统计初步练习题
- 格式:doc
- 大小:36.50 KB
- 文档页数:4
第九章 概率与统计初步一、计数原理1、 (分类计数)加法原理:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,……在第n 类办法中有n m 种不同的方法,那么完成这件事情,共有:n m m m N +++= 21种不同的方法;2、 (分步计数)分步乘法原理:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……做第n 步有n m 种不同的方法,那么完成这件事情,共有:n m m m N ⨯⨯⨯= 21种不同的方法;3、 区分做事情的方法是“分类”还是“分步"主要看能否一步做完,能够一步做完的就是分类(用加法原理),不能一步做完的,就是分步(用乘法原理);二、排列与组合1、 排列数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有排列的个数,叫做从n 个不同的元素中取出m 个不同元素的排列数,用符号n mA 表示,且:2、 n 的阶乘:自然数1到n 的连乘积,叫做n 的阶乘,记作:!n ,且:3、 组合数公式:从n 个不同的元素中取出()n m m ≤个不同元素的所有组合的个数,叫做从n 个不同的元素中取出m 个不同元素的组合数,用符号n mC 表示,且:组合数公式也可写为:4、 组合数的两个性质:()()n m n m n n m n mn n m C C C C C 1121--+-+==5、 排列与组合的区别:排列与顺序有关;组合与顺序无关。
()()()()n m m n n n n A n m ≤+---=,121 ()()10,1221!=⋅--=!规定: n n n n ()()()()()()1,,1221121!0=≤⋅--+---==n n m nmC n m m m m m n n n n m A C 规定: ()!!!m n m n C n m -⋅=()!!m n n A nm -=为:易知排列数公式也可写三、概率1、 基本概念(1) 随机现象:在相同的条件下,具有多种可能的结果,而事先又无法确定会出现哪种结果的现象;(2) 随机试验的特征:可以在相同的条件下重复进行;试验的所有可能结果是可以明确知道的,并且这些可能结果不止一个;每次试验之前不能准确预言哪一个结果会发生;(3) 随机事件:随机试验的结果叫做随机事件,简称事件,常用大写字母A 、B 、C表示; (4) 必然事件:在一次随机试验中必然要发生的事件,用Ω表示(Ω读作“omiga",Ω对应的小写希腊字母是“ω”); (5) 不可能事件:在一次随机试验中不可能发生的事件,用φ表示(φ读作“fai ”); (6) 基本事件:随机事件中不能分解的事件称为基本事件,即:最简单的随机事件;(7) 复合事件:由若干个基本事件组成的事件称为复合事件; 2、 频数与频率(1) 频数:在n 次重复试验中,事件A 发生了m 次()n m ≤≤0,m 叫做事件A 发生的频数;(2) 频率:在n 次重复试验中,事件A 发生的频数在试验总次数中所占的比例nm ,叫做事件A 发生的频率; 3、 概率(1) 一般地,当试验的次数充分大时,如果事件发生的频率总稳定在某个常数附近,那么就把这个常数叫做事件发生的概率,记作:; (2) 概率的性质:i. 对于必然事件Ω:()1=ΩP ii. 对于不可能事件φ:()0=φP iii. ()10≤≤A P4、 古典概型(1) 古典概型:如果一个随机试验的基本事件只有有限个,并且各个基本事件发生的可能性相同,那么称这个随机试验属于古典概型;(2) 概率:设试验共有n 个基本事件,并且每一个基本事件发生的可能性都相同,事件A 包含m 个基本事件,那么事件发生的概率为:(3) 事件的“交”:“B A ”表示B A 、同时发生,记作:AB ;(4) 事件的“并”:“B A ”表示B A 、中至少有一个会发生,又称为事件A 与事件B 的和事件;()nA A P m==基本事件总数包含的基本事件(5) 事件的“否”:A 表示事件A 的对立事件;(A 读作a bar ,“A 拔”)(6) 互为对立的事件:若事件A 是事件B 的对立面,且Ω==B A B A ,φ;(对立事件的理解:在任何一次随机试验中,事件A 与B 有且仅有一个发生) (7) 互斥事件(互不相容事件):不可能同时发生的两个事件,即:φ=B A ;(对立事件是互斥事件,但互斥事件不一定是对立事件)(8) 相互独立事件:在随机试验中,如果事件A 的发生不会影响事件B 发生的可能性的大小,即在事件A 发生的情况下,事件B 发生的概率等于事件B 原来的概率,那么称事件A 与事件B 相互独立;(事件A 发生与否,不影响事件B 的概率) (9) 若A 、B 是互斥事件,则:()()()B P A P B A P +=(10) 若A 、B 是对立事件,则:()()B P A P +=1,即:()()A P A P -=1 (11) 若A 、B 不是互斥事件,则:()()()()B A P B P A P B A P -+= (12) 若A 、B 是相互独立事件,则:()()()()B P A P AB P B A P ⋅==四、总体、样本与抽样方法例1:为了了解全校1120名一年级学生的身高情况,从中抽取100名学生进行测量; 1、 总体:在统计中,所研究对象的全体;例1中“全校1120名一年级学生的身高”是总体;2、 个体:组成总体的每一个对象;例1中“全校每一位一年级学生的身高”是个体;3、 样本:被抽取出来的个体的集合;例1中“抽取的100名一年级学生的身高”是样本;4、 样本容量:样本所含个体的数目;例1中“100”是样本容量;5、 抽样的方法有三种:简单随机抽样、系统抽样、分层抽样;6、 说明:当总体中的个数比较小时,常采取简单随机抽样;当总体中的个数比较多,且其分布没有明显的不均匀情况,常采用系统抽样;当总体由差异明显的几个部分组成时,常采用分层抽样;五、用样本估计总体1、 样本均值:()n x x x nx +++=2112、 样本方差:()()()[]2222121x x x x x x nS n -++-+-= 3、 样本标准差:()()()[]222211x x x x x x nS n -++-+-=4、 说明:均值反映了样本和总体的平均水平;方差和标准差则反映了样本和总体的波动大小程度;5、作频率分布直方图的方法:①把横轴分成若干段,每一线段对应一个组的组距;②然后以此线段为底作一矩形,它的高等于该组的频率/组距;这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图。
小学四年级简单统计练习题题目:小学四年级简单统计练习题一、选择题根据给定的数据,选择正确的答案,并将选项字母填入括号内。
