八年级数学下册19.1函数19.2.1正比例函数特色训练题(新版)新人教版
- 格式:doc
- 大小:177.00 KB
- 文档页数:3
初中数学人教版八年级下学期第十九章19.2.1 正比例函数一、单选题1.关于正比例函数y=-3x,下列结论正确是()A. 图象不经过原点B. y的值随着x增大而增大C. 图象经过二、四象限D. 当x =1时,y=32.在直角坐标系中,已知点(2,b)在直线y=2x上,则b的值为( )A. 1B. -1C. 4D. -43.若点P(-1,3)在过原点的一条直线上,则这条直线所对应的函数解析式为( )A. y=-3xB. y=xC. y=3x-1D. y=1-3x4.正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A. B. C. D.5.P1(x1,y1),P2(x2,y2)是正比例函数y=﹣2x图象上的两点,则下列判断正确的是()A. y1>y2B. y1<y2C. 当x1<x2时,y1>y2D. 当x1<x2时,y1<y26.在函数y=kx(k<0)的图象上有A(1,y1),B(﹣1,y2),C(﹣2,y3)三个点,则下列各式正确的是()A. y1<y2<y3B. y1<y3<y2C. y3<y2<y1D. y2<y3<y17.如图:三个正比例函数的图象分别对应的解析式是①y=ax,②y=bx,③y=cx,则a、b、c 的大小关系是()A. B. C. D.二、填空题8.已知正比例函数y=-2x,则当x=-1时,y=________.9.在函数y=2x中,y的值随x值的增大而________.(填“增大”或“减小”)10.在正比例函数y=(m-8)x中,如果y的值随自变量x的增大而减小。
那么m的取值范围是________。
三、综合题11.设y与x-2成正比,且x=-2,y=4。
(1)写出y与x之间的函数表达式;(2)若点P(m,)在这个函数图象上,求m的值。
12.已知y与x+1.5成正比例,且x=2时,y=7.(1)求y与x之间的函数表达式;(2)若点P(-2,a)在(1)所得的函数图象上,求a.答案解析部分一、单选题1. C解:A、图象经过原点,不符合题意;B、y随x的增大而减小,不符合题意;C、图象经过第二、四象限,符合题意;D、当x=1时,y=-3,不符合题意;故答案为:C.分析:根据正比例函数的性质直接解答即可.2. D解:将点(2,b)代入直线y=2x中,得2×2=b,∴b=4.故选B.分析:直接将点(2,b)代入直线y=2x中,求出b值即可.3. A解:设这条过原点的直线的解析式为:y=kx,∵该直线过点P(-1,3),∴-k=3,即k=-3,∴这条直线的解析式为:y=-3x.故答案为:A.分析:由该函数的图象过坐标原点得出该函数为正比例函数,从而利用待定系数法即可求解.4. A正比例函数y=kx(k≠0)的函数值y随着x增大而减小,可得知k<0,则一次函数y=x+k 图像应为A.故答案为:A.分析:根据正比例函数的性质,判断出k的取值范围,从而得到一次函数的图像。
人教版数学八年级下册第19章第2节第1课时正比例函数同步检测一、选择题1.下列y关于x的函数中,是正比例函数的为()A.y=2x B.y=2xC.y=2xD.y=12x答案:C知识点:正比例函数的图象和性质解析:解答:A.y是x的二次函数,故A选项错误;B.y是x的反比例函数,故B选项错误;C.y是x的正比例函数,故C选项正确;D.y是x的一次函数,故D选项错误;故选C.分析:正比例函数的定义来判断即可得出答案.正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.2.若y关于x的函数y=(m-2)x+n是正比例函数,则m,n应满足的条件是()A.m≠2且n=0 B.m=2且n=0 C.m≠2D.n=0答案:A知识点:正比例函数的图象和性质解析:解答:∵y关于x的函数y=(m-2)x+n是正比例函数,∴m-2≠0,n=0.解得m≠2,n=0.故选:A.分析:根据正比例函数的定义列出:m-2≠0,n=0.据此可以求得m,n应满足的条件.3. 下列问题中,两个变量成正比例的是()A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积和它的边长C.长方形的一边长确定,它的周长与另一边长D.长方形的一边长确定,它的面积与另一边长答案:D知识点:正比例函数的图象和性质解析:解答:A.等腰三角形的面积一定,它的底边和底边上的高成反比例,故本选项错误;B.等边三角形的面积是它的边长的二次函数,故本选项错误;C.长方形的一边长确定,它的周长与另一边长成一次函数,故本选项错误;D.长方形的一边长确定,它的面积与另一边长成正比例,故本选项正确.故选D.分析:根据正比例函数及反比例函数的定义对各选项进行逐一分析即可.4.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0答案:C知识点:正比例函数的图象和性质解析:解答:A.函数图象经过点(2,4),错误;B.函数图象经过第一、三象限,错误;C.y随x的增大而增大,正确;D.当x>0时,才有y>0,错误;故选C.分析:根据正比例函数的性质对各小题进行逐一判断即可.5.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.-2 C.4 D.-4答案:B知识点:正比例函数的图象和性质解析:解答:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=-2,故选B分析:直接根据正比例函数的性质和待定系数法求解即可.正比例函数的性质:正比例函数y=kx(k≠0)的图象为直线,当k>0,图象经过第一、三象限,y值随x的增大而增大;当k<0,图象经过第二、四象限,y值随x的增大而减小.6.正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1答案:A知识点:正比例函数的图象和性质解析:解答:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.分析:根据正比例函数的性质;当k<0时,正比例函数y=kx的图象在第二、四象限,可确定k的取值范围,再根据k的范围选出答案即可.7.对于函数y=-2k x(k是常数,k≠0)的图象,下列说法不正确的是()A.是一条直线B.过点(1k,-k)C.