清华出版社工程力学答案-第4章 材料力学概述
- 格式:pdf
- 大小:157.68 KB
- 文档页数:5
工程力学(少学时)(第二版)习题册答案第一篇静力学第一章静力学基础知识一、填空:1.机械,运动状态,形状2.牛顿,N3.大小,方向4.矢,带箭头的有向线段,大小,方向,作用点5.形状,大小,保持不变,不存在6.地球,静止,作匀速直线运动7. F或-F , F或-F ,0,08.水平向左,指向右下,垂直向上9.各分力,代数和10.相等,相反,同一直线,两个物体11.相等,相反,同一物体12.二力构件,其两作用点13.矢量14.大小,距离15.力,力臂,逆时针,M O( F ),矩心,N·m 16.相等,相反,平行,力偶臂,力偶作用面17.力的大小,力偶臂,力偶矩, M18.转向,作用面方位二、判断:1.√2.×3.√4.√5.√6.√7.×8.×9.× 10.× 11.× 12.× 13.× 14.√三、选择:1.A2.C3.C4.C5.B6.A7.C8.C9.C 10.C四、简答:1.答:相同点:公理一与公理二中的两个力都是大小相等、方向相反、作用在同一条直线上。
不同点:公理一中的两个力分别作用在两个不同的物体上;公理二中的两个力作用在同一物体上。
2.答:通过B点,由B点指向C点。
因为在主动力F1的作用下, C点的运动趋势方向向上,根据三力平衡汇交定理可知F3的方向是由B点指向C点。
3.答:刚体不会平衡。
因为刚体受两力偶( F1, F1 ')和( F2, F2 ')作用产生顺时针方向转动。
4.答:不对。
力偶矩是由力F '对O点产生的矩平衡的。
5.答:力偶的等效性有: (1)只要保持力偶矩大小和转向不变,力偶可在其作用面内任意移动,而不改变其作用效应。
(2)只要保持力偶矩大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短,其作用效果不变。
图中d1< d2,若F1×d2= F2×d1,只要F2> F1,丝锥的转动效应会保持不变。
工程力学——课后练习题讲解教师张建平第一章静力学基础课后习题:1. P32习题1-12. P32习题1-23. P33习题1-8图a和b所示分别为正交坐标系Ox解:图():F分力:图与解图,两种情形下受力不同,二者的1-2a解图示压路机的碾子可以在推力或拉力作用下滚过):θ解图第二章力系的简化课后习题:1. P43习题2-12. P43习题2-23. P44习题2-4由作用线处于同一平面内的两个力F和习题图所示一平面力系对A(30),B(0,图示的结构中,各构件的自重都略去不计。
1图2-4解习题)中的梁∑0,F0,1m习题3-3图解:根据习题3-3第三章附加习题课后习题:1. P69习题3-52. P69习题3-63. P70习题3-74. P71习题3-135. P71习题3-143-14 图示为凸轮顶杆机构,在凸轮上作用有力偶,其力偶矩确定下列结构中螺栓的指定截面Ⅰ-Ⅰ上的内力分量,,产生轴向拉伸变形。
,产生剪切变形。
如习题4-2图所示直杆A、C、B在两端A、B处固定,在C解:首先分析知,该问题属于超静定问题,受力图如图所示:试用截面法计算图示杆件各段的轴力,并画轴力图,单解:(a)题题-3一端固定另一端自由的圆轴承受四个外力偶作用,如5-3解:将轴划分为四个截面扭矩平衡方程im m 扭矩平衡方程+m3-3扭矩平衡方程5-5 试写出图中所示各梁的剪力方程、弯矩方程图3建立坐标系并确定两个控制面,如图左侧为研究对象:−=)取根据力平衡方程和弯矩平衡方程得出4ql弯矩方程:1解建立坐标系,并取两个控制面,如图ql ql1Q。
第4章材料力学基本假设及杆件内力题库:主观题4-1 试计算图示各杆件各段的内力,并做各杆的轴力图解:(a)如图4-1-1所示,做截面1-1和截面2-2图4-1-1取截面1-1右部分研究,其受力图如图4-1-2所示图4-1-2由平衡方程∑Fx=0,﹣FN1+3F=0,得FN1=3F结果为正值,表明FN1的方向与假设相同,即为拉力。
取截面2-2右部分来研究,其受力图如图4-1-3所示图4-1-3由平衡方程∑Fx=0,﹣FN2+F+3F=0得FN2=4F结果为正值,表明FN2的方向与假设相同,即为拉力轴力图如图4-1-4所示图4-1-4(b)如图4-1-5所示,做截面1-1、截面2-2和截面3-3图4-1-5取截面1-1右部分来研究,其受力图如图4-1-6所示图4-1-6由平衡方程∑Fx=0,﹣FN1﹣5KN=0,得FN1=-5KN结果为负值,表明FN1的方向与假设相反,即为压力。