1. 下图是小明所在班级的学生喜欢的水果调查结果,请问班级学生最喜欢的水果是:( ) A. 苹果 B. 香蕉 C. 橙子 D. 葡萄2. 小明家邻居一周内购买的早餐种类如下:鸡蛋三明治5个,油条10根,包子8个,豆浆3杯。
请问邻居一周内购买的早餐数量共有多少个?( ) A. 5 B. 13 C. 26 D. 213. 以下是小明妈妈在超市购买的食品种类:苹果5个,橙子3个,香蕉7个,葡萄3串。
请问小明妈妈一共购买了多少个食品?( ) A. 8 B. 15 C. 7 D. 18二、填空题根据问题,选择合适的单词填入横线上。
4. 在小王的镜子里,他看到自己有两只_____和一张_____。
答案:眼睛、嘴巴5. 在小红的书包里,有一本______、两本______和三本______。
答案:课本、练习册、故事书三、应用题根据问题,使用线段统计图,回答下列问题。
6. 小明一周学习英语的时间如下:星期一:2小时星期二:3小时星期三:1小时星期四:4小时星期五:2小时星期六:3小时星期日:2小时请根据线段统计图,回答下列问题:(1)小明一周学习英语的总时间是多少小时?(2)哪一天小明学习的英语时间最多?(3)哪一天小明学习的英语时间最少?四、解答题小明家中有30只玩具熊,20只玩具汽车,10只玩具娃娃。
请根据题目,回答下列问题。
7. 小明家中一共有多少只玩具?答:30 + 20 + 10 = 60只玩具。
8. 玩具熊和玩具汽车的总数有多少?答:30 + 20 = 50只玩具。
9. 玩具娃娃和玩具汽车的总数有多少?答:10 + 20 = 30只玩具。
以上就是小学四年级简单统计练习题,希望能够帮助你巩固学习知识。
沪教版数学九年级下第二十八章统计初步28.4表示一组数据波动程度的量练习一和参考答案数学九年级下第二十八章:统计初步28.4 表示一组数据波动程度的量一、选择题1.在统计中,样本的标准差可以反映这组数据的(C)离散程度。
2.数学老师对XXX在参加中考前的 5 次数学模拟考试成绩进行统计分析,判断XXX的数学成绩是否稳定,于是老师需要知道XXX这 5 次数学成绩的(A)平均数或中位数。
3.若一组数据 2,1,x,5,4 的平均数是 3,则这组数据的方差是(B)4.4.已知一组数据 x1,x2,x3,x4,x5 的平均数是 2,方差为,那么另一组数据 2x1-1,2x2-1,2x3-1,2x4-1,2x5-1 的平均数和方差分别是(B)2,2.5.某车间 7 月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这 10 天中该车间生产零件的次品数的(A)众数是 0 个。
6.甲、乙两名学生在参加今年体育中考前作了 5 次立定跳远测试,两人平均成绩相同,其中甲所测得成绩的方差是0.005,乙所测得的成绩如下:2.20m,2.30m,2.30m,2.40m,2.30m,那么甲、乙的成绩比较(B)乙的成绩更稳定。
二、填空题7.已知数据 x1,x2,…,xn,则平均数为,方差为,标准差为。
8.已知数据 2,3,4,5,6,7,8 的平均数为,方差为。
标准差为。
9.已知数据 91,92,93,94,95,96,97 的平均数为,方差为。
标准差为。
10.把 2,3,4,5,6,7,8 这组数据中的每个数按 3x+2计算后,可得到新的数据为;则新的数据的平均数为,方差为。
标准差为。
11.已知数据 x1,x2,…,xn 的平均数为 m,方差为 s。
则数据 2x1+3,2x2+3,…,2xn+3 的平均数为,方差为。
标准差为。
12.已知数据 x1,x2,…,xn 的平均数为 m,方差为 s。
统计初步一、填空题1、数据收集常用的方式有普查和 两种.2、要想估计池塘里鱼的条数,先捞出50条作上记号后放回池塘,过一段时间后再捞出100条鱼,有记号的鱼正好10条,问池塘里原来大约有 条鱼.3、一组数据25、80、84、90、95、96中,25通常叫做 ,描述这组数据的一般水平用 比较合适,这个值是 .4、一组数据按大小顺序排列后为x 1 , x 2 , x 3…x 29 , 则其中位数是 ,若数据中再增加一个x 1 ,其中位数是 ,若数据中再增加一个x 29 ,其中位数是5、一个样本的容量为50 ,一组的频数为18,则这组的频率为 .6、一组数据中,各组数据的频率之和等于 .7、101、99、97、102、100、96、105、99、103、98的平均数为 . 8、已知一组数据x 、-1、0、1、-2的平均数是0,那么x=9、一个植树小组共有6名同学,其中有2人各植树20棵,有3人各植树16棵,有1人植树14棵,平均每人植树 ; 10、某校对初三学生进行政治学习情况的测试, 从中随机抽取了40份试卷, 这40份试卷中80分及以上有16人,由此可估计全校200名初三学生80分及以上有 人,优良率为_________%,二、选择题1、某工厂对一个生产小组的零件进行抽样调查。
在10天中,这个生产小组每天出的次品数如下(单位:个)0, 2, 0, 2, 3, 0, 2, 3, 1, 2在这10天中,该生产小组生产零件所出的次品数平均数为 ( ) (A )2 (B )3 (C )1.5 (D )1.23、从一组数据中取出a 个x 1,b 个x 2,c 个x 3,组成一个样本,那么这个样本的平均数是( )。
(A )3321x x x ++(B )3cb a ++(C )3321cx bx ax ++(D )cb a cx bx ax ++++3214、某省有7万名学生参加初中毕业会考,要想了解这7万名学生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,以下说法正确的是 ( )(A )这1000名考生是总体的一个样本 (B )每位考生的数学成绩是个体 (C )7万名考生是总体 (D )1000名考生是样本容量5、有甲、乙两种产品,抽查每批产品的合格产品数后,计算出样本方差分别为2甲S =11,2乙S =3.4,由此可以估计( )(A )甲产品比乙产品稳定 (B )乙产品比甲产品稳定(C )两种产品稳定程度相同 (D )甲、乙两种产品稳定程度不能比较三、解答题 1、(本题6分)为了了解某地区初三女生的身高情况,以200名女生的身高(单位:cm )作为样本,将她们的身高整理、分组,列成下表:(每组数据含最小值,不含最大值) 分组(cm ) 150-155 155-160 160-165 165-170 170-175 175-180 频数 10 30 n 60 m 频率 0.09 0.01 填空:(1)表中的m =________,n =_________;(2)200名女生的身高的中位数落在_________ 小组内;(3)样本中身高不到160cm 的女生占了百分之几?答:占_________。
