2006年上学期江西省高二数学简单线性规划1 新课标 人教版
- 格式:ppt
- 大小:307.50 KB
- 文档页数:14
3.3.2 简单的线性规划问题【教学目标】 1.了解线性规划的意义.2.理解约束条件、目标函数、可行解、可行域、最优解等基本概念.3.掌握线性规划问题的图解法,并能应用它解决一些简单的实际问题. 【教学过程】 一、创设情景教师首先提出问题:通过学生对课本的预习,让学生通过观看《3.3.2 简单的线性规划问题》课件“情景引入”部分,从配件的生产安排满足不同的条件入手,引出线性规划的概念及基本思路.二、自主学习教材整理1 线性规划中的基本概念 阅读教材P 87~P 88探究,完成下列问题. 线性规划中的基本概念阅读教材P 88例5~P 90例7,完成下列问题. 线性目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +zb ,它表示斜率为-a b ,在y 轴上的截距是zb的一条直线,当z 变化时,方程表示一组互相平行的直线. 当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值.三、合作探究问题1类比探究二元一次不等式表示平面区域的方法,画出约束条件(x-a)2+(y-b)2≤r2的可行域.答案问题2在问题“若x、y满足⎩⎪⎨⎪⎧x+y≥6,x≤4,y≤4,求z=y-1x-1的最大值”中,你能仿照目标函数z=ax+by的几何意义来解释z=y-1x-1的几何意义吗?答案z=y-1x-1的几何意义是点(x,y)与点(1,1)连线的斜率.探究点1最优解问题命题角度1问题存在唯一最优解例1已知x,y满足约束条件⎩⎪⎨⎪⎧x+2y≤8,4x≤16,4y≤12,x≥0,y≥0,该不等式组所表示的平面区域如图,求2x+3y的最大值.解设区域内任一点P(x,y),z=2x+3y,则y=-23x+z3,这是斜率为定值-23,在y轴上的截距为z3的直线,如图.由图可以看出,当直线y =-23x +z 3经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距z3的值最大,此时2x +3y =14.名师点评:图解法是解决线性规划问题的有效方法,基本步骤: ①确定线性约束条件,线性目标函数; ②作图——画出可行域;③平移——平移目标函数对应的直线z =ax +by ,看它经过哪个点(或哪些点)时最先接触可行域或最后离开可行域,确定最优解所对应的点的位置;④求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 命题角度2 问题的最优解有多个 例2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0,若目标函数z =ax +y 的最大值有无数个最优解,求实数a 的值.解 约束条件所表示的平面区域如图:由z =ax +y ,得y =-ax +z .当a =0时,最优解只有一个,过A (1,1)时取得最大值;当a >0时,当y =-ax +z 与x +y =2重合时,最优解有无数个,此时a =1; 当a <0时,当y =-ax +z 与x -y =0重合时,最优解有无数个,此时a =-1. 综上,a =1或a =-1.名师点评:当目标函数取最优解时,如果目标函数与平面区域的一段边界(实线)重合,则此边界上所有点均为最优解.探究点2 生活中的线性规划问题例3 营养学家指出,成人良好的日常饮食应该至少提供0.075kg 的碳水化合物,0.06kg 的蛋白质,0.06kg 的脂肪,1kg 食物A 含有0.105kg 碳水化合物,0.07kg 蛋白质,0.14kg 脂肪,花费28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B各多少kg?将已知数据列成下表:食物/kg碳水化合物/kg蛋白质/kg脂肪/kgA 0.1050.070.14B 0.1050.140.07解设每天食用x kg食物A,y kg食物B,总成本为z,那么⎩⎪⎨⎪⎧0.105x+0.105y≥0.075,0.07x+0.14y≥0.06,0.14x+0.07y≥0.06,x≥0,y≥0⇒⎩⎪⎨⎪⎧7x+7y≥5,7x+14y≥6,14x+7y≥6,x≥0,y≥0.目标函数为z=28x+21y.作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-43x+z21,它表示斜率为-43,且随z变化的一组平行直线,z21是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组⎩⎪⎨⎪⎧7x+7y=5,14x+7y=6,得M点的坐标为⎝⎛⎭⎫17,47.所以为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A17kg ,食物B 47kg.名师点评:(1)目标函数z =ax +by (b ≠0)在y 轴上的截距zb 是关于z 的正比例函数,其单调性取决于b 的正负.