经过一、三象限或二、四象限D.y随着x增大而减小答案:C知识点:正比例函数的图象和性质解析:解答:∵k≠0∴-2k>0∴-2k<0∴函数y=-2k x(k是常数,k≠0)符合正比例函数的形式.∴此函数图象经过二四象限,y随x的增大而减小,∴C错误.故选C.分析:先判断出函数y=-2k x(k是常数,k≠0)图象的形状,再根据函数图象的性质进行分析解答.8.若正比例函数y=kx的图象经过点(-2,3),则k的值为()A.32B.-23C.23D.-32答案:D知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=kx的图象经过点(-2,3),9.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1 C.±1 D.-1答案:A知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=kx的图象在第一、三象限,∴k>0,故选:A.分析:根据正比例函数的性质可得k>0,再根据k的取值范围可以确定答案.10.在正比例函数y=-3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=-3mx中,函数y的值随x值的增大而增大,∴-3m>0,解得:m<0,∴P(m,5)在第二象限,故选:B.分析:根据正比例函数的性质可得-3m>0,解不等式可得m的取值范围,再根据各象限内点的坐标符号可得答案.11.已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定答案:B知识点:正比例函数的图象和性质解析:解答:∵点(2,-3)在正比例函数y=kx(k≠0)上,∴函数图象经过二四象限,∴y随着x的增大而减小,故选B.分析:首先根据函数的图象经过的点的坐标确定函数的图象经过的象限,然后确定其增减性即可.12.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1答案:A知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=(m+1)x中,y的值随自变量x的值增大而减小,∴m+1<0,解得,m<-1;故选A.分析:根据正比例函数图象与系数的关系列出关于k的不等式m+1<0,然后解不等式即可.13.已知正比例函数y=kx(k≠0),当x=-1时,y=-2,则它的图象大致是()A. B.C. D.答案:C知识点:正比例函数的图象和性质解析:解答:将x=-1,y=-2代入正比例函数y=kx(k≠0)得,-2=-k,k=2>0,∴函数图象过原点和一、三象限,故选C.分析:将x=-1,y=-2代入正比例函数y=kx(k≠0),求出k的值,即可根据正比例函数的性质判断出函数的大致图象.14.如图,三个正比例函数的图象对应的解析式为①y=ax,②y=bx,③y=cx,则a、b、c的大小关系是()A.a>b>c B.c>b>a C.b>a>c D.b>c>a答案:B知识点:正比例函数的图象和性质解析:解答:∵y=ax,y=bx,y=cx的图象都在第一三象限,∴a>0,b>0,c>0,∵直线越陡,则|k|越大,∴c>b>a,故选:B.分析:根据所在象限判断出a、b、c的符号,再根据直线越陡,则|k|越大可得答案.15.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限答案:D知识点:正比例函数的图象和性质解析:解答:∵k=-1<0,∴一次函数y=-x的图象经过二、四象限,∴一次函数y=-x的图象平分二、四象限.故选D.分析:根据一次函数的性质判断出一次函数y=-x的图象所经过的象限,进而可得出答案.二、填空题16.若直线y=kx(k≠0)经过点(-2,6),则y随x的增大而答案:减小知识点:正比例函数的图象和性质解析:解答:∵直线y=kx(k≠0)经过点(-2,6),∴6=-2•k,∴k=-3<0,∴y随x的增大而减小.故答案为:减小.分析:先把(-2,6)代入直线y=kx,求出k,然后根据正比例函数的性质即可得到y随x的增大而怎样变化.17.正比例函数y=(2m+3)x中,y随x的增大而增大,那么m的取值范围是答案:m>-1.5知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=(2m+3)x中,y随x的增大而增大,∴2m+3>0,解得m>-1.5.故答案为;m>-1.5.分析:先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.18.已知正比例函数y=(4m+6)x,当m时,函数图象经过第二、四象限.答案:m<-1.5知识点:正比例函数的图象和性质解析:解答:∵正比例函数y=(4m+6)x,函数图象经过第二.四象限,∴4m+6<0,解得:m<-1.5,故答案为:m<-1.5分析:当一次函数的图象经过二.四象限可得其比例系数为负数,据此求解.19.请写出一个y随x增大而增大的正比例函数表达式,y=答案:2x知识点:正比例函数的图象和性质解析:解答:∵正比例函数y随x增大而增大,所以正比例函数的k必须大于0.令k=2,可得y=2x,故答案为y=2x.分析:根据正比例函数的意义,可得正比例函数的解析式,根据函数的性质,可得答案.20.在y=5x+a-2中,若y是x的正比例函数,则常数a=答案:2知识点:正比例函数的图象和性质解析:解答:∵一次函数y=5x+a-2是正比例函数,∴a-2=0,解得:a=2.故答案为:2;分析:一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,由此可得a-2=0,解出即可.三、解答题21.已知y=(k-3)x+2k-9是关于x的正比例函数,求当x=-4时,y的值.答案:24知识点:正比例函数的图象和性质解析:解答:当2k-9=0,且k-3≠0时,y是x的正比例函数,故k=-3时,y是x的正比例函数,∴y=-6x,当x=-4时,y=-6×(-4)=24.分析:利用正比例函数的定义得出k的值即可,得到函数解析式,代入x的值,即可解答.22.已知正比例函数y=(m+2)x中,y的值随x的增大而增大,而正比例函数y=(2m-3)x,y的值随x的增大而减小,且m为整数,你能求出m的可能值吗?为什么?答案:-1,0,1.知识点:正比例函数的图象和性质解析:解答:m的可能值为-1,0,1.理由如下:∵正比例函数y=(m+2)x中,y的值随x的增大而增大,∴m+2>0,解得m>-2.∵正比例函数y=(2m-3)x,y的值随x的增大而减小,∴2m-3<0,解得m<1.5.