一年级关于统计的题目2、下面是一个商店的物品清单,请你认真填写表格:本月:书包卖出50个;本子卖出30个;铅笔卖出100支;商店共卖出:你认为哪种商品最好卖?为什么?你认为哪种商品不好卖?为什么?3、请你数一数。
正方体()个、长方体()个、圆柱体()个、球体()个4、请填写下面的表格。
○()个、△()个、□()个、☆()个5、下图是李月十二月获得的贴纸,请你完成下面问题。
(1)完成统计表:(2)完成统计图。
6、根据下表完成统计表(1个“√”代表1片该种类的树叶)根据下表完成统计图(1个“√”代表1片该种类的树叶)7、数一数,填一填,并制成条形统计图。
(1)上面有()种车。
(2)最多的车有()辆。
(3)完成下面条形统计图8、根据统计图填空。
(每个小格子代表1朵)(1)(2)()最多,()最少(选择)(3)最多的比最少的多()朵。
9、根据统计图列式。
(1)蓝花和红花一共有多少朵?(2)黄花比紫花多多少朵?(3)蓝花、红花、黄花和紫花一共有多少朵?10、下面的图形好多哦,小朋友们来一起统计一下吧!三角形有()个,圆形有()个,正方形有()个数图形是要注意:按照一定的顺序(从左到右,从右到左,从上到下,从下到上)边数边做标记。
制作统计表:制作条形统计图:(在下面的格子里涂颜色,是几个就涂几格)(1)三角形和圆形一共有()个。
(2)正方形比圆形多()个。
(3)三角形比正方形少()个。
(4)哪种图形个数最多?哪种图形个数最少?(5)你还能提出什么数学问题?11、乐乐统计本班同学最爱吃的水果,并制成下表:12、下面是暑假中小朋友们所做活动的统计表,看表回答以下问题。
13、看图回答乐乐老师的问题。
14、下面是小乐乐的课程表,她一个星期有多少节课?先让我们来统计一下吧!15、统计下列图形的个数,并绘制出条形统计图。
16、统计下列不同种类的图形各有多少个?17、数一数,填一填。
①个数最多的是()。
②正方形比三角形多()个。
统计初步认识练习题
题目 1:给定以下一组数据:{1, 2, 3, 4, 5},请计算该数据集的平均数、中位数和众数,并解释它们的含义。
答案 1:该数据集的平均数为 3,中位数为 3,众数为无。
平均数是数据总和除以数据个数的结果,代表了数据的平均水平。
中位
数是将数据按大小排列后位于中间位置的数,代表了数据的中间水平。
众数是数据集中出现次数最多的数,代表了数据集的主要取值。
题目 2:下表是某城市在一周内每天的气温数据,请根据该数
据计算出这一周内的最高气温、最低气温以及气温的变化范围。
答案 2:这一周内的最高气温是 27 摄氏度,最低气温是 21 摄
氏度,气温的变化范围是 6 摄氏度。
题目 3:某班级的学生参加了一次数学测验,并获得了以下分数:{80, 85, 90, 95, 80, 75, 85, 90, 95, 90},请计算该班级的平均分数、中位数和众数,并解释它们的含义。
答案 3:该班级的平均分数是 87.5,中位数是 87.5,众数是 90。
平均分数是学生分数的平均水平,中位数是学生分数的中间水平,
众数是学生分数中出现次数最多的分数。
题目 4:某公司的员工月薪数据如下:{3000, 4000, 5000, 4000, 6000, 5000, 6000, 7000},请计算该公司员工的平均月薪、中位数和
众数,并解释它们的含义。
答案 4:该公司员工的平均月薪是 5000,中位数是 5000,众数是 4000 和 6000。
平均月薪是员工月薪的平均水平,中位数是员工
月薪的中间水平,众数是员工月薪中出现次数最多的薪水。
湖南省长沙市怡雅中学2020 年中考复习九年级数学统计初步综合练习题1、为配合全市“倡导低碳绿色生活,推进城镇节水减排”的宣传活动,某校数学课外活动小组把用水习惯分为“很注意解决用水(A)”、“较注意解决用水(B)”、“不注意解决用水(C)”三类情况,设计了调查问卷在中学生中开展调查,并将调查结果分析整理后,制成如图所示的两个统计图.请根据以上信息解答下列问题:(1)这次调查问卷调查共调查了多少名学生?(2)在扇形统计图中,“B”所对应的扇形的圆心角度数是多少?(3)如果设该校共有学生 3000 人,试估计“不注意解决用水”的学生人数.2、为了推动课堂教学改革,打造高效课堂,配合我市“两型课堂”的课题研究,莲城中学对八年级部分学生就一期来“分组合作学习”方式的支持程度进行调查,统计情况如图.试根据图中提供的信息,回答下列问题:(1)求本次被调查的八年级学生的人数,并补全条形统计图;(2)若该校八年级学生共有 180 人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?3、某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),如图是该市 2012年参加三独比赛的不完整的参赛人数统计图.(1)该市参加三独比赛的总人数是人,图中独唱所在扇形的圆心角的度数是度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取 20 人调查,其中有 9 人获奖,请你估算今年全市约有多少人获奖?4、为保证学生上学安全,学校打算在今年下期采购一批校车,为此,学校安排学生会在全校300 名走读学生中对购买校车的态度进行了一次抽样调查,并根据抽样调查情况绘制了如图统计图.走读学生对购买校车的四种态度如下:A.非常希望,决定以后就坐校车上学 B.希望,以后也可能坐校车上学C.随便,反正不会坐校车上学D.反对,因家离学校近不会坐校车上学(1)由图①知A 所占的百分比为,本次抽样调查共调查了名走读学生,并完成图②;(2)请你估计学校走读学生中至少会有多少名学生乘坐校车上学(即A 态度的学生人数).5、岳阳楼、君山岛去年评为国家 5A 级景区.“十•一”期间,游客满员,据统计绘制了两幅不完整的游客统计图(如图①、图②),请你根据图中提供的信息解答下列问题:(1)把图①补充完整;(2)在图②中画出君山岛“十•一”期间游客人次的折线图;(3)由统计可知,岳阳楼、君山岛两景点“十一”期间共接待游客 149000 人次,占全市接待游客总数的 40%,求全市共接待游客多少人次(用科学记数法表示,保留两位有效数字)6、某班数学科代表小华对本班上期期末考试数学成绩作了统计分析,绘制成如下频数、频率统计表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5合计频数 2 a 20 16 4 50 频率0.040.160.400.32b1(1)频数、频率统计表中,a= ;b= ;(2)请将频数分布直方图补充完整;(3))小华在班上任选一名同学,该同学成绩不低于 80 分的概率是多少?7、游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的 2000 名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了名学生;(2)补全两个统计图;(3)根据抽样调查的结果,估算该校 2000 名学生中大约有多少人“一定会下河游泳”?8、网络购物发展十分迅速,某企业有 4000 名职工,从中随机抽取 350 人,按年龄分布和对网上购物所持态度情况进行了调查,并将调查结果绘成了条形图 1 和扇形图 2.