当b >0时,截距z b 越大,z 就越大;当b <0时,截距zb越小,z 就越大.(2)最优解是谁,和目标函数与边界函数的斜率大小有关. 探究点3 非线性目标函数的最值问题 命题角度1 斜率型目标函数例4 已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0.试求z =y +1x +1的最大值和最小值.解 作出不等式组表示的平面区域如图阴影部分所示, 由于z =y +1x +1=y -(-1)x -(-1),故z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率, 因此y +1x +1的最值是点(x ,y )与点M (-1,-1)连线的斜率的最值,由图可知,直线MB 的斜率最大,直线MC 的斜率最小,又∵B (0,2),C (1,0), ∴z max =k MB =3,z min =k MC =12.∴z 的最大值为3,最小值为12.变式探究1.把目标函数改为z =3y +12x +1,求z 的取值范围.解 z =32·y +13x +12,其中k =y +13x +12的几何意义为点(x ,y )与点N ⎝⎛⎭⎫-12,-13连线的斜率.由图易知,k NC ≤k ≤k NB ,即29≤k ≤143,∴13≤32k ≤7,∴z 的取值范围是[13,7]. 2.把目标函数改为z =2x +y +1x +1,求z 的取值范围.解 z =2(x +1)+y -1x +1=y -1x +1+2.设k =y -1x +1,仿例2解得-12≤k ≤1.∴z ∈[32,3].命题角度2 两点间距离型目标函数例5 已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,试求z =x 2+y 2的最大值和最小值.解 z =x 2+y 2表示可行域内的点到原点的距离的平方,结合图形(例2图)知,原点到点A 的距离最大,原点到直线BC 的距离最小. 故z max =|OA |2=13,z min =⎝⎛⎭⎫|OB |·|OC ||BC |2=⎝ ⎛⎭⎪⎫2×152=45. 名师点评:(1)对于形如cx +dy +fax +b的目标函数,可变形为定点到可行域上的动点连线斜率问题.(2)当斜率k 、两点间的距离、点到直线的距离与可行域相结合求最值时,注意数形结合思想方法的灵活运用.四、当堂检测1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D.52答案 C提示:画出可行域如图阴影部分(含边界).设z =x +2y ,即y =-12x +12z ,平行移动直线y =-12x +12z ,当直线y =-12x +z2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A .6B .7C .8D .23 答案 B提示:作出可行域如图阴影部分(含边界)所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7.3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1 答案 A提示:-1a =2-14-1=13,∴a =-3.4.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤2,则z =2x +4y 的最大值为________.答案 8提示:由不等式组表示的可行域,知目标函数z 在点(0,2)处取得最大值8.五、课堂小结:本节课我们学习过哪些知识内容? 提示:1.用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值.2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.4.对于非线性目标函数,应准确翻译其几何意义,如x2+y2是点(x,y)到点(0,0)的距离的平方,而非距离.。
3.5.2 简单线性规划(一)明目标、知重点 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.1.线性规划中的基本概念名称 定义目标函数 要求最大值或最小值的函数,叫做目标函数 约束条件 目标函数中的变量所要满足的不等式组线性目标函数 如果目标函数是关于变量的一次函数,则称为线性目标函数 线性约束条件 如果目标函数是关于变量的一次不等式(或等式),则称为线性约束条件 线性规划问题 在线性约束条件下,求线性目标函数的最大值或最小值问题,称为线性规划问题最优解 使目标函数达到最大值或最小值的点的坐标,称为问题的最优解可行解 满足线性约束条件的解,叫做可行解 可行域 由所有可行解组成的集合叫做可行域线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值.在生产与营销活动中,我们常常需要考虑:怎样利用现有的资源(人力、物力、资金……),取得最大的收益.