取截面2-2右部分来研究,其受力图如图4-1-7所示图4-1-7由平衡方程∑Fx=0,﹣FN2+8KN-5KN=0,得FN2=3KN结果为正值,表明FN2的方向与假设相同,即为拉力。
取截面3-3右部分来研究,其受力图如图4-1-8所示图4-1-8由平衡方程∑Fx=0,﹣FN3﹣6KN+8KN-5KN=0,得FN3=-3KN 结果为负值,表明FN3的方向与假设相反,即为压力。
轴力图如图4-1-9所示:图4-1-9知识点:1.内力,截面法;2. 轴力和轴力图参考页: P72-73学习目标: 2(会用截面法计算法求轴力和轴力图)难度: 1提示一:该题考察知识点:3 内力,截面法;4轴力和轴力图提示二:无提示三:无提示四(同题解)题解:1、用截面法求解每个截面的内力;2、画出每个截面的内力图。
4-2 求图示各梁中指定截面上的剪力和建立图解:(a)计算1-1截面上的剪力Fs和弯矩M1用截面1-1把梁截开,取梁的左段为研究对象如图4-2-1所示图4-2-1由∑Fy=0得:Fs1=-qa(负剪力)由∑Mo1=0得:qa﹒a+M1=0,得M1=-qa2(负弯矩)计算2-2截面上的剪力Fs2和弯矩M2如图4-2-2所示,由∑Fy=0得:Fs2=-qa(负剪力)由∑Mo2=0得M2=-3qa2(负弯矩)图4-2-2计算3-3截面上的剪力Fs3和弯矩M3如图4-2-3所示,由∑Fy=0,-qa-qa-Fs3=0得:Fs3=-2qa(负剪力)由∑Mo3=0,qa﹒4a+qa﹒0.5a+ M3=0得M3=-4.5qa2(负弯矩)图4-2-3(b)计算支座范力选整体梁为研究对象,如图4-2-4所示·图4-2-4由∑MA=0,10KN﹒m+FB×2.5m=0得:FB = -4KN(↓)由∑Fy=0得:FA=-FB=4KN(↑)计算1-1截面上的剪力Fs1和弯矩M1用截面1-1把梁截开,取梁的左段为研究对象如图4-2-5所示图4-2-5由∑Fy=0,FA-Fs1=0,得FA=Fs1=4KN(正剪力)由∑Mo1=0得:-FA·1m+M1=0得M1=4KN·m(正弯矩)计算2-2截面上的剪力Fs2和弯矩M2,如图4-2-6所示图4-2-6由∑Fy=0,FB+Fs2=0,得-FB=Fs2=4KN(正剪力)由∑Mo2=0得:FB·1.5m-M2=0得M2=-6KN·m(负弯矩)(c)计算支座反力选整体梁为研究对象,如图4-2-7所示·图4-2-7由∑Fy=0,FA-5KN+FB=0得FA=3KN(↑)由∑MA=0得:FB·5m-5KN·3m+5KN·m=0得FB=2KN(↑)计算1-1截面上的剪力Fs1和弯矩M1取1-1截面左边部分为研究对象,如图4-2-8所示·图4-2-8由∑Mo1=0得:5KN·m + M1=0,得M1=-5KN·m(负弯矩)由∑Fy=0,FA-Fs1=0,得FA=Fs1=3KN(正剪力)计算2-2的剪力Fs2弯矩M2取2-2截面左边研究对象,如图4-2-9所示·图4-2-9由∑Mo2=0,5KN·m - FA·3m+M2=0,得M2=4KN·m(正弯矩)由∑Fy=0,FA-Fs2=0,得FA=Fs2=3KN(正剪力)计算3-3的剪力Fs3和弯矩M3取3-3截面右边研究对象,如图4-2-10所示图4-2-10由∑Mo3=0,FB·2m-M3=0,得M3=4KN·m(正弯矩)由∑Fy=0,FB+Fs3=0,得-FB=Fs3=-2KN(负剪力)(d)计算支座反力选整体梁为研究对象,如图4-2-11所示图4-2-11由∑MB=0得:qa·25a-FA·2a+qa·a=0,得FA=47qa (↑)由∑Fy=0,FA-2qa+FB=0得FB=41qa (↑)计算1-1截面上的剪力Fs1和弯矩M1取1-1截面左边部分为研究对象,如图4-2-12所示图4-2-12由图知 Fs1=0 M1=0 计算2-2的剪力Fs2弯矩M2取2-2截面左边研究对象,如图4-2-13所示图4-2-13由∑Mo2=0,qa·21a+ M2 =0得M2=-21qa 2(负弯矩)由∑Fy=0,-qa-Fs2=0,得Fs2=-qa(负剪力) 计算3-3的剪力Fs3和弯矩M3取3-3截面右边研究对象,如图4-2-14所示图4-2-14由∑Mo3=0,FB·a-M3=0,得M3=41qa 2(正弯矩)由∑Fy=0,-qa+FB+Fs3=0,得Fs3=43a (正剪力)知识点:1.内力,截面法;2. 轴力和轴力图 参考页: P72-73学习目标: 2(会用截面法计算法求轴力和轴力图) 难度: 1提示一:该题考察知识点:3 内力,截面法;4轴力和轴力图 提示二:无 提示三:无 提示四(同题解) 题解:1、用截面法求解每个截面的内力;2、画出每个截面的内力图。