∵m为整数,∴m的可能值为-1,0,1.分析:先根据正比例函数y=(m+2)x中,y的值随x的增大而增大,得出m+2>0,解得m>-2.再由正比例函数y=(2m-3)x,y的值随x的增大而减小,得出2m-3<0,解得m<1.5.又m为整数,即可求出m的可能值.23.已知正比例函数y=kx.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)点(1,-2)在它的图象上,求它的表达式.答案:(1)k<0;(2)y=-2x知识点:正比例函数的图象和性质解析:解答:(1)∵函数图象经过第二、四象限,∴k<0;(2)当x=1,y=-2时,则k=-2,即:y=-2x.分析:(1)根据正比例函数图象的性质,得k<0;(2)只需把点的坐标代入即可计算.24.已知A、B两地相距30km,小明以6km/h的速度从A步行到B地的距离为y km,步行的时间为x h.(1)求y与x之间的函数表达式,并指出y是x的什么函数;(2)写出该函数自变量的取值范围.答案:(1)正比例函数;(2) 0≤x≤5.知识点:正比例函数的图象和性质解析:解答:(1)由题意可得:y=6x,此函数是正比例函数;(2)∵A、B两地相距30km,∴0≤6x≤30,解得:0≤x≤5,即该函数自变量的取值范围是:0≤x≤5.分析:(1)利用行驶的距离与速度与时间的关系得出答案;(2)利用两地的距离得出x的取值范围.25.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.答案:(1)y=-23x(2) (5,0)或(-5,0)知识点:正比例函数的图象和性质解析:解答:如图:(1)∵点A的横坐标为3,且△AOH的面积为3 ∴点A的纵坐标为-2,点A的坐标为(3,-2),∵正比例函数y=kx经过点A,∴3k=-2解得k=−23,∴正比例函数的解析式是y=−23 x;(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5,∴点P的坐标为(5,0)或(-5,0).分析:(1)根据题意求得点A的坐标,然后利用待定系数法求得正比例函数的解析式;(2)利用三角形的面积公式求得OP=5,然后根据坐标与图形的性质求得点P的坐标.。
人教版八年级下第十九章一次函数 19.2 一次函数—19.2.1 正比例函数姓名:________ 班级:________ 成绩:________一、单选题1 . 若点P(﹣3+a,a)在正比例函数y=﹣x的图象上,则a的值是()C.1D.﹣1A.B.﹣2 . 正比例函数y=kx与一次函数y=kx+k在同一坐标系中的大致图象可能是()A.B.C.D.3 . 某科研小组在网上获取了声音在空气中传播的速度y与空气温度x关系的一些数据(如下表):下列说法错误的是()A.在这个变化中,自变量是温度,因变量是声速B.温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740m D.温度每升高10℃,声速提高6m/s.4 . 下列函数中,是一次函数但不是正比例函数的是()A.B.C.D.5 . 若函数y=(2m+6)x+(1-m)是正比例函数,则m的值是()A.-3B.1C.-7D.36 . 经过以下一组点可以画出函数图象的是()A.和B.和C.和D.和7 . 已知正比例函数的图像经过第一、三象限,则一次函数的图像可能经过()象限A.一、二、四B.一、二、三C.二、三、四D.一、三、四8 . 若正比例函数y=(1﹣m)x中y随x的增大而增大,那么m的取值范围()A.m>0B.m<0C.m>1D.m<19 . 正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2B.-2C.4D.-410 . 下列各函数中,y是x的正比例函数的是()A.y=3x2B.y=C.y=D.y=11 . 若与成正比例,则()A.y是x的正比例函数B.y是x的一次函数C.y与x没有函数关系D.以上都不正确12 . 关于正比例函数,下列说法正确的是()A.图象经过点B.图象经过第一象限C.时D.随的增大而增大13 . 一次函数的图象如图所示,则当时,的取值范围是()A.B.C.D.14 . 关于正比例函数y=-2x,下列说法错误的是()A.图象经过原点B.图象经过第二,四象限C.y随x增大而增大D.点(2,-4)在函数的图象上15 . 一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限16 . 已知函数是正比例函数,且图像在第二、四象限内,则的值是()A.2B.C.4D.17 . 如图为一次函数y=kx+b(k≠0)的图象,则下列正确的是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<018 . 正比例函数y=kx(k≠0)的图象经过点(﹣1,2),并且点A(x1,y1),B(x2,y2)也在该正比例函数图象上,若x1﹣x2=3,则y1﹣y2的值为()A.3B.﹣3C.6D.﹣619 . 下列函数中,y是x的正比例函数的是()A.y=2x﹣1C.y=2x2D.y=﹣2x+1B.20 . 若函数是一次函数,则k应满足的条件为()A.B.C.D.二、填空题21 . 如果函数是x的正比例函数,那么这个函数的解析式是______________.22 . 若一个正比例函数的图象经过、)两点,则的值为__________.23 . 已知y+2与x-1成正比例,且x=3时y=4,则y与x之间的函数关系式为________.24 . 正比例函数的图像一定经过的点的坐标为______.25 . 在下列四个函数①y=2x;②y=﹣3x﹣1;③y=;④y=x2+1(x<0)中,y随x的增大而减小的有________(填序号).26 . 已知正比例函数的图象经过点(﹣1,3),那么这个函数的解析式为_____.27 . 已知点A(1,-2),若A,B两点关于轴对称,则B点的坐标为______,若点(3,)在函数的图象上,则=_______.28 . 设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.三、解答题29 . 某大型水果超市销售无锡水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如表关系:每箱售价x(元)68676665 (40)每天销量y(箱)40455055 (180)已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?