或者,怎样以最少的资源投入去完成一项给定的任务.我们把这一类问题称为“最优化”问题.不等式的知识是解决“最优化”问题的得力工具.本节我们将借助二元一次不等式(组)的几何表示,学习“最优化”问题中的简单“线性规划”问题. 探究点一 线性规划中的基本概念问题 某工厂计划生产甲、乙两种产品,这两种产品都需要两种原料.生产甲产品1工时需要A 种原料3 kg ,B 种原料1 kg ;生产乙产品1工时需要A 种原料2 kg ,B 种原料2 kg ,现有A 种原料1 200 kg ,B 种原料800 kg.如果生产甲产品每工时的平均利润是30元,生产乙产品每工时的平均利润是40元,问甲、乙两种产品各生产多少工时能使利润的总额最大?最大利润是多少?思考1 “问题”中的数量关系比较复杂,为清晰起见,你能用表格表示出来吗? 答 依题意可列表如下:产品原料A 数量(kg) 原料B 数量(kg) 利润(元)生产甲种产品1工时 3 1 30 生产乙种产品1工时2 2 40 限额数量1 200800思考2 表示问题中的限制条件?如何表示获得的利润总额?答 ⎩⎪⎨⎪⎧3x +2y ≤1 200x +2y ≤800x ≥0y ≥0.获得的利润总额为f =30x +40y .思考3 写出x ,y 满足的不等式组后,求利润的总额最大问题转化成了什么问题? 答 转化成了在x ,y 满足不等式组的条件下,求f =30x +40y 的最大值.思考4 如下图,不等式组的解集对应着不等式组表示的平面区域的点集,在此前提下,求利润的总额最大问题又可转化成什么问题?答 转化成在不等式组表示的平面区域内找一点,把它的坐标代入式子30x +40y 时,使该式取得最大值.思考5 若把f =30x +40y 变形为y =-34x +f 40,这是斜率为定值-34,在y 轴上的截距为f 40的直线,在此背景下,如何求f 的最大值?答 如图(见思考4),由于这些直线的斜率是确定的,因此只要给定一个点,就能确定一条直线,因而确定出唯一截距f 40,而且当截距f40最大时,f 取得最大值.由图可以看出,当直线y=-34x +f40经过点B 时,截距的值最大.解方程组⎩⎪⎨⎪⎧3x +2y =1 200x +2y =800,得点B 的坐标为(200,300),将x =200,y =300代入f =30x +40y ,得f max =30×200+40×300=18 000.答 用200工时生产甲种产品,用300工时生产乙种产品,能获得利润18 000元,此时利润总额最大.小结 (1)在上述问题中,我们把要求最大值或最小值的函数f =30x +40y 叫做目标函数,目标函数中的变量所要满足的不等式组称为约束条件.(2)如果目标函数是关于变量的一次函数,则称为线性目标函数,如果约束条件是关于变量的一次不等式(或等式),则称为线性约束条件.(3)在线性约束条件下求线性目标函数的最大值或最小值问题,称为线性规划问题.使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.(4)一般地,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域. 探究点二 生活中的线性规划问题例1 下表给出甲、乙、丙三种食物中的维生素A ,B 的含量及单价:单位,维生素B 不少于4 800单位,而且要使付出的金额最低,这三种食物应各购买多少千克?解 设购买甲种食物x 千克,乙种食物y 千克,则购买丙种食物(10-x -y )千克,又设总支出为z 元,依题意得 z =7x +6y +5(10-x -y ), 化简得z =2x +y +50. x ,y 应满足的约束条件⎩⎪⎨⎪⎧400x +600y +400(10-x -y )≥4 400800x +200y +400(10-x -y )≥4 800x ≥0,y ≥010-x -y ≥0,化简,得⎩⎨⎧y ≥22x -y ≥4x +y ≤10x ≥0.根据上述不等式组,作出表示可行域的平面区域,如图阴影部分所示.画直线l 0:2x +y =0,平行移动l 0到直线l 的位置,使l 过可行域的某点,并且可行域内的其他各点都在l 的不包含直线l 0的另外一侧,该点到直线l 0的距离最小,则这一点的坐标使目标函数取最小值,容易看出,点M 符合上述条件,点M 是直线y =2与直线2x -y =4的交点. 解方程组⎩⎪⎨⎪⎧y =22x -y =4得点M (3,2).因此,当x =3,y =2时,z 取得最小值 z min =2×3+2+50=58, 此时,10-x -y =5.答 购买甲食物3千克,乙食物2千克,丙食物5千克时,付出的金额最低为58元. 反思与感悟 图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax +by =0,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取得最大值还是最小值. 