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对网络购物所持态度中的“经常(购物)”和“偶尔(购物)”统称为“参与购物”,那么这次接受调查的职工中“参与网购”的人数是多少?(3)这次调查中,“25﹣35”岁年龄段的职工“从不(网购)”的有 22 人,它占“25﹣35”岁年龄段接受调查人数的百分之几?(4)请估计该企业“从不(网购)”的人数是多少?9、为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间不少于 1 小时, 为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图中两幅不完整的统计,请你根据图中提供的信息解答下列问题:(1) 在这次调查中共调查了多少名学生?(2) 求户外活动时间为 0.5 小时的人数,并补充频数分布直方图; (3) 求表示户外活动时间为 2 小时的扇形圆心角的度数;(4) 本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数各是多少?10、某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班 50 名学生的处理方式进行统计,得出相关统计表和统计图.请根据表图所提供的信息回答下列问题:(1) 统计表中的 m=,n= ;(2) 补全频数分布直方图;(3) 若该校有 2000 名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?组别 A B C D 处理方式 迅速离开 马上救助 视情况而定 只看热闹 人数 m 30 n 511、目前我市“校园手机”现象越来越受到社会关注,针对这种现象,我市某中学九年级数学兴趣小组的同学随机调查了学校若干名家长对“中学生带手机”现象的看法,统计整理并制作了如下的统计图:(1)这次调查的家长总数为.家长表示“不赞同”的人数为;(2)从这次接受调查的家长中随机抽查一个,恰好是“赞同”的家长的概率是;(3)求图②中表示家长“无所谓”的扇形圆心角的度数.12、市教育局对九年级学生的信息技术、物理实验操作、化学实验操作成绩进行抽样调查,成绩评定 A、B、C、D 四个等级.现抽取 1000 名学生成绩进行统计分析(其中 A、B、C、D 分别表示优秀、良好、合格、不合格四个等级),其相在数据统计如下:(1)(1)请将上表空缺补充完整;(2)全市共有 40000 名学生参加测试,试估计该市九年级学生信息技术成绩合格以上(含合格)的人数;(3)在这 40000 名学生中,化学实验操作达到优秀的大约有多少人?13、如图所示,图①表示的是某教育网站一周内连续 7 天日访问总量的情况,图②表示的是学生日访问量占日访问总量的百分比情况,观察图①、②,解答下列问题:(1)若这 7 天的日访问总量一共约为 10 万人次,求星期三的日访问总量;(2)求星期日学生日访问总量;(3)请写出一条从统计图中得到的信息.14、某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a= ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了 10 次活动的成员被选中的概率有多少?15、初中毕业生毕业后的去向,对部分初三学生进行了抽样调查,就初三学生的四种去向(A.读普通高中; B.读职业高中 C.直接进入社会就业; D.其它)进行数据统计,并绘制了两幅不完整的统计图(a)、(b).请问:(1)该县共调查了名初中毕业生;(2)将两幅统计图中不完整的部分补充完整;(3)若该县 2020 年初三毕业生共有 4500 人,请估计该县今年的初三毕业生中读普通高中的学生人数.16、6 月5 日是世界环境日,今年“世界环境日”中国的主题为“同呼吸,共奋斗”,旨在释放和传递:建设美丽中国,人人共享、人人有责的信息,小文积极学习与宣传,并从四个方面A:空气污染,B:淡水资源危机,C:土地荒漠化,D:全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项).以下是他收集数据后,绘制的不完整的统计图表:C n 0.1D 18 m合计 a 1请你根据图表中提供的信息解答以下问题:(1)根据图表信息,可得a= ;(2)请你将条形图补充完整;(3)如果小文所在的学校有 1200 名学生,那么你根据小文提供的信息估计该校关注“全球变暖”的学生大约有多少人?17、某学校开展课外体育活动,决定开设 A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生 1000 人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?18、某市为了更好地加强城市建设,实现美丽梦想,就社会热点问题广泛征求市民意见,方式是发放调查表:要求每位被调查人员写一个最关心的有关城市建设问题的建议,经统计整理绘制出(a),(b)两幅不完整统计图,请根据统计图提供的信息解答下列问题:(1)本次上交调查表的总人数为多少?(2)求关心“道路交通”部分的人数,并补充完整条形统计图.19、“宜居长沙”是我们的共同愿景,空气质量倍受人们的关注.我市某空气质量检测站点检测了该区域每天的空气质量情况,统计了 2020 年 1 月份至 4 月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图,请根据图中信息,解答下列问题:(1)统计图共统计了天空气质量情况.(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形圆心角度数.(3)从小源所在班级的 40 名同学中,随机选取一名同学去该空气质量监测点参观,则恰好选到小源的概率是多少?。
概率与统计初步例1.指出下列事件是必然事件,不可能事件,还是随机事件? ①某乒乓球运动员在某运动会上获得冠军。
②掷一颗骰子出现8点。
③如果0=-b a ,则b a =。
④某人买某一期的体育彩票中奖。
解析:①④为随机事件,②是不可能事件,③是必然事件。
例2.某活动小组有20名同学,其中男生15人,女生5人,现从中任选3人组成代表队参加比赛,A 表示“至少有1名女生代表”,求)(A P 。
例3.在50件产品中,有5件次品,现从中任取2件。