(3)七月份连续阴雨,销售量减少,超市决定采取降价销售,所以从7月17号开始水蜜桃销售价格在(2)的条件下,下降了m%,同时水蜜桃的进货成本下降了10%,销售量也因此比原来每天获得1600元盈利时上涨了2m%(m <100),7月份(按31天计算)降价销售后的水蜜桃销售总盈利比7月份降价销售前的销售总盈利少7120元,求m 的值.30 . 已知y=y1-y2,y1与x2成正比例,y2与x+3成反比例,当x=0时,y=2;当x=2时,y=0,求y 与x的函数关系式,并指出自变量的取值范围.31 . 已知y=y1﹣y2,y1与x2成正比例,y2与x﹣1成反比例,当x=﹣1时,y=3;当x=2时,y=﹣3.(1)求y与x之间的函数关系;(2)当x=时,求y的值.32 . 一次函数的图象经过点A(2,4)和B(﹣1,﹣5)两点.(1)求出该一次函数的表达式;(2)判断(﹣5,﹣4)是否在这个函数的图象上?33 . 海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐,潮汐与人类的生活有着密切的关系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深.T(时) 0 3 6 9 12h(米) 5 7.4 5.1 2.6 4.5上述问题中,T,h是变量还是常量,简述你的理由.34 . 画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.35 . 已知函数y=(k为常数).(1)k为何值时,该函数是正比例函数;(2)k为何值时,正比例函数过第一、三象限,写出正比例函数解析式;(3)k为何值时,正比例函数y随x的增大而减小,写出正比例函数的解析式.参考答案一、单选题1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、二、填空题1、2、3、4、5、6、7、8、三、解答题1、2、3、4、5、6、7、。
初中数学试卷 鼎尚图文**整理制作八年级下册第十九章19.2.1正比例函数的图象(练)一、选择题(每小题5分,共20分)1.已知正比例函数y=kx (k <0)的图象上两点A (x 1,y 1)、B (x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1﹣y 2>0D .y 1﹣y 2<0【答案】C【解析】试题分析:根据k <0,正比例函数的函数值y 随x 的增大而减小解答. ∵直线y=kx 的k <0, ∴函数值y 随x 的增大而减小, ∵x 1<x 2, ∴y 1>y 2, ∴y 1﹣y 2>0. 考点:(1)、一次函数图象上点的坐标特征;(2)、正比例函数的图象.2. 一个正比例函数的图象经过点(-2,4),它的表达式为 ( )A . 2y x =-B . 2y x =C .12y x =-D . 12y x = 【答案】A【解析】试题分析:设正比例函数的解析式为:y=kx ,将(-2,4)代入可得:k=-2,即正比例函数的表达式为:y=-2x.考点:正比例函数解析式3. 如果一个正比例函数的图象经过不同象限的两点A (2,m ),B (n ,3),那么一定有( )A .m >0,n >0B .m >0,n <0C .m <0,n >0D .m <0,n <0【答案】D【解析】试题分析:A 、m >0,n >0,A 、B 两点在同一象限,故A 错误;B、m>0,n<0,A、B两点不在同一个正比例函数,故B错误;C、m<0,n>0,A、B两点不在同一个正比例函数,故C错误;D、m<0,n<0,A、B两点在同一个正比例函数的不同象限,故D正确.故选:D.考点:正比例函数的性质.4. 已知正比例函数x(-=的图象过第二、四象限,则m的取值范围是( )y)3mA. m≥3 B.m>3 C.m≤3 D.m<3【答案】D【解析】试题分析:根据正比例函数的性质,由图像经过二、四象限,可知m-3<0,即m<3.故选:D考点:正比例函数二、填空题(每小题5分,共20分)5. 将直线y=2x向下平移3个单位后所对应的函数关系式为.【答案】y=2x﹣3.【解析】试题分析:根据平移k值不变,只有b只发生改变解答即可.∵将直线y=2x向下平移3个单位后,∴对应的函数关系式为y=2x﹣3.故答案为:y=2x﹣3.考点:一次函数图象与几何变换.6. 如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是 .【答案】32+【解析】试题分析:PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=12AB=22,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=2PE=2,所以a=3+2.考点:垂径定理7. 函数y=kx的图象经过点(1,3),则实数k= .【答案】3【解析】试题分析:直接把点(1,3)代入y=kx,然后求出k即可.解:把点(1,3)代入y=kx,解得:k=3,故答案为:3考点:本题考查了待定系数法求正比例函数解析式:设正比例函数解析式为y=kx(k≠0),然后把正比例函数图象上一个点的坐标代入求出k即可.8. 已知一个正比例函数的图象经过点(﹣1,2),则这个正比例函数的解析式是.【答案】y=﹣2x【解析】试题分析:设正比例函数的解析式y=kx,再把点(﹣1,2)代入,从而得出这个正比例函数的解析式.解:设正比例函数的解析式y=kx,把点(﹣1,2)代入y=kx,∴﹣k=2,∴k=﹣2,∴这个正比例函数的解析式为y=﹣2x,故选y=﹣2x.考点:本题考查了用待定系数法求正比例函数的解析式,求出k的值是解题的关键.三、简答题(每题30分,共60分)9.已知:y与x+2成正比例,且x=1时,y=﹣6.(1)求y与x之间的函数关系式;(2)若点M(m,4)在这个函数的图象上,求点M的坐标.【答案】(1)y=﹣2x﹣4;(2)M(﹣4,4).【解析】试题分析:(1)根据题意设出函数解析式,把当x=1时,y=﹣6代入解析式,便可求出未知数的值,从而求出其解析式;(2)将点M(m,4)代入函数的解析式中,即可求得m的值.(1)根据题意:设y=k(x+2),把x=1,y=﹣6代入得:﹣6=k(1+2),解得:k=﹣2.则y与x函数关系式为y=﹣2(x+2),即y=﹣2x﹣4;(2)把点M(m,4)代入y=﹣2x﹣4,得:4=﹣2m﹣4,解得m=﹣4,所以点M的坐标是(﹣4,4).