跟踪训练1 已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解 作出二元一次不等式组⎩⎪⎨⎪⎧1≤x +y ≤5,-1≤x -y ≤3所表示的平面区域(如图)即为可行域.设z =2x -3y ,变形得y =23x -13z ,则得到斜率为23,且随z 变化的一族平行直线.-13z 是直线在y 轴上的截距,当直线截距最大时,z 的值最小,当然直线要与可行域相交,即在满足约束条件时,目标函数z =2x -3y 取得最小值.由图可见,当直线z =2x -3y 经过可行域上的点A 时,截距最大,即z 最小.解方程组⎩⎪⎨⎪⎧x -y =-1x +y =5得A 的坐标为(2,3),∴z min =2x -3y =2×2-3×3=-5.当直线z =2x -3y 经过可行域上的点B 时,截距最小,即z 最大.解方程组⎩⎪⎨⎪⎧x -y =3x +y =1得B 的坐标为(2,-1).∴z max =2x -3y =2×2-3×(-1)=7.∴-5≤2x -3y ≤7,即2x -3y 的取值范围是.例2 某货运公司拟用集装箱托运甲、乙两种货物,一个大集装箱能够装所托运货物的总体积不能超过24 m 3,总质量不能低于650千克.甲、乙两种货物每袋的体积,质量和可获得的利润,列表如下:货物 每袋体积(单位:m 3)每袋质量(单位:百千克)每袋利润(单位:百元)甲 5 1 20 乙42.510解 设托运甲种货物x 袋,乙种货物y 袋,获得利润z 百元,则z =20x +10y .依题意,可得关于x ,y 的约束条件⎩⎪⎨⎪⎧5x +4y ≤242x +5y ≥13x ≥0,y ≥0根据上述不等式组,作出表示可行域的平面区域,如图阴影部分所示.画直线l 0:20x +10y =0.即2x +y =0,平行移动l 0到直线l 的位置,使l 过可行域的某点,并且可行域内的其他各点都在l 的包含直线l 0的同一侧,该点到直线l 0的距离最大,则这一点的坐标使目标函数取最大值,容易看出,图中的点M 符合上述条件.点M 是直线2x +5y =13与直线5x +4y =24的交点.解方程组⎩⎪⎨⎪⎧5x +4y =242x +5y =13,得点M (4,1).因此当x =4,y =1时,z 取得最大值.此时, z max =20×4+10×1=90.答 在一个大集装箱内装甲种货物4袋,乙种货物1袋,可获得最大利润9 000元. 反思与感悟 用图解法解决简单的线性规划问题的基本步骤:(1)寻找线性约束条件,线性目标函数;(2)作出可行域;(3)平移目标函数对应的直线确定最优解;(4)求出最优解的坐标及目标函数的最值.跟踪训练2 A 、B 两个居民小区的居委会组织本小区的中学生,利用双休日去市郊的敬老院参加献爱心活动,两个小区都有同学参加.已知A 区的每位同学往返车费是3元,每人可为5位老人服务;B 区的每位同学往返车费是5元,每人可为3位老人服务.如果要求B 区参与活动的同学比A 区的同学多,且去敬老院的往返总车费不超过37元.怎样安排参与活动同学的人数,才能使受到服务的老人最多?受到服务的老人最多是多少人?解 设A 、B 两区参与活动的人数分别为x ,y ,受到服务的老人人数为z ,则z =5x +3y ,应满足的约束条件是⎩⎪⎨⎪⎧y -x ≥13x +5y ≤37x ≥1x ,y ∈Z ,化简得⎩⎪⎨⎪⎧x -y +1≤03x +5y ≤37x ≥1x ,y ∈Z.根据上述不等式组,作出表示可行域的平面区域,如图阴影部分所示. 画直线l 0:5x +3y =0,平行移动l 0到直线l 的位置,使l 过可行域中的某点.容易看出,点M 符合上述条件,点M 是直线x -y +1=0与直线3x +5y =37的交点.解方程组⎩⎪⎨⎪⎧x -y =-13x +5y =37, 得点M (4,5).因此,当x =4,y =5时,z 取得最大值,并且z max =5×4+3×5=35.答 A 、B 两区参与活动同学的人数分别为4、5时,受到服务的老人最多,最多为35人.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53 D.52答案 C解析 画出可行域如图.设z =x +2y ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53, 所以(x +2y )max =53.2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为( )A .6B .7C .8D .23答案 B解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7. 3.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为( ) A .-3 B .3 C .-1 D .1 答案 A解析 -1a =2-14-1=13,∴a =-3.4.已知实数x 、y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤2,则z =2x +4y 的最大值为________.