以下四对事件那些是互斥事件?那些是对立事件?那些不是互斥事件?①恰有1件次品和恰有2件次品 ②至少有1件次品和至少有1件正品 ③最多有1件次品和至少有1件正品 ④至少有1件次品和全是正品例4.从1,2,3,4,5,6六个数字中任取两个数,计算它们都是偶数的概率。
例5.抛掷两颗骰子,求:①总点数出现5点的概率;②出现两个相同点数的概率。
例6.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.6,计算: ①两人都未击中目标的概率; ②两人都击中目标的概率;③其中恰有1人击中目标的概率; ④至少有1人击中目标的概率。
例7.种植某种树苗成活率为0.9,现种植5棵。
试求: ①全部成活的概率; ②全部死亡的概率;③恰好成活4棵的概率; ④至少成活3棵的概率。
【过关训练】一、选择题1、事件A 与事件B 的和“B A ”意味A 、B 中( ) A 、至多有一个发生 B 、至少有一个发生 C 、只有一个发生 D 、没有一个发生2、在一次招聘程序纠错员的考试中,程序设置了依照先后顺序按下h,u,a,n,g 五个键的密码,键盘共有104个键,则破译密码的概率为( )A 、51041P B 、51041C C 、1041 D 、1045 3、抛掷两枚硬币的试验中,设事件M 表示“两个都是反面”,则事件M 表示( ) A 、两个都是正面 B 、至少出现一个正面C 、一个是正面一个是反面D 、以上答案都不对 4、已知事件A 、B 发生的概率都大于0,则( ) A 、如果A 、B 是互斥事件,那么A 与B 也是互斥事件 B 、如果A 、B 不是相互独立事件,那么它们一定是互斥事件 C 、如果A 、B 是相互独立事件,那么它们一定不是互斥事件D 、如果A 、B 是互斥且B A 是必然事件,那么它们一定是对立事件5、有5件新产品,其中A 型产品3件,B 型产品2件,现从中任取2件,它们都是A 型产品的概率是( )A 、53B 、52C 、103D 、2036、设甲、乙两人独立地射击同一目标,甲击中目标的概率为0.9,乙击中目标的概率为98,现各射击一次,目标被击中的概率为( )A 、98109+B 、98109⨯C 、981081⨯-D 、90897、一个电路板上装有甲、乙两个保险丝,若甲熔断的概率为0.2,乙熔断的概率为0.3,至少有一根熔断的概率为0.4,则两根同时熔断的概率为( )A 、0.5B 、0.1C 、0.8D 、以上答案都不对8、某机械零件加工有2道工序组成,第1道工序的废品率为a ,第2道工序的废品率为b ,假定这2道工序出废品是彼此无关的,那么产品的合格率是( )A 、1+--b a abB 、b a --1C 、ab -1D 、ab 21-9、某厂大量生产某种小零件,经抽样检验知道其次品率是1﹪,现把这种零件每6件装成一盒,那么每盒中恰好含1件次品的概率是( )A 、6)10099(B 、0.01C 、516)10011(1001-CD 、4226)10011()1001(-C 10、某气象站天气预报的准确率为0.8,计算5次预报中至少4次准确的概率是( )A 、45445)8.01(84.0--⨯⨯CB 、55555)8.01(84.0--⨯⨯C C 、45445)8.01(84.0--⨯⨯C +55555)8.01(84.0--⨯⨯C D 、以上答案都不对11、同时抛掷两颗骰子,总数出现9点的概率是( ) A 、41 B 、51 C 、61D 、9112、某人参加一次考试,4道题中解对3道则为及格,已知他的解题准确率为0.4,则他能及格的概率约是( )A 、0.18B 、0.28C 、0.37D 、0.48二、填空题1、若事件A 、B 互斥,且61)(=A P ,32)(=B P ,则=)(B A P 2、设A 、B 、C 是三个事件,“A 、B 、C 至多有一个发生”这一事件用A 、B 、C 的运算式可表示为3、1个口袋内有带标号的7个白球,3个黑球,事件A :“从袋中摸出1个是黑球,放回后再摸1个是白球”的概率是4、在4次独立重复试验中,事件A 至少出现1次的概率是8180,则事件A 在每次试验中发生的概率是5、甲、乙两射手彼此独立地射击同一目标,甲击中目标的概率为0.8,乙击中目标的概率为0.9,则恰好有一人击中目标的概率为三、解答题1、甲、乙两人射击,甲击中靶的概率为0.8,乙击中靶的概率为0.7,现在,两人同时射击,并假定中靶与否是相互独立的,求:(1)两人都中靶的概率; (2)甲中靶乙不中靶的概率; (3)甲不中靶乙中靶的概率。
九年级数学第二学期第二十八章统计初步课时练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、班级准备推选一名同学参加学校演讲比赛,在五轮班级预选赛中,甲、乙、丙三名同学五轮预选赛成绩的平均数和方差如下表所示:丁同学五轮预选赛的成绩依次为:97分、96分、98分、97分、97分,根据表中数据,要从甲、乙、丙、丁四名同学中选择一名成绩好又发挥稳定的同学参赛应该选择()A.甲B.乙C.丙D.丁2、小明根据演讲比赛中9位评委所给的分数制作了如下表格:如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是()A.平均数B.中位数C.众数D.方差3、甲、乙、丙、丁四名跳高运动员最近10次训练成绩的平均数与方差如表所示.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择的是()A.甲B.乙C.丙D.丁4、如图,有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况.根据条形图提供的信息可知,两次测试最低分在第______ 次测试中,第____次测试较容易()A.一,二B.二,一C.一,一D.二,二5、数据1,2,3,4,5的方差是()A B.2 C.3 D.56、一组数据2,9,5,5,8,5,8的中位数是()A.2 B.5 C.8 D.97、新冠疫情防控形势下,学校要求学生每日测量体温.某同学连续一周的体温情况如表所示,则该同学这一周的体温数据的众数和中位数分别是()A.36.3和36.2 B.36.2和36.3 C.36.3和36.3 D.36.2和36.18、下列调查中,最适合采用全面调查(普查)方式的是()A.对兰州市初中生每天阅读时间的调查B.对市场上大米质量情况的调查C.对华为某批次手机防水功能的调查D.对某班学生肺活量情况的调查9、下列说法正确的是()A.2-的相反数是2B.各边都相等的多边形叫正多边形C.了解一沓钞票中有没有假钞,应采用普查的形式=,则点B是线段AC的中点D.若线段AB BC10、一个班有40名学生,在一次身体素质测试中,将全班学生的测试结果分为优秀、合格、不合格.