考点:本题考查了待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.10. 十一期间,小明和小亮相约从长春出发到某市某游乐园游玩,小明乘私家车从长春出发1小时后,小亮乘“和谐号”动车从长春出发,先到某市火车站A,然后乘出租车去游乐园B(换车时间忽略不计),两人恰好同时到达游乐园,他们离开长春的距离y(千米)与小明乘车时间t(时)的函数图象如图所示.(1)求“和谐号”动车的速度.(2)当小亮到达某市火车站时,求小明距离游乐园的距离.(3)若小明乘私家车从长春到达游乐园的时间比原来要提前18分钟,则私家车速度应比原来增加多少?【答案】(1)240千米/时.(2)56千米.(3)10千米/时.【解析】试题分析:(1)根据速度=路程÷时间,可得出“和谐号”动车的速度;(2)根据距离=速度×时间可得出小亮乘“和谐号”动车的函数表达式,由图象交点横坐标为1.5可得出此时距离游乐园的距离,由该点的坐标可得出小明乘私家车的函数表达式,求出t=2时y的值,用216减去此时的y值即可得出结论;(3)先通过(2)中得出的小明乘私家车的函数表达式计算出小明到达游乐园的时间,在此时间上减去0.3小时(18分钟),再根据速度=路程÷时间得出提速后的速度,用此速度减去提速前的速度即可得出结论.试题解析:(1)240÷(2-1)=240(千米/时).答:“和谐号”动车的速度为240千米/时.(2)由(1)知,小亮乘“和谐号”动车的函数表达式为y=240(t-1)=240t-240(1≤t≤2),当t=1.5时,y=240×1.5-240=120.设小明乘私家车的函数表达式为y=kt,则有120=1.5k,解得:k=80,∴y=80t.当t=2时,y=80×2=160,216-160=56(千米).∴当小亮到达某市火车站时,小明距离游乐园的距离为56千米.(3)当y=216时,则有80t=216,解得:t=2.7.∵18分钟=0.3小时,∴2.7-0.3=2.4(小时),∴216÷2.4=90(千米/时),90-80=10(千米/时).答:私家车速度应比原来增加10千米/时.考点:一次函数的应用.。
新人教版八年级下数学《函数》练习题新人教版八年级下数学《函数》练题19.1 函数19.1.1 变量与函数课前预要点感知1:在一个变化过程中,数值发生的量叫做变量,数值始终不变的量叫做常量。
预练1-1:如果直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为x,常量为90.要点感知2:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数。
如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。
预练2-1:如果球的体积为V,半径为R,则V=πR^3.其中自变量是R,函数是V。
要点感知3:函数自变量的取值范围既要满足函数关系式,又要满足实际问题。
预练3-1:甲乙两地相距100km,一辆汽车以每小时40km的速度从甲地开往乙地,t小时与乙地相距s km,s与t的函数解析式是s=40t,自变量t的取值范围是0≤t≤2.5.当堂训练知识点1:变量与常量1.圆周长公式C=2πR中,下列说法正确的是(B)R是变量,2、π、C为常量。
2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?1)购买单价为5元的钢笔n支,共花去y元;变量是n,常量是5.2)全班50名同学,有a名男同学,b名女同学;变量是a、b,常量是50.3)汽车以60km/h的速度行驶了t h,所走过的路程为s km;变量是t,常量是60.知识点2:函数的有关概念3.下列关系式中,一定能称y是x的函数的是(B)y=3x-1.4.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y=7.85x,其中x是自变量,y是的函数。
5.当x=2和x=-3时,分别求下列函数的函数值。
1)y=(x+1)(x-2);当x=2时,y=0;当x=-3时,y=20.2)y=2x^2-3x+2;当x=2时,y=8;当x=-3时,y=29.知识点3:函数的解析式及自变量的取值范围6.(云南中考)函数y=(x-2)/x的自变量x的取值范围为(x≠2)。
一次函数19.2.1 正比例函数课堂练习:1.下列函数中,y是x的正比例函数的是( )A.y=2x-1B.y=2xC.y=2x2D.y=kx【答案】B2.函数y=(2﹣a)x+b﹣1是正比例函数的条件是()A.a≠2 B.b=1C.a≠2且b=1 D.a,b可取任意实数【答案】C.【解析】解:根据正比例函数的意义得出:2﹣a≠0,b﹣1=0,∴a≠2,b=1.故选C.3.y与x成正比,当x=2时,y=8,那么当y=16时,x为()A.4 B.﹣4 C.3 D.﹣3【答案】A.【解析】设y=kx,当x=2时,y=8,则8=2k,解得,k=4.∴函数解析式为y=4x,把y=16代入可得:16=4x,解得:x=4,故选:A.4.已知函数y=(m+1)是正比例函数,且图象在第二、四象限内,则m的值是()A.2 B.﹣2 C.±2D.【答案】根据正比例函数的定义得出m2﹣3=1,m+1<0,进而得出即可.5.若函数y=(a+3)x+a2﹣9是正比例函数,则a= ,图象过象限.【答案】3,一、三【解析】解:根据正比例函数的定义,可得a+3≠0,a2﹣9=0,∴a=3,此时a+3=6>0,∴图象过一、三象限.6.若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以是.(写出一个即可)【答案】-2.【解析】解:∵正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,∴k<0,则k=﹣2.故答案为:﹣2.(填7.已知正比例函数y=kx(k≠0)的图象经过点(﹣4,2),那么函数值y随自变量x的值的增大而.“增大”或“减小”)【答案】减小【解析】首先把x=﹣4,y=2代入,得﹣4k=2,k=﹣<0,∴再根据正比例函数图象的性质,得y随x的增大而减小.故填:减小.8.已知y﹣2与x成正比例,且x=2时,y=﹣6.求:(1)y与x的函数关系式;(2)当y=14时,x的值.【答案】(1)y=﹣4x+2;(2)x=﹣3.课后练习:1.函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【答案】A.