八年级数学正比例函数1
- 格式:pdf
- 大小:1.71 MB
- 文档页数:9
1 / 15正比例函数的图像及性质是八年级数学上学期第三章第二节内容,主要对正比例函数的图像及性质进行讲解,重点是对正比例函数的性质的理解,难点是正比例函数表达式的归纳总结.通过这节课的学习为我们后期学习正比例函数的应用提供依据.一、 正比例函数的图像1、 一般地,正比例函数y kx =(k 是常数, 0k ≠)的图象是经过(00),,(1)k ,这两点的一条直线,我们把正比例函数y kx =的图象叫做直线y kx =; 2、 图像画法:列表、描点、连线.正比例函数的图像及性质知识结构模块一:正比例函数的图像知识精讲内容分析2/ 15【例1】 已知正比例函数2y x =.x…… 2- 1.5- -1 0.5- 0 0.5 1 1.5 2 …… 2y x =…………描点:分别以所取x 的值和相应函数值作为点的横坐标和纵坐标,描出相应点. 连线:用光滑的曲线(包括直线)把描出的点按照横坐标由小到大的顺序连接. 【难度】★ 【答案】 【解析】【例2】 在同一直角坐标平面内画出下列函数图像.(1)4y x =; (2)14y x = ;(3)32y x =-;(4)32y x =. 【难度】★ 【答案】 【解析】例题解析【例3】 函数15y x =-的图像是经过点________、________的________.【难度】★ 【答案】 【解析】【例4】 (1)正比例函数y kx =的图像是____________,它一定经过点_______和_______.(2)函数y kx =(0)k ≠的图像经过点1(5)2A -,,写出函数解析式,并说明函数图像经过哪几个象限?【难度】★★ 【答案】 【解析】【例5】 已知2y -与x 成正比例,且x =2时,y =4; (1)求y 与x 之间的函数关系式;(2)若点(m ,2m +7),在这个函数的图象上,求m 的值.【难度】★★ 【答案】 【解析】【例6】 已知正比例函数图像上的一点到x 轴距离与到y 轴距离之比为1:2,则此正比例函数的解析式是________________. 【难度】★★ 【答案】 【解析】【例7】 如果正比例函数的图像经过点(24)-,,说明(416)-,是否在这个图像上,并作出该正比例函数的图像. 【难度】★★ 【答案】 【解析】【例8】 已知函数2(2)21y t x t =-+-,当t 为何值时该函数图像经过原点?此时函数解析式是什么? 【难度】★★ 【答案】 【解析】【例9】 一个正比例函数的图像经过点A (13)-,,B (1)a a ---,,求a 的值. 【难度】★★ 【答案】 【解析】【例10】 已知y 是x 的正比例函数,且当6x =时,2y =-.(1)求出这个函数的解析式;(2)在直角坐标平面内画出这个函数的图像;(3)如果点P (a ,4)在这个函数的图像上,求a 的值;(4)试问点A (62)-,关于原点对称的点B 是否也在这个图像上? 【难度】★★★ 【答案】 【解析】x【例11】 已知点(60)A -,,并且点(1)B m -,在直线3y x =-上,求OAB ∆的面积. 【难度】★★★ 【答案】 【解析】【例12】 正比例函数的图像经过点(-2,5),过图像上一点A 作y 轴的垂线,垂足B 的坐标是(0,-3),求点A 的坐标与AOB ∆的面积. 【难度】★★★ 【答案】 【解析】【例13】 已知直线y kx =过点1(3)2,,A 是直线y kx =上一点,若过点A 向x 轴引垂线,垂足为B ,且5AOB S ∆=,求点B 的坐标. 【难度】★★★ 【答案】 【解析】【例14】 如图,长方形OABC 的边BC = 6,AB = 3, (1) 直线x 交边AB 于点P ,求k 的取值范围;(2) 直线0x <把矩形OABC 的面积分成两部分,靠近x 轴的一部分记作S ,试写出S 关于k 的解析式.【难度】★★★ 【答案】 【解析】6/ 15二、正比例函数(0)y kx k k =≠是常数,的性质: (1) 当0k >时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值也随着逐渐增大.(2) 当0k <时,正比例函数的图像经过第一、三象限;自变量x 的值逐渐增大时,y 的值 则随着逐渐减小.【例15】 直线(2)y m x =-经过一、三象限,则m ________.【难度】★ 【答案】 【解析】【例16】 已知正比例函数()52y k x =-的图像经过第二、四象限,求k 的取值范围.