测试结果达到优秀的有18人,合格的有17人,则在这次测试中,测试结果不合格的频率是()A.0.125 B.0.30 C.0.45 D.1.25第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一组数据:2,5,7,3,5的众数是________.2、从2022年起长沙市学校体育中考增加素质类选测项目:立定跳远和1分钟跳绳.小熙选择了1分钟跳绳项目,她10次跳绳训练的成绩为140,155,142,155,166,167,166,170,180,176,这组数据的中位数是________.3、随机从甲,乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果为 13x =甲, 13x =乙,2 4s =甲,23.8s =乙则小麦长势比较整齐的试验田是__________. 4、从甲、乙两块试验田各随机抽取100株麦苗测量高度(单位:cm ),计算它们的平均数和方差,结果为:13x =甲,13x =乙,2=3.6S 甲,215.8S =乙.则麦苗长势比较整齐的试验田是________(填“甲”或“乙”).5、有5个数据的平均数为24,另有15个数据的平均数是20,那么所有这20个数据的平均数是______.三、解答题(5小题,每小题10分,共计50分)1、某校为研究学生的课余爱好情况,采取抽样调査的方法,从阅读、运动、娱乐、上网等四个方面调查了若干学生的兴趣爱好;并将调查的结果绘制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了______名学生;若该校共有1500名学生,估计全校爱好运动的学生共有_______名;(2)补全条形统计图,并计算阅读部分圆心角是_______度;(3)若该校九年级爱好阅读的学生有150人,估计九年级有多少学生?2、为了解八年级学生的数学知识技能水平,教育局组织了一次数学知识竞赛,满分为100分.为掌握甲、乙两校学生本次竞赛的情况,李老师分别从两个学校的成绩中都随机抽取20个进行整理和分析.李老师将抽取的成绩用x 表示,分为A 、B 、C 、D 、E 五个等级(A :90100x <≤;B :8090x <≤;C :7080x <≤;D :6070x <≤;E :60x ≤),已知部分信息如下:甲校抽取的20名同学的成绩(单位:分)为:91,83,92,80,79,82,82,77,82,80,75,63,56,85,91,70,82,76,64,82已知乙校抽取的成绩中,有1名同学的成绩不超过60分. 乙校抽取的学生成绩扇形统计图甲、乙两校抽取的学生成绩数据统计表根据以上信息,解答下列问题:(1)直接写出上述图表中a 、b 、c 的值:=a ,b = ,c = ; (2)不用计算,根据统计表,判断哪个学校的成绩好一些?并说明理由;(3)若甲、乙两校的八年级学生人数分别为420人、450人,且都参加了此次知识竞赛,估计本次竞赛中,两个学校共有多少人的成绩达到A 级?3、为了了解我校学生对英语单词掌握的情况,现对全校学生进行英语百词测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1800人,请你估计此次测试中,全校达标的学生有多少人?4、某市提出城市核心价值观:“包容、尚德、守法、诚信、卓越”.某校德育处为了了解学生对城市核心价值观中哪一项内容最感兴趣,随机抽取了部分学生进行调查,并将调查结果绘成如图统计图.请你结合图中信息解答下列问题:(1)该校共调查了多少名学生;(2)补全条形统计图;(3)若该校共有2000名学生,估计对“卓越”最感兴趣的学生有多少人?5、12月,我校初2022届学生进行了一次体育机器模拟测试(包含跳绳、立定跳远、实心球三项,共计满分50分).测试完成后,为了解初2022届学生的体育训练情况,在初2022届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:20名女生的测试成绩统计如下:44,47,48,45,50,49,45,60,48,49,50,50,44,50,43,50,44,50,49,45.抽取的20名男生的测试成绩扇形统计图如下:其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.抽取男生与女生的学生的测试成绩的平均数、中位数、众数如下表所示:a______,b=______,c=______;(1)根据以上信息可以求出:=(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2022届学生中男生有700人,女生有900人,(规定49分及以上为优秀)请估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数.-参考答案-一、单选题【分析】首先求出丁同学的平均分和方差,然后比较平均数,平均数相同时选择方差较小的的同学参赛. 【详解】 解:根据题意, 丁同学的平均分为:9796989797975++++=,方差为:222221[(9797)(9697)(9897)(9797)(9797)]0.45-+-+-+-+-=; ∴丙同学和丁同学的平均分都是97分,但是丁同学的方差比较小, ∴应该选择丁同学去参赛; 故选:D . 【点睛】本题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 2、B 【分析】根据中位数的定义解答即可. 【详解】解:七个分数,去掉一个最高分和一个最低分,对中位数没有影响. 故选:B . 【点睛】本题主要考查了统计量的选择,掌握中位数的定义是解答本题的关键.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】解:∵x x x x =<=乙丙甲丁, ∴从丙和丁中选择一人参加比赛, ∵S 丙2>S 丁2, ∴选择丁参赛, 故选:D . 【点睛】此题考查了平均数和方差,正确理解方差与平均数的意义是解题关键. 4、A 【分析】根据条形统计图,发现最低分显然在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易. 【详解】解:根据条形统计图,发现最低分在第一次测验中;因为第二次测验的高分人数较多,所以第二次测验较容易. 故选A . 【点睛】条形统计图能清楚地表示出每个项目的数据,能够根据条形统计图读懂两者分别表示的意义是关键. 5、B 【分析】先计算平均数x =3,代入()()2221515S x x x x ⎡⎤=-+⋯+-⎣⎦计算即可. 【详解】∵1,2,3,4,5, ∴123455x ++++==3,∴()()()()()222222113233343535S ⎡⎤=-+-+-+-+-⎣⎦ =2, 故选B . 【点睛】本题考查了方差,熟练掌握方差的计算公式是解题的关键. 