【解析】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.故选:A.2.下列问题中,两个变量成正比例关系的是()A.等腰三角形的面积一定,它的底边和底边上的高B.等边三角形的面积与它的边长C.长方形的长确定,它的周长与宽D.长方形的长确定,它的面积与宽【答案】D.【解析】解:A、等腰三角形的面积一定,它的底边和底边上的高成反比,故A错误;B、设等边三角形的边长为a,则面积S==,故B错误;C、周长=2倍的长+2倍的宽,故C错误;D、长方形的面积=长×宽,故D正确.故选:D.3. 已知y-1与x成正比,当x=2时,y=9;那么当y=-15时,x的值为()A.4 B.-4 C.6 D.-6【答案】B.4.已知函数y=(1﹣3m)x是正比例函数,且y随x的增大而增大,那么m的取值范围是()A.m>B.m<C.m>1 D.m<1【答案】B【解析】解:∵正比例函数y=(1﹣3m)x中,y随x的增大而增大,∴1﹣3m>0,解得m<.故选:B.5.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【答案】C.【解析】∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,6.已知正比例函数y=kx (k≠0),当x=﹣1时,y=﹣2,则它的图象大致是()A. B. C. D.【答案】C.【解析】解:将x=﹣1,y=﹣2代入正比例函数y=kx (k≠0)得,﹣2=﹣k,k=2>0,∴函数图象过原点和一、三象限,故选C.7.对于y=k2x(k≠0)的图象下列说法不正确的是()A.是一条直线B.过点(,k)C.经过一、三象限或二、四象限D.y随x增大而增大【答案】C.8.下列三个函数y=﹣2x,y=﹣x,y=(﹣)x的共同点是:(1);(2);(3).【答案】(1)图象都是经过原点的直线;(2)图象都在二、四象限;(3)y都是随x的增大而减小【解析】(1)图象都是经过原点的直线;(2)图象都在二、四象限;(3)y都是随x的增大而减小.9.已知函数y=(k+)(k为常数),求:(1)k为何值时,正比例函数y随x的增大而增大;(2)k为何值时,正比例函数y随x的增大而减小;(3)请分别画出(1)、(2)的函数图象;(4)点A(2,5)与点B(2,3)分别位于哪一函数图象上?【答案】(1)k为2时,正比例函数y随x的增大而增大;(2)k为﹣2时,正比例函数y随x的增大而减小;(3)见解析;(4)点(2,5)在上函数y=x的图象,点(2,﹣3)在函数为y=﹣x的图象上.【解析】(1)根据题意得k+>0且k2﹣3=1,解得k=2,即k为2时,正比例函数y随x的增大而增大;(2)根据题意得k+<0且k2﹣3=1,解得k=﹣2,即k为﹣2时,正比例函数y随x的增大而减小;(3)(1)中的正比例函数为y=x,(2)中的正比例函数为y=﹣x,过(0,0)、(2,5)画直线得到函数y=x的图象,过(0,0)、(2,﹣3)画直线得到正比例函数为y=﹣x 的图象,如图;(4)点(2,5)在上函数y=x的图象,点(2,﹣3)在函数为y=﹣x的图象上.。
19.2.1《正比例函数》精选练习一、选择题1.下列关系中的两个量成正比例的是()A.从甲地到乙地,所用的时间和速度B.正方形的面积与边长C.买同样的作业本所要的钱数和作业本的数量D.人的体重与身高2.若y=x+2–b是正比例函数,则b的值是( )A.0B.–2C.2D.–0.53.已知是正比例函数,则m的值是( )A.8B.4C.±3D.34.已知y关于x成正比例,且当x=2时,y=-6,则当x=1时,y的值为( )A.3B.-3C.12D.-125.下列式子中,表示y是x的正比例函数的是()A.y=x2B.C.D.y2=3x6.若某正比例函数过(2,-3),则关于此函数的叙述不正确的是()A.函数值随自变量x的增大而增大B.函数值随自变量x的增大而减小C.函数图象关于原点对称D.函数图象过二、四象限7.正比例函数y=kx(k>0)的图象大致是()A. B. C. D.8.正比例函数y=kx的图象如图所示,则k的值为( )A. B. C. D.9.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A. B. C. D.10.下列关于正比例函数y=-5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线D.它的图象经过第一、三象限11.在正比例函数y=–3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在( )A.第一象限B.第二象限C.第三象限D.第四象限12.在y=(k+1)x+k 2-1中,若y 是x 的正比例函数,则k 值为( )A.1B.-1C.±1D.无法确定二、填空题13.已知函数y=(m ﹣1)x+m 2﹣1是正比例函数,则m=_____.14.若是正比例函数,则(a-b)2020的值是________.15.已知y 与x 成正比例,并且x=-3时,y=6,则y 与x 的函数关系式为________.16.若k>0,x>0,则关于函数y=kx 的结论:①y 随x 的增大而增大;②y 随x 的增大而减小;③y 恒为正值;④y 恒为负值.正确的是________.(直接写出正确结论的序号)17.已知正比例函数y=kx(k ≠0),当-3≤x ≤1时,对应的y 的取值范围是-1≤y ≤31,且y 随x 的减小而减小,则k 的值为________.18.已知正比例函数的图像经过点M(-2,1)、A(x 1,y 1)、B(x 2,y 2),如果x 1<x 2,那么y 1____y 2.(填“>”、“=”、“<”)三、解答题19.已知y 与x 成正比例函数,当x=1时,y=2.求:(1)求y 与x 之间的函数关系式;(2)求当x=-1时的函数值;(3)如果当y 的取值范围是0≤y ≤5,求x 的取值范围.20.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a ,8),求点A 的坐标.21.已知正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,请回答下列问题:(1)求这个正比例函数;(2)这个正比例函数图象经过哪几个象限?(3)这个正比例函数的函数值y是随着x的增大而增大?还是随着x的增大而减小?22.已知y+3与x+2成正比例,且当x=3时,y=7.