【难度】★ 【答案】 【解析】【例17】 若正比例函数(3)y m x =-,y 的值随x 的增大而减小,则m _______.【难度】★ 【答案】 【解析】例题解析知识精讲模块二:正比例函数的性质【例18】 (3)y x π=-图像经过_______象限,y 的值随x 的值增大而_______.【难度】★ 【答案】 【解析】【例19】 当a =_______时,2(3)(9)y a x a =-+-是正比例函数,图像经过第______象限.【难度】★ 【答案】 【解析】【例20】已知点(11,x y ),(22,x y )在正比例函数()2y k x =-的图像上,当12x x >时,12y y <,那么k 的取值范围是多少? 【难度】★★ 【答案】 【解析】【例21】已知正比例函数25(3)mm y m x +-=+,那么它的图像经过____________象限.【难度】★★ 【答案】 【解析】【例22】正比例函数2mmy mx +=的图像经过第一、三象限,求m 的值.【难度】★★ 【答案】 【解析】【例23】已知0mn <,那么函数my x n=经过______象限,y 的值随x 的值增大而______.【难度】★★ 【答案】 【解析】【例24】函数()2(2)2k y k x -=-是正比例函数,且y 的值随着x 的减小而增大,求k 的值.【难度】★★ 【答案】 【解析】【例25】如果正比例函数y kx =(0)k ≠的自变量增加5,函数值减少2,那么当3x =时,y =_______.【难度】★★ 【答案】 【解析】【例26】 (1)已知y ax =是经过第二、四象限的直线,且 求a 的取值范围.(2)已知函数()21y m x =+的值随自变量x 的值增大而增大,且函数()31y m x =+的值随自变量x 的增大而减小,求m 的取值范围.【难度】★★ 【答案】 【解析】【例27】 正比例函数()41y m x =-的图像经过点11(,)A x y 和22(,)B x y ,且该图像经过第二、四象限. (1)求m 的取值范围;(2)当12x x >时,比较1y 与2y 的大小,并说明理由.【难度】★★ 【答案】 【解析】【例28】已知函数2y x =-,自变量x 的取值范围是4556x <<,求y 的取值范围. 【难度】★★★ 【答案】 【解析】【例29】 已知在正比例函数()()22723mf x m x -=-中,y 随x 的值减小而减小.(1)求m 的值;(2)求23f ⎛⎫⎪⎝⎭(3)在直角坐标平面内画出函数图像,并根据图像说明,当x 取何值时,2y ≤-?【难度】★★★ 【答案】 【解析】【例30】已知正比例函数过A (2,-4),点P 在此正比例函数的图像上,若直角坐标平面内另有一点B (0,4),且8ABP S ∆=,求:点P 的坐标. 【难度】★★★ 【答案】 【解析】10/ 15【例31】两个正比例函数11y k x =与22y k x =,当2x =-时,122y y +=,当2x =时,12y y -=52.(1) 求这两个函数的解析式;(2) 当x = 3时,求2212y y -的值.【难度】★★★ 【答案】 【解析】【习题1】 在同一直角坐标系内画出下列函数的图像:3y x =-与13y x =-.【难度】★ 【答案】 【解析】【习题2】 若点P 在直线2y x =-上,且点P 的横坐标为1,那么点P 的坐标是________. 【难度】★ 【答案】 【解析】【习题3】 若正比例函数的图像经过(-1,3),则正比例函数的解析式是________. 【难度】★ 【答案】 【解析】随堂检测【习题4】 已知11(,)x y 和22(,)x y 是直线4y x =-上的两点,且12x x >,则1y 与2y 的大小关系是( ).A .12y y >B .12y y <C .12y y =D .以上都有可能【难度】★★ 【答案】 【解析】【习题5】 正比例函数y kx =(k 为常数,0k <)的图象依次经过第________象限,函数值随自变量的增大而_________. 【难度】★ 【答案】 【解析】【习题6】 正比例函数(0)y kx k =≠的图像经过一、三象限,且经过点(221)k k ++,,则k ==________. 【难度】★★ 【答案】 【解析】【习题7】 如果正比例函数(0)y kx k =≠的自变量取值增加1,函数值相应地减少4,则k =________. 【难度】★★ 【答案】 【解析】【习题8】 已知y 是x 的正比例函数,且当x =时,y =2,求y 与x 之间的比例系数,写出函数解析式,并求当y =x 的值. 