6、B 【分析】先将数据按从小到大排列,取中间位置的数,即为中位数. 【详解】解:将改组数据从小到大排列得:2,5,5,5,8,8,9, 中间位置的数为:5,所以中位数为5. 故选:B . 【点睛】本题主要是考查了中位数的定义,熟练掌握地中位数的定义,是求解该类问题的关键. 7、C 【分析】根据中位数、众数的意义求解即可.【详解】解:把已知数据按照由小到大的顺序重新排序后为36.2,36.2,36.3,36.3,36.3,36.4,36.7,该名同学这一周体温出现次数最多的是36.3℃,共出现3次,因此众数是36.3,将这七天的体温从小到大排列处在中间位置的一个数是36.3℃,因此中位数是36.3,故选:C.【点睛】本题考查中位数、众数,理解中位数、众数的意义是解题的关键.8、D【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、对兰州市初中生每天阅读时间的调查,工作量大,不易普查;B、对市场上大米质量情况的调查,调查具有破坏性,不易普查;C、对华为某批次手机防水功能的调查,调查具有破坏性,不易普查;D、对某班学生肺活量情况的调查,人数较少,适合普查;故选:D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、C【分析】根据相反数、正多边形、抽样调查、中点的相关定义逐项判断即可.【详解】解:A. 2-的相反数是-2,原选项不正确,不符合题意;B. 各边都相等,各角都相等的多边形叫正多边形,原选项不正确,不符合题意;C. 了解一沓钞票中有没有假钞,应采用普查的形式,原选项正确,符合题意;D. A、B、C三点共线时,若线段AB BC=,则点B是线段AC的中点,Am、B、C三点不共线时,则说法不成立,原选项不正确,不符合题意;故选:C.【点睛】本题考查了相反数、正多边形、全面调查和线段的中点,解题关键是熟记相关知识,准确进行判断.10、A【分析】先求得不合格人数,再根据频率的计算公式求得不合格人数的频率即可.【详解】解:不合格人数为4018175--=(人),∴不合格人数的频率是50.125 40=,故选:A.【点睛】本题主要考查了频率与概率,解题的关键是掌握频率是指每个对象出现的次数与总次数的比值(或者百分比).二、填空题1、5【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.2、166【分析】把10个数据按从小到大的顺序排列后,取中间两数的平均数即可. 【详解】把10个数据按从小到大的顺序排列为:140,142,155, 155,166,166,167,170,176,180,故这组数据的中位数是1661661662+=,故答案为:166【点睛】此题考查了中位数的定义,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.3、乙【分析】方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定,据此判断出小麦长势比较整齐的是哪块试验田即可.【详解】 解:∵13x =甲,13x =乙, ∴x x =甲乙,∵3.8<4,∴S 乙2<S 甲2,∴小麦长势比较整齐的试验田是乙试验田.故答案为:乙.【点睛】本题主要考查了方差的意义和应用,要熟练掌握,解答此题的关键是要明确:方差越大,表明这组数据偏离平均数越大,数据越不稳定;方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,数据越稳定.4、甲【分析】根据题意可得:22S S <甲乙,即可求解.【详解】 解:∵13x =甲,13x =乙,2=3.6S 甲,215.8S =乙. ∴22S S <甲乙,∴甲试验田麦苗长势比较整齐.故答案为:甲【点睛】本题主要考查了利用方差判断稳定性,熟练掌握一组数据方差越小越稳定是解题的关键. 5、21【分析】20个数据的总和为5241520420⨯+⨯=,故平均数为4202120=. 【详解】 解:5241520420212020N x n ⨯+⨯==== 故答案为:21.【点睛】本题考查了平均数.解题的关键是求出20个数据的总和.三、解答题1、(1)100,600;(2)图形见解析,108°;(3)500【分析】(1)根据娱乐的人数以及百分比求出总人数即可.再根据抽查的学生中爱好运动的学生比例计算全校爱好运动的人数.(2)求出阅读的人数,画出条形图即可,利用360°×百分比取圆心角.(3)根据总人数,个体,百分比之间的关系解决问题即可.【详解】(1)总人数=20÷20%=100(名),若该校共有1500名学生,估计全校爱好运动的学生有1500×40100=600(名). 故答案为100,600.(2)阅读人数10040201030---=人圆心角=30360108100⨯︒=︒ 条形图如图所示:故答案为108.(3)150÷30%=500(名),答:估计九年级有500名学生.【点睛】本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、(1)40a =,81b =,82c =;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)108人【分析】(1)B 等的人数=20-20×(1000+1000+3500)-1=8, 于是800100400020⨯=,可以确定a 值;先将数据排序,计算第10个,11个数据的平均数即可得到b ;确定出现次数最多的数据即可;(2)比较平均数,中位数,众数的大小,判断即可;(3)甲校约有34206320⨯=人,乙校约有45010%45⨯=人,求和即可.【详解】(1)∵B 等的人数=20-20×(1000+1000+3500)-1=8, ∴800100400020⨯=, ∴a =40;∵第10个,11个数据是80,82,∴b =8082812+=; ∵82出现次数最多,是5次,∴众数c =82;故答案为:40,81,82;(2)甲校的成绩好一些,因为甲校成绩的平均数、众数和中位数都高于乙校,所以甲校的成绩要好一些;(3)由题意,甲校约有34206320⨯=人,乙校约有45010%45⨯=人, ∴两校共约有63+45=108人的成绩达到A 级.【点睛】本题考查了扇形统计图,众数,平均数,中位数,样本估计总体的思想,熟练掌握三数的定义,并灵活计算是解题的关键.3、(1)120,统计图补充见详解;(2)96;(3)1440人.【分析】(1)用不合格人数24除以占比20%即可求出抽取人数未120人,用1减去优秀占比和不合格占比即可求出一般占比,用120乘以优秀占比50%即可求出优秀人数,再补充两幅统计图即可;(2)用120乘以优秀与一般占比之和,即可求出抽取学生中达标人数;(3)用1800乘以优秀与一般占比之和,即可估算出全校达标学生数.