不同)和刚接(自由度相同)的关系。
连续介质单元也有一维单元(如接触关系)。
工字钢既可以使用梁单元,也可以使用连续介质单元。
对于直接法的求解效率:带宽解法:ANSYS的默认求解法;尽量减小单元内节点号差值从而减小带宽。
波阵解法:ABAQUS的默认求解法;尽量减小绕一节点所连接的单元号的差值从而减小波阵宽。
节点编号,从角节点开始,逆时针。
==使用子结构,可减少对内存的占用,但会增加时间消耗。
连续介质单元剖分后,只在节点上存在关系,公共边上位移相同,不出现重叠或分离。
图(5)CEDPBA 与轴对称相关的最值问题【典型题型一】:如图,直线l 和l 的异侧两点A 、B ,在直线l 上求作一点P,使PA+PB 最小.【典型题型二】如图,直线l 和l 的同侧两点A 、B,在直线l 上求作一点P ,使PA+PB 最小。
【练习】1、(温州中考题)如图(5),在菱形ABCD 中,AB=4a ,E 在BC 上,EC=2a ,∠BAD=1200,点P 在BD 上,则PE+PC 的最小值是( )解:如图(6),因为菱形是轴对称图形,所以BC 中点E 关于对角线BD 的对称点E 一定落在AB 的中点E 1,只要连结CE 1,CE 1即为PC+PE 的最小值。
这时三角形CBE 1是含有300角的直角三角形,PC+PE=CE 1=23a 。
所以选(D )。
2、如图(13),一个牧童在小河南4英里处牧马,河水向正东方流去,而他正位于他的小屋B 西8英里北7英里处,他想把他的马牵到小河边去饮水,然后回家,他能够完成这件事所走的最短距离是( )(A ) 4+185英里 (B ) 16英里(C ) 17英里 (D) 18英里3.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD,ED ⊥BD,连接AC 、EC 。
已知AB=5,DE=1,BD=8,设CD=x.请问点C 满足什么条件时,AC +CE 的值最小?4.如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上 一动点,则EC +ED 的最小值为_______。
即是在直线AB 上作一点E ,使EC+ED 最小作点C 关于直线AB 的对称点C ’,连接DC'交 AB 于点E,则线段DC ’的长就是EC+ED 的最小值。
在直角△DBC'中DB=1,BC=2, 根据勾股定理可得,DC'=错误!5.如图,等腰Rt △ABC 的直角边长为2,E 是斜边AB 的中点,P 是AC 边 上的一动点,则PB+PE 的最小值为 即在AC 上作一点P ,使PB+PE 最小 作点B 关于AC 的对称点B',连接B ’E ,交AC 于点P,则B’E = PB'+PE = PB+PE B ’E 的长就是PB+PE 的最小值 在直角△B'EF 中,EF = 1,B'F = 3根据勾股定理,B'E = 错误!6.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内, 在对角线AC 上有一点P ,使PD +PE 的和最小,则这个最小值为( ) A .2错误! B .2错误! C .3 D .错误!即在AC 上求一点P ,使PE+PD 的值最小点D 关于直线AC 的对称点是点B ,连接BE 交AC 于点P,则BE = PB+PE = PD+PE ,BE 的长就是PD+PE 的最小值BE = AB = 2 37.如图,若四边形ABCD 是矩形, AB = 10cm,BC = 20cm ,E 为边BC 上的一个动点,P 为BD 上的一个动点,求PC+PD 的最小值; 作点C 关于BD 的对称点C ’,过点C',作C ’B ⊥BC ,交BD 于点P ,则C ’E 就是PE+PCFP B'EACBC'DACBEPE BCD A H PEC'D ACB的最小值直角△BCD 中,CH = 错误!错误!未定义书签。
轴对称中几何动点最值问题总结轴对称的作用是“搬点移线”,可以把图形中比较分散、缺乏联系的元素集中到“新的图形”中,为应用某些基本定理提供方便。
比如我们可以利用轴对称性质求几何图形中一些线段和的最大值或最小值问题。
利用轴对称的性质解决几何图形中的最值问题借助的主要基本定理有三个:(1)两点之间线段最短;(2)三角形两边之和大于第三边;(3)垂线段最短。
初中阶段利用轴对称性质求最值的题目可以归结为:两点一线,两点两线,点两线三类线段和的最值问题。
下面对三类线段和的最值问题进行分析、讨论。
问题特征:已知两个定点位于一条直线的同一侧,在直线上求一动点的位置,使动点与定点线段和最短。
核心思路:这类最值问题所求的线段和中只有一个动点,解决这类题目的方法是找出任一定点关于直线的对称点,连结这个对称点与另一定点,交直线于一点,交点即为动点满足最值的位置。
方法:1.定点过动点所在直线做对称。
2. 连结对称点与另一个定点,则直线段长度就是我们所求。
变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。
1. 如图,直线I和I的同侧两点A B,在直线I上求作一点P,使PA+PB最小。
问题特征:已知一个定点位于平面内两相交直线之间,分别在两直线上确定两个动点使线段和最短核心思路:这类问题实际上是两点两线段最值问题的变式,通过做这一定点关于两条线的对称点,实现“搬点移线”,把线段“移”到同一直线上来解决。