【难度】★★ 【答案】 【解析】【习题9】 已知23y -与45x +成正比例,且当x =1时,y =15,求y 与x 的函数关系式. 【难度】★★ 【答案】 【解析】【习题10】 如图,在同一直角坐标系内,已知函数1y k x =中,y 随x 的增大而减小,函数2y k x =,满足120k k +=,则1y k x =与2y k x =的图像大致为( ).A BC D【难度】★★★ 【答案】 【解析】【习题11】 已知正比例函数的图像经过点(28)-,,经过图像上一点A 作x 轴的垂线,垂足为点B (06),,求:(1)点A 的坐标;(2)AOB ∆的面积.【难度】★★★ 【答案】 【解析】DPA 【习题12】 已知平面直角坐标系内一点点(23)P a a ,,过点P 作y 轴的垂线,垂足为点H ,如果15POH S ∆=.求:(1) 点P 的坐标;(2) 直线OP 的解析式.【难度】★★★ 【答案】 【解析】【习题13】 如果正比例函数的图像经过点(4,3)-,请判别(2,4)A -、3(2,2B -中哪一点离这个正比例函数的图像距离近? 【难度】★★★ 【答案】 【解析】【习题14】 如图,已知长方形ABCD 的长AB = 4cm ,宽BC = 3cm ,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为xcm ,△ABP 的面积为y 2cm , (1) 当动点P 在BC 上运动时,求y 关于x 的解析式及其定义域; (2) 当动点P 在DC 上运动时,怎样表示y ?并求x 的取值范围;(3) 当x 取何值时,△ABP 的面积为22cm ?【难度】★★★ 【答案】 【解析】【作业1】 在同一直角坐标系内画出下列函数的图像:4y x =与12y x =-.【难度】★ 【答案】 【解析】【作业2】 已知点A (m ,-3)在直线3y x =上,那么m =________. 【难度】★ 【答案】 【解析】【作业3】 已知正比例函数(64)y k x =-的图像经过第二、四象限,求k 的取值范围. 【难度】★ 【答案】 【解析】【作业4】 已知函数2(1)m y m x =-是正比例函数,m =________;函数的图象经过________象限;y 随x 的减少而________. 【难度】★★ 【答案】 【解析】【作业5】 已知y 与x 成正比例,且x = 2时y = -6,则y = 9时x =________. 【难度】★★ 【答案】 【解析】课后作业x【作业6】 点燃的蜡烛,长度按照与时间成正比例缩短,一支长21cm 的蜡烛,点燃6分钟后,缩短3.6cm .设蜡烛点燃x 分钟后,缩短ycm ,求y 的函数解析式和x 的取值范围. 【难度】★★ 【答案】 【解析】【作业7】 在函数5y x =的图象上取一点P ,过P 点作P A ⊥x 轴,已知P 点的横坐标为2-,求POA S ∆的面积(O 为坐标原点). 【难度】★★★ 【答案】 【解析】【作业8】 如图,在直角坐标系中,OA = 3,OB = 4,直线OP 与线段AB 相交于点P , (1) 求△ABO 的面积;(2) 若直线OP 将△ABO 的面积等分,求直线OP 的解析式;(3) 若点P 是直线OP 与线段AB 的交点,是否存在点P ,使△AOP 与△BOP 中,一个面积是另一个面积的4倍?若存在,求直线OP 的解析式;若不存在,请说明理由. 【难度】★★★ 【答案】 【解析】。
§19.2.1 正比例函数教学目标1.认识正比例函数的意义.2.掌握正比例函数解析式特点.3.理解正比例函数图象性质及特点.4.能利用所学知识解决相关实际问题.教学重点1.理解正比例函数意义及解析式特点.2.掌握正比例函数图象的性质特点.3.能根据要求完成转化,解决问题.教学难点:正比例函数图象性质特点的掌握.教学过程:Ⅰ.提出问题,创设情境一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它.1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)?2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系?3.这只燕鸥飞行1个半月的行程大约是多少千米?我们来共同分析:一个月按30天计算,这只燕鸥平均每天飞行的路程不少于:25600÷(30×4+7)≈200(km)若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为:y=200x(0≤x≤127)这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即y=200×45=9000(km)以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型.