《工程力学》第4次作业解答(杆件的内力计算与内力图)2008-2009学年第二学期一、填空题1.作用于直杆上的外力(合力)作用线与杆件的轴线重合时,杆只产生沿轴线方向的伸长或缩短变形,这种变形形式称为轴向拉伸或压缩。
2.轴力的大小等于截面截面一侧所有轴向外力的代数和;轴力得正值时,轴力的方向与截面外法线方向相同,杆件受拉伸。
3.杆件受到一对大小相等、转向相反、作用面与轴线垂直的外力偶作用时,杆件任意两相邻横截面产生绕杆轴相对转动,这种变形称为扭转。
4.若传动轴所传递的功率为P 千瓦,转速为n 转/分,则外力偶矩的计算公式为9549P M n=⨯。
5.截面上的扭矩等于该截面一侧(左或右)轴上所有外力偶矩的代数和;扭矩的正负,按右手螺旋法则确定。
6.剪力S F 、弯矩M 与载荷集度q 三者之间的微分关系是()()S dM x F x dx =、()()S dF x q x dx=±。
7.梁上没有均布荷载作用的部分,剪力图为水平直线,弯矩图为斜直线。
8.梁上有均布荷载作用的部分,剪力图为斜直线,弯矩图为抛物线。
9.在集中力作用处,剪力图上有突变,弯矩图上在此处出现转折。
10.梁上集中力偶作用处,剪力图无变化,弯矩图上有突变。
二、问答题1.什么是弹性变形?什么是塑性变形?解答:在外力作用下,构件发生变形,当卸除外力后,构件能够恢复原来的大小和形状,则这种变形称为弹性变形。
如果外力卸除后不能恢复原来的形状和大小,则这种变形称为塑性变形。
2.如图所示,有一直杆,其两端在力F 作用下处于平衡,如果对该杆应用静力学中“力的可传性原理”,可得另外两种受力情况,如图(b )、(c )所示。
试问:(1)对于图示的三种受力情况,直杆的变形是否相同?(2)力的可传性原理是否适用于变形体?解答:(1)图示的三种情况,杆件的变形不相同。
图(a )的杆件整体伸长变形,图(b )的杆件只有局部伸长变形,图(c )的杆件是缩短变形。
习题4-2图工程力学(工程静力学与材料力学)习题与解答第4章 刚体静力学专门问题4-1 塔式桁架如图所示,已知载荷FP 和尺寸d 、l 。
试求杆1、2、3的受力。
知识点:桁架、求解桁架的截面法 难易程度:一般 解答:截面法,受力如图(a )d l =αtan ,22cos d l d +=α0=∑x F ,0cos 2P =-αF F∴ P222F d d l F +=(拉)0=∑A M ,02P 1=⋅-l F d F ∴ P 12F d l F =(拉)=∑y F ,0sin 231=++αF F FP 33F d lF -=(压)4-2 桁架的载荷和尺寸如图所示。
试求杆BH 、CD 和GD 的受力。
知识点:桁架、求解桁架的节点法 难易程度:一般 解答:1.节点G :=∑y F ,0=GD F2.节点C :=∑y F ,0=HC F3.整体,图(a )0=∑B M ,0405601015R =⨯+⨯-E F 67.26R =E F kN (↑)习题4-4图习题4-3图4.截面法,图(b )0=∑H M ,067.26106055=⨯+⨯--CD F 67.6-=CD F kN (压)=∑y F ,067.266022=+--BH F1.47-=BH F kN4-3 试判断图示结构中所有零杆。
知识点:桁架、零杆与零杆的判断 难易程度:一般 解答:由节点C 知,F1 = F4 = 0再由节点E 知,F10 = 0由节点D 知,F7 = 0 由节点B 知,F13 = 0 再由节点A 知,F11 = 04-4 图示桁架的两部分用铰链K 连接,在铰链K 上作用有集中载荷FP = 10kN 。
试求各杆受力。
解:1.由结构和载荷对称性,只需考虑一半桁架即可。