答案 8解析 如图,由不等式组表示的可行域知,目标函数z 在点A (0,2)处取得最大值8.1.用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 2.一般地,对目标函数z =ax +by ,若b >0,则纵截距与z 同号,因此,纵截距最大时,z 也最大;若b <0,则纵截距与z 异号,因此,纵截距最大时,z 反而最小.3.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.一、基础过关1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .2 答案 A解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z min =2×(-2)-2=-6. 2.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为( )A .9 B.157 C .1 D.715答案 A解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2 答案 A解析 可行域如图阴影部分(含边界)令z =0,得直线l 0:y -2x =0,平移直线l 0知,当直线l 过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0得D (5,3). ∴z min =3-2×5=-7,故选A.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为( ) A .3,-11 B .-3,-11 C .11,-3 D .11,3答案 A解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 答案解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤42≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值,z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值,z max =2×1+3×2=8.所以z ∈.6.已知x ,y 满足条件:⎩⎪⎨⎪⎧ 7x -5y -23≤0,x +7y -11≤0,4x +y +10≥0.求z =4x -3y 的最大值和最小值. 解 不等式组⎩⎪⎨⎪⎧ 7x -5y -23≤0x +7y -11≤04x +y +10≥0所表示的可行域如图所示:其中A (4,1),B (-1,-6),C (-3,2),作一族与4x -3y =0平行的直线l :4x -3y -z =0, 当l 过点C 时,z 值最小;当l 过B 点时,z 值最大,∴z min =4×(-3)-3×2=-18,z max =4×(-1)-3×(-6)=14.7.在线性约束条件⎩⎪⎨⎪⎧ x +3y ≥12,x +y ≤10,3x +y ≥12下,求z =2x -y 的最大值和最小值.解 如图作出线性约束条件⎩⎪⎨⎪⎧ x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1),x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.∴z max =17,z min =-7.二、能力提升8.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 等于( ) A.14 B.12 C .1 D .2答案 B解析 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x +y 过交点B 时,z 取最小值,由⎩⎪⎨⎪⎧ x =1,y =a (x -3),得⎩⎪⎨⎪⎧x =1,y =-2a ,∴z min =2-2a =1,解得a =12,故选B. 9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧ 0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为( ) A .3 B .4 C .3 2 D .42答案 B解析 由线性约束条件⎩⎪⎨⎪⎧ 0≤x ≤2,y ≤2,x ≤2y ,画出可行域如图阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y 得z 的最大值为4.10.某工厂制造甲、乙两种产品,已知制造1 t 甲产品要用煤9 t ,电力4 kW ,劳动力(按工作日计算)3个;制造1 t 乙产品要用煤4 t ,电力5 kW ,劳动力10个.又知制成甲产品1 t 可获利7万元,制成乙产品1 t 可获利12万元.现在此工厂只有煤360 t ,电力200 kW ,劳动力300个,在这种条件下应生产甲、乙两种产品各多少吨能获得最大经济效益?