变异类型:1.如图,点P是/ MON内的一点,分别在OM ON上作点A, B。
使△PAB的周长最小。
(3)两点两线的最值问题:(两个动点+两个定点)问题特征:两动点,其中一个随另一个动(一个主动,一个从动),并且两动点间的距离保持不变。
核心思路:用平移方法,可把两动点变成一个动点,转化为“两个定点和一个动点”类型来解。
3 轴对称问题弹性力学空间问题中的轴对称问题是指,物体的几何形状、约束情况及所受的外力都对称于空间的某一根轴,因此在物体中通过该轴的任何平面都是对称面,所有应力、应变和位移也对称于该轴,这类问题称为轴对称问题。
研究轴对称问题时通常采用圆柱坐标系(r,θ,z),以z轴为对称轴。
轴对称问题实例如图3.1所示的受均布内压作用的长圆筒,通过Z轴的一个纵截面就是对称面图3.1受均布内压作用的长圆筒3.1 三角形截面环单元三结点单元位移函数图4-2 三结点单元轴对称问题分析中所使用的三结点单元,在对称面上是三角形,在整个弹性体中是三棱圆环,各单元中圆环形铰相联接。
三角形截面环单元的结点位移在轴对称问题中,弹性体内任意一点上,不存在切向位移,只存在径向位移u 和轴向位移w ,两个位移分量表示为,⎭⎬⎫⎩⎨⎧=w u f }{[][]Tmm j j i iT mT jT iew u w u w u==δδδδ}{单元结点位移轴对称问题的三结点三角形单元位移函数取为,⎭⎬⎫++=++=z r z r u 654321w αααααα⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i u u u c c c b b b a a a 21321ααα根据结点位移,可得:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧m j i m jim j i m j i w w w c c c b b b a a a 21654ααα单元形函数jm m j i r z z r a -=mmj ji iz r z r z r 11121=∆mj i z z b -=jm i r r c -=(i ,j ,m ))(21z c r b a N i i i i ++∆=单元内任一点的位移{}[]{}em jim m j j i i m jim j iN N N w u w u w u N N N N N N w u f δ=⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎥⎦⎤⎢⎣⎡=⎭⎬⎫⎩⎨⎧=00003.2 应变矩阵(几何矩阵)根据几何方程及单元内位移的表达式,可得:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∂∂+∂∂∂∂∂∂=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧r w z u z w ru r u zr z r γεεεθ应变矩阵)(21m m j j i i u b u b u b r u ++∆=∂∂)(21m m j j i i u f u f u f r u ++∆=rcz b r a f i i i ++=(下标轮换))(21m m j j i i w c w c w c z w ++∆=∂∂)(21m m j j i i u c u c u c z u ++∆=∂∂)(21m m j j i i w b w b w b r w ++∆=∂∂应变矩阵[]{}em ji m m mm m jj jj j ii ii i zr z r B B B b c c f b b c c f b b c c f b δγεεεθ=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡∆=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧00000000021),,(00021][m j i b c c f b A B i i i iii ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=3.3 应力矩阵由轴对称问题的物理方程,得到弹性矩阵,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---------+-=)1(22100011101110111)21)(1()1(][μμμμμμμμμμμμμμμμμE D应力矩阵11A =-μμ2)1(221A =--μμ3)21)(1(4)1(A E=-+-μμμ令:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-=21111110010101)21)(1()1(][A A A A AA A E D μμμ则弹性矩阵为:]][[][B D S =][][m j iS S S S =),,()(2]][[][2211113m j i b A c A c f b A c A f b A c A f b A B D S i ii i i i ii i i i i i ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++∆==由弹性矩阵[D ]和几何矩阵[B ]可以得到应力矩阵[S ],由应力矩阵可知,除剪应力为常量,其它三个正应力分量都是r 、z 的函数。