由节点D ,FDF = 0 再由节点F ,FHF = 0再由节点H ,FHJ = 0 再由节点J ,FKJ = FJF = 0 再由节点F ,FFB = 0 2.节点K (图(a ))=∑y F ,030cos 2P =+︒F F KH77.53P -=-=F F KH kN (受压)∴ 77.5-======CA GC KG DB HD KH F F F F F F kN (压)其余各杆受力均为零。
工程力学练习册学校学院专业学号教师姓名第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)(b)(c)(d)(e)(f)(g)第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图解得: P F PF AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
题2-3图以AC 段电线为研究对象,三力汇交2-4 图示为一拔桩装置。
在木桩的点A 上系一绳,将绳的另一端固定在点C ,在绳的点B 系另一绳BE ,将它的另一端固定在点E 。
然后在绳的点D 用力向下拉,并使绳BD 段水平,AB 段铅直;DE 段与水平线、CB 段与铅直线成等角α=0.1rad (弧度)(当α很小时,tan α≈α)。
如向下的拉力F=800N ,求绳AB 作用于桩上的拉力。
题2-4图作BD 两节点的受力图 联合解得:kN F F F A 80100tan 2=≈=α2-5 在四连杆机构ABCD 的铰链B 和C 上分别作用有力F 1和F 2,,机构在图示位置平衡。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl ∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知 材料的弹性模量E=200Gpa,试求各段的应力和应变. 解:31.8127AC ACCB CBPMPa S PMPa S σσ====AC AC AC LNL EA EA σε===1.59*104,CB CB CB LNL EA EA σε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa. 解:NllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。
第一章参考答案1-1:解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3=-P(d):N1=-2P,N2=P(e):N1=-50N,N2=-90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2PS =8.72MPa上端双螺孔截面:σ3=3PS =9.15Mpa∴σmax =15.4Mpa1-4:解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5MPa1-5:解:F=6PS1=h*t=40*4.5=180mm2S2=(H-d)*t=(65-30)*4.5=157.5mm2∴σmax=2FS =38.1MPa1-6:解:(1)σAC =-20MPa,σCD =0,σDB =-20MPa;△l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2)∴AB l ∆=-0.02mm1-7:解:31.8127AC AC CB CB P MPa S P MPa S σσ====AC AC AC L NL EA EA σε===1.59*104,CB CB CB L NL EA EA σε===6.36*1041-8:解: Nll EAl l ε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:解:208,0.317E GPa ν==1-10:解:[][]max59.5MPa σσ=<1-11:解:(1)当45o α=,[]11.2σσ=>强度不够(2)当60o α=,[]9.17σσ=<强度够1-12:解:[]360,200200200*1013.3100*150*10Y p kNS P kNS MPa A σσ-==∴=====<∑1-13:解:[]max 