(1)写出y与x之间的函数关系式;(2)当x=﹣1时,求y的值.23.已知正比例函数y=kx图象经过点(3,﹣6),求:(1)这个函数的解析式;(2)判断点A(4,﹣2)是否在这个函数图象上;(3)图象上两点B(x1,y1)、C(x2,y2),如果x1>x2,比较y1,y2的大小.24.如图,已知四边形ABCD是正方形,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上两点.(1)若此正方形边长为2,k=_______.(2)若此正方形边长为a,k的值是否会发生变化?若不会发生变化,请说明理由;若会发生变化,求出a的值.参考答案1.答案为:C2.答案为:C3.答案为:D4.答案为:B5.答案为:C6.答案为:A7.答案为:D8.答案为:B9.答案为:C10.答案为:B11.答案为:B12.答案为:A13.答案为﹣1.14.答案为:1.15.答案为:y=-2x.16.答案为:①③.17.答案为:18.答案为:>.19.解:(1)设y=kx,将x=1、y=2代入,得:k=2,故y=2x;(2)当x=-1时,y=2×(-1)=-2;(3)∵0≤y≤5,∴0≤x≤5,解得:0≤x≤2.5;20.解:(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).21.解:(1)∵正比例函数图象上一个点A到x轴的距离为4,点A的横坐标为-2,∴点A的坐标为(-2,4)或(-2,-4).设这个正比例函数为y=kx,则-2k=4或-2k=-4,解得k=-2或k=2,故正比例函数为y=2x或y=-2x.(2)当y=2x时,图象经过第一、三象限;当y=-2x时,图象经过第二、四象限.(3)当y=2x时,函数值y是随着x的增大而增大;当y=-2x时,函数值y是随着x的增大而减小.22.解:(1)设y+3=k(x+2)(k≠0).∵当x=3时,y=7,∴7+3=k(3+2),解得,k=2.∴y与x之间的函数关系式是y=2x+1;(2)由(1)知,y=2x+1.所以,当x=﹣1时,y=2×(﹣1)+1=﹣1,即y=﹣1.23.解:(1)∵正比例函数y=kx经过点(3,﹣6),∴﹣6=3•k,解得:k=﹣2,∴这个正比例函数的解析式为:y=﹣2x;(2)将x=4代入y=﹣2x得:y=﹣8≠﹣2,∴点A(4,﹣2)不在这个函数图象上;(3)∵k=﹣2<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.24.解:(1)正方形边长为2,∴AB=2.在直线y=2x中,当y=2时,x=1∴OA+1,OD=3∴C(3,2),将C(3,2)代入y=kx中,得3k=2,解得.(2)k的值不会发生变化理由:∵正方形边长为a∴AB=a,在直线y=2x中,当y=a时,x=0.5a,.将代入y=kx中,得,解得,∴k值不会发生变化.。
一次函数19. 正比例函数课前预习要点感知1 一般地,形如y =kx(____________)的函数,叫做正比例函数,其中k 叫做________.预习练习1-1 已知一个正比例函数的比例系数是-3,则它的解析式为________.要点感知2 正比例函数y =kx(k≠0)的图象是一条经过________的直线;我们称为直线y =kx.当k >0时,直线y =kx 经过第________象限,y 随着x 的增大而________;当k <0时,直线y =kx 经过第________象限,y 随着x 的增大而________.预习练习2-1 正比例函数y =-x 经过________象限,y 随x 的增大而________.、要点感知3 因为正比例函数的图象是过原点的一条直线,所以画正比例函数图象时,只需确定两点,通常是(____,____)和(____,____).预习练习3-1 函数y =kx(k≠0)的图象过M(1,3),则k =____,图象过________象限.当堂训练知识点1 认识正比例函数1.(上海中考)下列y 关于x 的函数中,是正比例函数的为( )A .y =x 2B .y =2xC .y =x 2D .y =x +12 2.若y =(m -1)x |m|+n -1是y 关于x 的正比例函数,求m 、n 的值.、知识点2 求正比例函数的解析式3.如果正比例函数y =kx 的图象经过点(1,-5),那么k 的值等于________.4.如图,正比例函数图象经过点A ,该函数解析式是________.、知识点3 正比例函数的图象及性质5.如图所示函数图象中,是正比例函数的图象的是( )6.(铜仁中考)正比例函数y =2x 的大致图象是( )7.正比例函数y =(k 2+1)x(k 为常数,且k≠0)一定经过的两个象限是( ) A .一、三象限B .二、四象限C .一、四象限D .二、三象限& 8.已知在正比例函数y =(k -1)x 的图象中,y 随x 的增大而减小,则k 的取值范围是( )A .k<1B .k>1C .k =8D .k =69.正比例函数y =ax 中,y 随x 的增大而增大,则直线y =(-a -1)x 经过( )A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限10.关于正比例函数y =-2x ,下列结论正确的是( )A .图象必经过点(-1,-2)!B .图象经过第一、三象限C .y 随x 的增大而减小D .不论x 取何值,总有y <011.若正比例函数y =kx 的图象经过点(2,-6),则y 随x 的增大而________.12.(贺州中考)已知P 1(1,y 1),P 2(2,y 2)是正比例函数y =13x 的图象上的两点,则y 1________y 2(填“>”“<”或“=”).课后作业13.如图,小球从点A 运动到点B ,速度v(米/秒)和时间t(秒)的函数关系式是v =2t.如果小球运动到点B 时的速度为6米/秒,小球从点A 到点B 所用的时间是( )A .1秒B .2秒'C .3秒D .4秒14.(陕西中考)设正比例函数y =mx 的图象经过点A(m ,4),且y 的值随x 值的增大而减小,则m =( )A .2B .-2C .4D .-415.(广州中考)已知正比例函数y =kx(k<0)的图象上两点A(x 1,y 1)、B(x 2,y 2),且x 1<x 2,则下列不等式中恒成立的是( )A .y 1+y 2>0B .y 1+y 2<0C .y 1-y 2>0D .y 1-y 2<0@16.在正比例函数y =3mx 中,函数y 的值随x 值的增大而增大,则P(m ,5)在( )A .