解 设此工厂应分别生产甲、乙产品x t 、y t ,利润z 万元,则依题意可得约束条件:⎩⎪⎨⎪⎧ 9x +4y ≤360,4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0,利润目标函数为:z =7x +12y . 画出可行域如图所示.作直线l :7x +12y =0,把直线l 向右上方平移至l 1位置,直线经过可行域上的点M ,且与原点距离最大,此时z =7x +12y 取最大值.解方程组⎩⎪⎨⎪⎧3x +10y =300,4x +5y =200,得M 点坐标为(20,24). ∴生产甲种产品20 t ,乙种产品24 t ,才能使此工厂获得最大利润.11.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大.最大收益是多少万元? 解 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得 ⎩⎪⎨⎪⎧ x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.即⎩⎪⎨⎪⎧ x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .作出可行域如图所示:作直线l :3 000x +2 000y =0,即3x +2y =0.平移直线l ,由图可知当l 过点M 时,目标函数z 取得最大值.由⎩⎪⎨⎪⎧ x +y =300,5x +2y =900.得M (100,200). ∴z max =3 000×100+2 000×200=700 000(元).答 该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.三、探究与拓展12.如果点P 在平面区域⎩⎪⎨⎪⎧ 2x -y +2≥0,x +y -2≤0,2y -1≥0上,点Q 在曲线x 2+(y +2)2=1上,求|PQ |的最小值.解 画出不等式组⎩⎪⎨⎪⎧ 2x -y +2≥0,x +y -2≤0,2y -1≥0所表示的平面区域,x 2+(y +2)2=1所表示的曲线为以(0,-2)为圆心,1为半径的一个圆.如图所示,只有当点P 在点A ⎝⎛⎭⎫0,12,点Q 在点B (0,-1)时,|PQ |取最小值32.。
3.3.3简单的线性规划问题(第一课时)教学目标:1.理解线性目标函数、线性约束条件、线性规划问题、可行解、可行域、最优解的概念;2.能从实际情境中抽象出一些简单的二元线性规划问题;3.掌握简单的二元线性规划问题的解法.教学重点:简单的二元线性规划问题的解法及步骤.教学过程:一.创设情境某工厂生产甲、乙两种产品,生产1t甲种产品需要A种原料4t、B种原料12t,产生的利润为2万元;生产1t乙种产品需要A种原料1t、B种原料9t,产生的利润为1万元。
现有库存A 种原料10t、B种原料60t,如何安排生产才能使利润最大?为理解题意,可以将已知数据整理成下表:将上述问题转化为数学问题为:●如何解决这个问题?二.建构数学一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
x,叫做可行解。
由所有可行解组成的集合叫做可行域。
使目标函数取得满足线性约束条件的解()y最值的可行解叫做最优解。
三.数学应用m,可获利润300万元;投1.投资生产A产品时,每生产100t需要资金200万元,需要场地2002m,可获利润200万元。
现资生产B产品时,每生产100m需要资金300万元,需要场地1002m,问:应作怎样的组合投资,可使获利最大?某单位可使用资金1400万元,场地90022.设y x z 53+=,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≥>≥+≥+001710732y x y x y x ,求z 的最小值.3.某公司的仓库A 存有货物12吨,仓库B 存有货物8吨。
现按7吨、8吨和5吨把货物分别调运给甲、乙、丙三个商店,从仓库A 运货物到商店甲、乙、丙,每吨货物的运费分别为8元、6元、9元;从仓库B 运货物到商店甲、乙、丙,每吨货物的运费分别为3元、4元、5元。
则应如何安排调运方案,才能使得从两个仓库运货物到三个商店的总运费最少?【练习】课本84P 练习的1、2、3、4、5四.作业1.解下列线性规划问题:(1)求y x z 3+=的最大值,使式中的y x ,满足约束条件⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤-≤+00672432y x y y x y x(2)求y x z 257+=的最小值,使式中的y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≥+≥+001051552y x y x y x(3)求y x z 1510+=的最大值,使式中的y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≤≤≤≤≤+≤+1101003623242y x y x y x2.导学练141140-P 范例展示的例2,自我测评的1、3、4五.回顾小结解简单的线性规划问题要注意:1.准确作出可行域;2.理解目标函数的几何意义;3.找准最优解的对应点,对应点一般在可行域的顶点、边界上。