【详解】解:(1)24÷20%=120(人),1-50%-20%=30%,120×50%=60(人),故答案为:120,统计图补充如图:;(2)120×(50%+30%)=96(人),故答案为:96;(3)1800×(50%+30%)=1440(人),答:此次测试中,全校达标的人数约为1440人.【点睛】本题考查了扇形统计图与条形统计图,用样本估计总体等知识,根据两幅统计图提供的公共信息得到样本容量是解题关键.4、(1)500人;(2)见解析;(3)300人【分析】(1)用最感兴趣为“包容”的人数除以它所占的百分比即可得到调查学生的总数;(2)用总人数分别减去其他各项的人数得到最感兴趣为“尚德”的人数为100名;(3)用最感兴趣为“卓越”所占百分比乘以2000即可.【详解】解:(1)150÷30%=500(名),∴该校共调查了500名学生;(2)最感兴趣为“尚德”的人数=500−150−50−125−75=100(名),补全图形如图:(3)∵最感兴趣为“卓越”所占百分比=75500×100%=15%,∴2000×15%=300(名)所以该校共有2000名学生,估计全校对“卓越”最感兴趣的人数为300名.【点睛】本题考查了条形统计图和扇形统计图的综合,条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来;从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.5、(1)15,48,50;(2)女生的成绩较好,理由见解析;(3)755人.【分析】(1)由扇形统计图,可求出a的值,根据中位数的意义,将男生成绩排序,找出处于中间位置的两个数的平均值即为中位数,从女生成绩中找出出现次数最多的数即为众数;(2)通过比较平均数、中位数、众数的大小即可解答;(3)抽查女生20人中优秀的有10人,男生20人中优秀的9人,求出两个优秀占抽查总人数的比例,求出该校初2022届参加此次测试的学生中优秀的学生人数即可.【详解】解:(1)1-5%-5%-45%-30%=15%,15a ∴=由扇形统计图中,可知,男生成绩的中位数位于D 组,男生成绩第10,11个数成绩高于46,但不超过48分的成绩的较大的两个48,48,4848482b +∴== 女生成绩出现次数最多的是50,因此众数是50,50c ∴=故答案为:15,48,50;(2)女生的成绩较好,理由:男女生的平均数相等,女生的中位数、众数都比男生大,因此女生的成绩较好.(3)2045%=9⨯(人)1097009003504057552020⨯+⨯=+=(人) 答:估计该校初2022届参加此次体育测试的学生中成绩为优秀的学生人数为755人.【点睛】本题考查平均数、中位数、众数、统计表、理解平均数、中位数、众数的意义是解题关键,样本估计总体是统计中常用的方法.。
统计初步练习题姓名:学号:
一、填空、选择题:
1、我们所要考查的对象的叫做总体,其中叫做个体,从总体中抽取的叫做总体的一个样本,样本中叫做样本容量。
2、某校有520名学生参加数学考试,为了了解数学考试成绩情况,从中任抽取40份试卷进行分析,在这个问题中,总体是,个体是,样本是,样本容量是。
3、一个班50名学生中30名男学生的平均身高为1.60米,20名女生的平均身高为1.50米,那么这个班学生的平均身高是米。
4、样本1,-2,0,-1,1的众数是,平均数是,方差S2=
5、两名运动员,各进行了五百次百米成绩测验,甲成绩的方差为0.035,乙成绩的方差为0.008,由此可以估计出的成绩比的成绩稳定。
6、已知一个样本:1,4,2,5,3,那么这个样本的标准差是。
7、2004年5月,某市市区一周空气空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数是。
8、从16000名考生的数学试卷中抽出600份试卷进行质量分析,下面的判断中,正确的是()。
A、600是样本容量;
B、600份试卷是总体;
C、16000份试卷是样本;
D、16000是样本容量。
9、为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题中的样本是()。
A、这批电视机的寿命;
B、抽取的100台电视机;
C、100;
D、抽取的100台电视机的寿命。
10、在频率分布直方图中,各小长方形的面积之和()。
A、小于1;
B、等于1;
C、大于1;
D、以上都不对;
二、解答下列各题:
1、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个。
在西瓜上市前,该瓜农随机摘下了10个成熟的西瓜,称重如下:
西瓜质量(千克):5.5 5.4 5.0 4.9 4.6 4.3
西瓜数量(个): 1 2 3 2 1 1
计算这10个西瓜的平均质量,并根据计算结果估计这亩地的西瓜产量约是多少千克。
2、已知一组数据:26,26,24,22,24,26,28,26,28,26,
30,22,26,24,28,30,26,26,30,28。
(1)、求众数。
答:众数是。
(2)、求平均数。
答:平均数是。
(3)按表中分组填写频率分布表:
3、甲、乙两人在相同的条件下各射靶10次,射靶的成绩如下:
甲(环数)3 4 6 8 7 7 8 8 9 10
乙(环数)5 9 6 8 7 7 8 6 7 7
4、为了了解某校初三毕业班300名学生的视力情况,从中抽测了一部分学生的视力,通过数据整理如下:
(1)在这个问题中,总体是
(2)将频率分布表中的空白补充完整。
(3)若视力为4.9、5.0、5.1属于正常,不需矫正,试估计该校毕业班学生视力正常的人数约为多少人?
5、如图是某校初三年级部分学生做引体向上的成绩整理后,分成五组,画出的频率分布直方图,已知从左至右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数是25,回答下列问题。
(1)、第五小组的频率是多少?
(2)五个小组学生的总人数是多少?
(3)如果做20次以上为及格(包括20次)
求此次测试中五个小组的及格人数。
6、某中学举行了一次演讲比赛,分数统计参赛同学的成绩,结果如
(1)、参加这次演讲比赛的同学共有人。
(2)、已知成绩在91—100分的同学为优胜者,那么,优胜率为。
(3)、将成绩频率分布直方图补充完整。
7、某公司销售部有营销人员15人,销售部为了制定某种商品的月销
8、某校初三学生进行体育毕业测试。
下面是根据初三(1)班男生的立定跳远成绩,绘制的频率分布直方图如图,图中从左到右各小长方形的高的比是1:2:5:6:4,最后一组的频数是8,根据直方图所表达的信息解答下列问题:(1)该班共有多少名男生?(2)若立定跳远的成绩在2.00米以上(包括2.00米)为为合格,求该班男生这项测试成绩的合格率。