第一象限B .第二象限C .第三象限D .第四象限17.若正比例函数y =(1-2m)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( )A .m <0B .m >0C .m <12D .m >1218.如果一个正比例函数的图象经过不同象限的两点A(2,m),B(n ,3),那么一定有( )A .m>0,n>0B .m>0,n<0>C .m<0,n>0D .m<0,n<019.在函数①y =13x ;②y =2x -3;③y =12+x ;④y =2x 2;⑤y =3(2-x);⑥y =3x π中,正比例函数有________.(只填序号)20.如果y =(1-4t)x9t 2是正比例函数,且图象经过第一、三象限,那么这个函数的解析式是________.21.已知正比例函数y =kx(k 是常数,k ≠0),当-3≤x≤1时,对应的y 的取值范围是-1≤y≤13,且y 随x 的减小而减小,则k 的值为________.22.已知正比例函数y =kx 的图象过点P(-2,2).(1)写出函数关系式;~(2)已知点A(a ,-4),B(-22,b)都在它的图象上,求a ,b 的值."挑战自我23.已知正比例函数y =kx 经过点A ,点A 在第四象限,过点A 作AH ⊥x 轴,垂足为点H ,点A 的横坐标为3,且△AOH 的面积为3.(1)求正比例函数的解析式;-(2)在x 轴上能否找到一点P ,使△AOP 的面积为5若存在,求点P 的坐标;若不存在,请说明理由.|参考答案课前预习要点感知1 k 是常数,k ≠0 比例系数预习练习1-1 y =-3x要点感知2 原点 一、三 增大 二、四 减小 预习练习2-1 二、四 减小要点感知3 0 0 1 k预习练习3-1 3 一、三:当堂训练1.C 2.由题意得,|m|=1,m -1≠0,n -1=0,∴m =-1,n =1.3.-5 =3x 11.减小 12.<课后作业13.C 19.①⑥20.y =73x]22.(1)∵正比例函数y =kx 的图象过点P(-2,2), ∴2=-2k ,即k =-1.∴该函数关系式为:y =-x.(2)∵点A(a ,-4),B(-22,b)都在y =-x 的图象上, ∴-4=-a ,b =-(-22),即a =4,b =2 2.23.(1)∵点A 的横坐标为3,且△AOH 的面积为3, ∴点A 的纵坐标为-2,即点A 的坐标为(3,-2). ∵正比例函数y =kx 经过点A ,∴3k =-2,即k =-23.∴正比例函数的解析式是y =-23x.(2)存在.∵△AOP 的面积为5,点A 的坐标为(3,-2), ∴OP =5.∴点P 的坐标为(5,0)或(-5,0).。
正比例函数
1.下列式子,哪些表示y是x的正比例函数?如果是,请你指出正比例系数k的值.
(1)y=-0.1x (2)
(3)y=2x2 (4)y2=4x
(5)y=-4x+3 (6)y=2(x-x2 )+2x2
考考你
1.如果y=(k-1)x,是y关于x的正比例函数,则k满足________________.
2.如果y=kxk-1,是y关于x的正比例函数,则k=__________.
3.如果y=3x+k-4,是y关于x的正比例函数,则k=_________.
比一比,看谁反应快
1.正比例函数y=kx(k=0)的图像是——,它一定经过点——和——
2.函数y=4x经过第——象限,y随x的——
3.如果函数y=-ax的图像经过一、三象限,
那么y=ax的图像经过——。
快乐之旅:
1.正比例函数y=(m+1)x
它的图像经过第几象限
2.已知:正比例函数y=(2-k)x的图像经过二、四象限,则函数y=-kx的图像经过哪些象限?
3..已知函数y=kx过点(1,-3),
则k的值为( )
A. 3
B.-3
C.1/3
D.-1/3。
19.2.1 正比例函数(特色训练题)
1.下列问题中,是正比例函数的是( )
A.矩形面积固定,长和宽的关系
B.正方形面积和边长之间的关系
C.三角形的面积一定,底边和底边上的高之间的关系
D.匀速运动中,速度固定时,路程和时间的关系
2.若函数y=(m-2)x+(2m+6)是正比例函数,则m 的值为__________,此时正比例函数的表达式为__________.
3.三角形的底边长为6,该底上的高为x ,则三角形的面积S 与x 之间的函数关系式为__________.
4.随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y (g/m 3)与大气压强x (kPa )成正比例函数关系.当x=36 kPa 时,y=108 g/m 3,请写出y 与x 的函数关系式__________.
5.若y=(m-1)x |m|+n-1是y 关于x 的正比例函数,求m 、n 的值.
6.在函数①y =13x ;②y =2x-3;③y =12x +;④y =2x 2;⑤y =3(2-x);⑥y =3x π
中,正比例函数有__________.(只填序号)
7.若函数y =228m x -+m-3是正比例函数,则常数m 的值为__________.
8.已知y 与x 成正比例,且x=2时,y=6,则函数关系式为__________,当x=4时,y=__________. 9.已知y 与x+3成正比例,且当x=2时,y=-5.
(1)求y 与x 之间的函数关系式;
(2)当x=3时,求y 的值;
(3)当y=23
时,求x 的值. 10.△ABC 的底边BC=8 cm ,当BC 边上的高从小到大改变时,△A BC 的面积也随之变化.
(1)写出△A BC 的面积y(cm2)与BC 边上高x(cm)的函数解析式,并指明它是什么函数;
(2)列表格表示当x由5 cm变到15 cm时(每次增加1 cm),y的相应值;
(3)观察表格,请回答:当x每增加1 cm时,面积y如何变化?
参考答案1.D 2.-3 y=-5x 3.S=3x 4.y=3x
5.由题意得,|m|=1,m-1≠0,n-1=0,∴m=-1,n=1.
6.①⑥
7.3
8.y=3x 12
9.(1)设y与x+3的函数关系式为y=k(x+3),则-
5=k·(2+3),解得k=-1,
所以y与x之间的函数关系式为y=-x-3.
(2)把x=3代入y=-x-3中,得y=-6.
(3)把y=2
3
代入y=-x-3中,得x=-
11
3
.
10.(1)y=1
2
BC·x=
1
2
×8×x=4x,故它是正比例函数.
(2)列表格略.
(3)由(2)可知,当x每增加1 cm时,面积y增加4 cm2.。