高二数学课件:《简单的线性规划》机遇如风,才智似帆,勤奋为桨,现实是水,欲一帆风顺,须据此努力。
学生掌握寻找整点解的方法.三、教法建议(1)对学生来说,二元一次不等式(组)表示平面的区域是一个比较陌生的概念,不象二元一次方程表示直线那样已早有所知,为使学生对这一概念的引进不感到突然,应建立新旧知识的联系,以便自然地给出概念(2)建议将本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.(3)要举几个典型例题,特别是似是而非的例子,对理解二元一次不等式(组)表示的平面区域的含义是十分必要的.(4)建议通过本节教学着重培养学生掌握数形结合的数学思想,尽管侧重于用数研究形,但同时也用形去研究数,这对培养学生观察、联想、猜测、归纳等数学能力是大有益处的.(5)对作业、思考题、研究性题的建议:①作业主要训练学生规范的解题步骤和作图能力;②思考题主要供学有余力的学生课后完成;③研究性题综合性较大,主要用于拓宽学生的思维.(6)若实际问题要求的解是整数解,而我们利用图解法得到的解为非整数解(近似解),应作适当的调整,其方法应以与线性目标函数的直线的距离为依据,在直线的附近寻求与此直线距离最近的整点,不要在用图解法所得到的近似解附近寻找.如果可行域中的整点数目很少,采用逐个试验法也可.(7)在线性规划的实际问题中,主要掌握两种类型:一是给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量,收到的效益;二是给定一项任务问怎样统筹安排,能使完成的这项任务耗费的人力、物力资源最小.【课件二】教学目标巩固二元一次不等式和二元一次不等式组所表示的平面区域,能用此来求目标函数的最值.重点难点理解二元一次不等式表示平面区域是教学重点.如何扰实际问题转化为线性规划问题,并给出解答是教学难点.教学步骤【新课引入】我们知道,二元一次不等式和二元一次不等式组都表示平面区域,在这里开始,教学又翻开了新的一页,在今后的学习中,我们可以逐步看到它的运用.【线性规划】先讨论下面的问题设,式中变量x、y满足下列条件①求z的值和最小值.我们先画出不等式组①表示的平面区域,如图中内部且包括边界.点(0,0)不在这个三角形区域内,当时,,点(0,0)在直线上.作一组和平等的直线可知,当l在的右上方时,直线l上的点满足.即,而且l往右平移时,t随之增大,在经过不等式组①表示的三角形区域内的点且平行于l的直线中,以经过点A(5,2)的直线l,所对应的t,以经过点的直线,所对应的t最小,所以在上述问题中,不等式组①是一组对变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,所以又称线性约束条件.是欲达到值或最小值所涉及的变量x、y的解析式,叫做目标函数,由于又是x、y的解析式,所以又叫线性目标函数,上述问题就是求线性目标函数在线性约束条件①下的值和最小值问题.线性约束条件除了用一次不等式表示外,有时也有一次方程表示.一般地,求线性目标函数在线性约束条件下的值或最小值的问题,统称为线性规划问题,满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域,在上述问题中,可行域就是阴影部分表示的三角形区域,其中可行解(5,2)和(1,1)分别使目标函数取得值和最小值,它们都叫做这个问题的解.。
高二数学简单的线性规划知识精讲 人教版【同步教育信息】 一. 本周教学内容:简单的线性规划二. 重点、难点:1. 二元一次不等式的区域(1)在平面直角坐标系中,所有的点被直线x +y -1=0分成三类,即点在直线上,点在直线的上方区域,点在直线的下方区域。
{}()集合表示的图形是直线右上方的所有点。
210(,)|x y x y +-> {}()集合表示的图形是直线左下方的所有点。
310(,)|x y x y +-<一般地,二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域,我们把直线画成虚线以表示区域不包括边界直线。
注意:在坐标系中画不等式Ax +By +C ≥0所表示的平面区域时画成实线。
(4)区域判断方法是:特殊点法。
2. 线性规划:(1)约束条件、线性约束条件:变量x 、y 满足的一组条件叫做对变量x 、y 的约束条件,如果约束条件都是关于x 、y 的一次不等式,则约束条件又称为线性的约束条件。
(2)目标函数、线性目标函数:欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫做目标函数。
如果解析式是x 、y 的一次解析式,则目标函数又称线性目标函数。