200213MPa MPaσ=<1-14:解: 1.78, 1.26d cm d cm==拉杆链环1-15解:BC F ==70.7kN70.70.505140F S FS σσ=∴=== 查表得:45*45*31-16解:(1)[]2401601.5s s n σσ===MPa [][]24P S P dσσπ≤∴≤24.4D mm∴=(2)2119.51602P P MPa MPaS d σπ===≤⎛⎫ ⎪⎝⎭1-17解:(1)2*250*6154402D F P A N π⎛⎫=== ⎪⎝⎭78.4AC F MPa S σ==300 3.8378.4s n σσ∴===[][]''''60*3.14*15*1542390F SF S Nσσ===='61544014.521542390F n F ===≈1-18解:P=119kN1-19解:::3:4:535()44AB BC AB BC S P S S P S P =∴==拉,[][][]112841123484AB AB S A kN S P kNP kN σ=====同理所以最大载荷84kN1-20解:P=33.3kN1-21解:71,,12123A B C P F F P F P ===1-22解:10MAX MPaσ=-1-23解:A B X R R R=∴==∑t r l l ∆=∆t AB l l tα∆=21211111223533131.3cd R AC DB CD AC CD CD AF CD MAX Rl Rl l l l l EA EA Rl Rl Rl l EA EA EA EA t EA t R l S MPa A ααασ∆=∆+∆+∆=+=+=∴====第二章习题2-1一螺栓连接如图所示,已知P=200kN ,=2cm ,螺栓材料的许用切应力[τ]=80Mpa,试求螺栓的直径。
eBook
工程力学习题详细解答
教师用书
(第4章)
2011-10-1
范 钦 珊 教 育 教 学 工 作 室
FAN Qin-Shan ,s Education & Teaching Studio
习题4-1 习题4-2 习题4-3 习题4-4
工程力学习题详细解答之四
第4章 材料力学概述
4-1已知两种情形下直杆横截面上的正应力分布分别如图(a )和(b )所示。
请根据应力与内力分量之间的关系,分析两种情形下杆件横截面存在什么内力分量?(不要求进行具体计算)。
解:对于图(a)中的情形,横截面上的应力积分的结果将形成一个沿轴线方向的轴力。
对于图(b)中的情形,横截面上的应力积分的结果将形成一个弯矩。
4-2微元在两种情形下受力后的变形分别如图(a )和(b )中所示,请根据剪应变的定义确定两种情形下微元的剪应变。
解:对于图(a)中的情形,微元的剪应变
γα=
对于图(b)中的情形,微元的剪应变
0γ=
4-3 由金属丝弯成的弹性圆环,直径为d (图中的实线),受力变形后变成直径为d +Δd 的圆(图中的虚线)。
如果d 和Δd 都是已知的,请应用正应变的定义确定:
(1) 圆环直径的相对改变量;
(a) (b)
习题4-1图
αα
π
2
α
α
α
α
αα
α90°α
(a)
(b)
习题4-2图
d x
A
B
C
D
A'
B'
D'α
α
(a) (b)
习题4一4图
(2) 圆环沿圆周方向的正应变。
解:1. 圆环沿直径方向的正应变
r d d
εΔ=
2. 圆环沿圆周方向的正应变
()t πππd d d d
d d
ε+Δ−Δ=
=
4-4 微元受力前形状如图中实线ABCD 所示,其中ABC ∠为直角,d x = d y 。
受力变形后各边的长度尺寸不变,如图中虚线'
'
A B C D ′′所示。
(1)请分析微元的四边可能承受什么样的应力才会产生这样的变形?
(2)如果已知
d 1000
x
CC ′=
求AC 方向上的正应变。
(3)如果已知图中变形后的角度α,求微元的剪应变。
习题4-3图
解:1. 微元所受应力如图(b )所示
2. 微元AC 方向上的正应变
2AC AA CC CC AC AC
ε′′′
+=
=
其中
d 1000
AC x
CC =
′=
于是有
2d 2AC x
AA CC CC AC AC
ε′′′
+=
===
3. 微元的剪应变即直角的改变量
π
22
γα=
−
上一章 返回总目录 下一章。