思考题
5-1 轴对称问题的定义
答:工程中又一类结构,其几何形状、边界条件、所受载荷都对称于某一轴线,这种情况下结构再载荷作用下位移、应变和应力也对称于这个轴线,这种问题成为轴对称问题。
5-2 轴对称问题一般采用的坐标系?作图说明每个坐标分量的物理意义
答:在描述轴对称弹性体问题的应力及变形时常采用圆柱坐标r,θ,z。
各位移分量是那几个自变量的函轴对称问题中每个点有几个位移分量? 5-3 数?的函数,与θ无关。
都只是rz答:位移分量u, w,
轴对称问题中的每个点有哪几个应力分量?是那几个自变量的函数。
5-4
4答:个应力分量;
5-5 轴对称问题中的每个点有哪几个应变分量?是那几个自变量的函数
答:4个应变分量
轴对称问题是三维问题?二维问题?最简单的轴对称单元是哪种单5-6
元?作图说明等于零。
因此轴对称问题是二维问v答:由于轴对称,沿θ方向的环向(周向)位移平面(子午面)正交的截面r z题;三角形环单元。
(三角形轴对称单元,这些圆环单元与是三角形)
写出三角形环单元的位移函数。
满足完备性要求吗?5-7
答:满足完备性要求。
三角形环单元形函数的表达式?指出形函数的性质。
5-8
三角形环单元的应力和应变的特点。
其单元刚度矩阵是几阶的?5-9
个正应力分量均随位置变化;答:应力分量:剪应力为常量,其他3个应变分量为常量,环向应变不是常应变,而是与单应变分量:面内(子五面)3 元中各点的位置有关。
单元刚度矩阵为六阶。
有限元方法求解对称问题的基本步骤?5-10
结构离散化:对整个结构进行离散化,将其分割成若干个单元,单元间彼此通过节点相1. 连;
{F}(e){Φ}(e)[K](e) 2.求出各单元的刚度矩阵:[K](e)是由单元节点位移量求单元节点力向量的转移矩阵,其关系式为:{F}(e)= [K](e) {Φ}(e);{Φ}集成总体刚度矩阵 3.[K]并写出总体平衡方程:总体刚度矩阵[K]是由整体节点位移向量求整体节点力向量,此即为总体平衡方程。
{F}= [K] {Φ} 的转移矩阵,其关系式为沿某个方向n4.引入支撑条件,求出各节点的位移:节点的支撑条件有两种:一种是节点沿某个方向的位移为一给定值。
的位移为零,另一种是节点n 求出各单元内的应力和应变 5. 对于有限元方法,其基本思路和解题步骤可归纳为:建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边
值(1)
问题等价的积分表达式,这是有限元法的出发点。
区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连(2)
接、不重叠的单元。
区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时.
还需要列出自然边界和本质边界的节点序号和相应的边界值。
确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件(3)
具有规则的插值函数作为单元基函数。
有限元方法中的基函数是在单元中选取的,由于各单元的几何形状,在选取基函数时可遵循一定的法则。
单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近(4)
的参数即单元中各节点(似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数值)的代数方程组,称为单元有限元方程。
总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行(5) 累加,形成总体有限元方程。
、)(狄里克雷边界条件(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件。
对于自然边界条件,一般在积分)(柯西边界条件、混合边界条件自然边界条件(黎曼边界条件)则对总体有限元方表达式中可自动得到满足。
对于本质边界条件和混合边界条件,需按一定法
程进行修正满足。
解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方(7)
程组,采用适当的数值计算方法求解,可求得各节点的函数值。
5-11 与平面问题比较,有限元方法求解轴对称问题,相同的地方?不同的地方?
答:轴对称问题简单三角形单元的形函数虽与平面问题简单三角形单元相同,但其应
,而且单元应变变、应力则是不相同的,这里不仅多出了一个环向应变及环向应力和应力分布规律也是不相同的,对平面问题,此种单元内应变应力均为常量,而对轴对称的函数。
问题,此种单元内应力、应变非常值,是r、z轴对称问题单元刚度矩阵与平面问题单元刚度矩阵的推导过程及基本原5-12
理一样吗?答:一样;虚功原理。
轴对称问题和平面问题的单元刚度矩阵公式一样吗?计算过程有什么不5-13
同?答:与平面问题相同,仍用虚功原理来建立单元刚度矩阵,其积分式为:
只要单元尺寸不太大,经过这样处理引起的误差也不大。
被积函数又成为常数,可以提出到积分号外面:
有限元分析中,轴对称位移边界条件如何考虑?举例说明?5-14
)没有沿对称面法向的移动位移分量;1答:()没有绕平行于对称面轴的转动位移分量。
2(。