类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习.Ⅱ.导入新课首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点?1.圆的周长L随半径r的大小变化而变化.2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化.3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化.4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化.答:1.根据圆的周长公式可得:L=2 r.2.依据密度公式p=mV可得:m=7.8V.3.据题意可知: h=0.5n.4.据题意可知:T=-2t.我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x 的形式一样.一般地,•形如y=•kx•(k•是常数,•k•≠0•)的函数,•叫做正比例函数(proportional func-tion ),其中k 叫做比例系数.我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? [活动一]画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.1.y=2x 2.y=-2x结论:1.函数y=2x 中自变量x 可以是任意实数.列表表示几组对应值:画出图象如图(1).2.y=-2x 的自变量取值范围可以是全体实数,列表表示几组对应值:x -3 -2 -1 0 1 2 3 y642-2-4-6画出图象如图(2).3.两个图象的共同点:都是经过原点的直线. 不同点:函数y=2x 的图象从左向右呈上升状态,即随着x 的增大y 也增大;经过第一、三象限.函数y=-2x 的图象从左向右呈下降状态,即随x 增大y 反而减小;•经过第二、四象限.让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:正比例函数y=kx (k 是常数,k ≠0)的图象是一条经过原点的直线.•当x>0时,图象经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•图象经过二、四象限,从左向右下降,即随x 增大y 反而减小.正是由于正比例函数y=kx (k 是常数,k ≠0)的图象是一条直线,•我们可以称它为直线y=kx . [活动二]经过原点与点(1,k )的直线是哪个函数的图象?画正比例函数的图象时,•怎样画最简单?为什么?经过原点与点(1,k )的直线是函数y=kx 的图象.画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k ).因为两点可以确定一条直线.Ⅲ.随堂练习用你认为最简单的方法画出下列函数图象:1.y=32x 2.y=-3xⅣ.课时小结本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础.x -3 -2 -1 0 1 2 3y -6 -4 -2 0 2 4 6§19.2.2 一次函数(一)教学目标:1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律教学重点:一次函数解析式特点 2.一次函数图象特征与解析式的联系规律 教学难点1、一次函数与正比例函数关系 2、根据已知信息写出一次函数的表达式。
《正比例函数》人教版八年级数学教案正比例函数是本章的重点内容,是学生在初中阶段第一次接触的函数,这部分内容的学习是在学生已经学习了变量和函数的概念及图像的基础之上进行的。
下面由我为大家整理了关于《正比例函数》人教版八年级数学教案,供大家参考。
《正比例函数》人教版八年级数学教案1教学目标:1、认识目标(1)通过对不同背景下函数模型的比较,接受正比例函数的概念。
(2)在用描点法画正比例函数图象的过程中发现正比例函数的性质。
2、能力目标(1)利用发现的性质简便地画出正比例函数的图象,培养学生的动手能力。
(2)通过结合函数图象揭示性质的教学,培养学生观察、比较、抽象、概括能力。
3、情感、态度与价值观(1)通过正比例函数概念的形成过程,培养学生的探索精神和创新意识。
(2)在画正比例函数图象的活动中获得成功的体验,培养学生积极思考和动手学习的良好习惯,激发学习数学的热情。
教学重点:正确理解正比例函数的概念。
教学难点:体验研究函数的一般思路与方法。
教学方法:1、教法:本节教材实例取自生活实际,通过引导学生对身边事物的观察,让学生认识到大量活生生的正比例函数模型就在我们身边,从而让他们感受到数学贴近于现实生活,通过创设问题情景,精心设问,适时适度运用激励性语言,采用引导讨论法,让学生主动、愉快的参与到学习的全过程中来。
2、学法:倡导学生参与,师生互动,充分调动学生思考与探究的积极性,使学生成为学习的主体,让学生在学习过程中体验“观察、思考、探索、归纳”整个思维过程。
教学手段:运用多媒体,实现现代化教学手段,重现生活中事物变化过程,将教材中的静态画面转变为动态画面,从视觉、听觉吸引学生观察、体验,从而进一步思考、探究,得出结论,以提高课堂教学效率。
教学过程:一、创设情境,设疑激思1、实物情境:春天到了,燕子又飞回来了。
请同学们观察图片(多媒体展示燕欧飞行图片),1966年,鸟类研究者在芬兰给一只燕欧(候鸟)套上标志杆;4个月零1周后,人们在2.56万千米外的澳大利亚发现了它。
第十九章 函数19.2 一次函数19.2.1 正比例函数第1课时 正比例函数的概念学习目标:1.理解正比例函数的概念;2.会求正比例函数的解析式,能利用正比例函数解决简单的实际问题.重点:正比例函数的概念及其简单应用;难点:会求正比例函数的解析式.一、知识链接1.若香蕉的单价为5元/千克,则其销售额m (元)与销售量n (千克)成 比例,其比例系数为 .2.举例说明什么是函数及自变量.二、新知预习1.下列问题中,变量之间的对应关系是函数关系吗?如果是,请写出函数解析式:(1)圆的周长l 随半径r 的变化而变化.(2)铁的密度为7.8g/cm 3,铁块的质量m (单位:g )随它的体积V (单位:cm 3)的变化而变化.(3)每个练习本的厚度为0.5cm ,一些练习本摞在一起的总厚度h (单位:cm )随练习本的本数n 的变化而变化.(4)冷冻一个0℃的物体,使它每分钟下降2℃,物体问题T (单位:℃)随冷冻时间t (单位:min )的变化而变化.(5)以上出现的四个函数解析式都是常数与自变量 的形式.2.自主归纳:一般地,形如 (k 是常数,k ≠0)的函数,叫做正比例函数,其中k 叫做比例系数.三、自学自测1.判断下列函数解析式是否是正比例函数?如果是,指出其比例系数是多少?2(1)3;(2)21;(3);(4);(5)π ;(6).2x y x y x y y y x y x ==+=-===2. 回答下列问题:(1)若y=(m-1)x 是正比例函数,m 取值范围是 ;(2)当n 时,y=2x n 是正比例函数; (3)当k 时,y=3x+k 是正比例函数.四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:正比例函数的概念问题1:正比例函数的定义是什么?需要注意哪些问题?x是正比例函数,求m的值.例1:已知函数y=(m-1)2m方法总结:正比例函数满足的条件:(1)自变量的指数为1;(2)比例系数为常数,且不等于0.例2若正比例函数当自变量x等于-4时,函数y的值等于2.(1)求正比例函数的解析式;(2)求当x=6时函数y的值.方法总结:求正比例函数解析式的步骤:(1)设:设函数解析式为y=kx;(2)代:将已知条件带入函数解析式;(3)求:求出比例系数k;(4)写:写出解析式.探究点3:正比例函数的简单应用问题2:2011年开始运营的京沪高速铁路全长1318千米.设列车的平均速度为300千米每小时.考虑以下问题:(1)乘高铁,从始发站北京南站到终点站上海站,约需多少小时(保留一位小数)?(2)京沪高铁的行程y(单位:千米)与时间t(单位:时)之间有何数量关系?(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米的南京南站?例3:已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油为5元/ L .(1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间的函数关系式,并指出y是x的什么函数;(2)计算该汽车行驶220 km所需油费是多少?(2)若y=(m-1)x+m2-1是正比例函数,则m=.2.已知y与x成正比例,当x等于3时,y等于-1.则当x=6时,y的值为.。