(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。
(4)可行域:满足线性约束条件的解(x 、y )叫做可行解,由所有可行解组成的集合叫做可行域。
(5)最优解:分别使目标函数取得最大值和最小值的解,叫做这个问题的最优解。
3. 解线性规划应用问题的一般方法和步骤: (1)理清题意,列出表格。
(2)设好变元并列出不等式组和目标函数、约束条件。
(3)准确作图,准确计算。
【典型例题】例1. 画出不等式表示的平面区域。
-+-<x y 240 解:先画直线(画成虚线)-+-=x y 240 取原点(,),代入O x y 0024-+-因为,所以原点在表示的平面区域内。
简单的线性规划问题课题:简单的线性规划问题(普通高中课程标准实验教科书数学5(必修·人民教育出版社A版)第三章3.3.2节)授课教师:郑晓淳(汕头市第一中学)授课班级:高二(10)班授课时间:2005年10月12日星期三下午第二节(15:35—16:20)一、教学目标设计:三、教学过程设计与分析:【环节一:分析引例,形成概念,规范解答】【设计思路】本环节的教学设计意在实现:①选择应用型问题引入课题,体现新课程中突出数学应用意识的理念;②承上启下,复习旧知,引入新知。
通过引例既帮助学生复习如何从实际问题中抽象出约束条件并用平面区域表示,又通过添加优化问题转入新知识的学习;③引例向学生展现了线性规划应用问题的第一种类型题:在人力、物力、资金等资源一定的情况下,如何合理规划才能完成最多的任务,即该例属于目标函数求最大值的情况,同时引例展现的可行域属于为有界区域;④避开课本中一次性给出若干概念的做法,采用在分析题目的同时逐步给出各个相应的概念的方法,力求符合学生的认知规律,循序渐进,一步步的深化问题;⑤发挥多媒体的直观、动态功能,向学生动态演示求解线性规划问题的图解方法,让学生感受动态几何的魅力,激发学习兴趣。
【引例】某工厂用A 、B 两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A 配件并耗时1 h ,每生产一件乙产品使用4个B 配件并耗时2 h ,该厂每天最多可从配件厂获得16个A 配件和12个B 配件,按每天工作8 h 计算,该厂所有可能的日生产安排是什么?若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排获得的利润最大?解:设甲、乙两种产品的日生产分别为,x y 件时,工厂获得的利润为z 万元,则,x y 满足约束条件为28416412,0x y x y x y +≤⎧⎪≤⎪⎨≤⎪⎪≥⎩,作出约束条件所表示的可行域,如右图所示 目标函数为23z x y =+,可变形为233zy x =-+,如图,作直线0:230l x y +=,当直线0l 平移经过可行域时,在点M 处达到y 轴上截距3z的最大值,即此时z 有最大值.解方程组4280x x y =⎧⎨+-=⎩,得点(4,2)M ,max 2314z x y ∴=+=当每天安排生产4件甲产品,2件乙产品时,工厂获利最大为14万元。
3.3.2 简单的线性规划问题教学目标知识与技能1.掌握线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念;2.运用线性规划问题的图解法,并能应用它解决一些简单的实际问题.过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新.情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.教学重点重点是二元一次不等式(组)表示平面的区域.教学难点难点是把实际问题转化为线性规划问题,并给出解答.解决难点的关键是根据实际问题中的已知条件,找出约束条件和目标函数,利用图解法求得最优解.为突出重点,本节教学应指导学生紧紧抓住化归、数形结合的数学思想方法将实际问题数学化、代数问题几何化.教学过程导入新课前面我们学习了二元一次不等式Ax+By+C>0在平面直角坐标系中的平面区域的确定方法,请同学们回忆一下.推进新课合作探究在现实生产、生活中,经常会遇到资源利用、人力调配、生产安排等问题.例如,某工厂用A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A产品耗时1小时,每生产一件乙产品使用4个B产品耗时2小时,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天工作8小时计算,该厂所有可能的日生产安排是什么?设甲、乙两种产品分别生产x、y件,应如何列式?由已知条件可得二元一次不等式组:⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥≤≤≤+.0,0,124,164,82yxyxyx如何将上述不等式组表示成平面上的区域?师图中阴影部分中的整点(坐标为整数的点)就代表所有可能的日生产安排,即当点P (x,y)在上述平面区域中时,所安排的生产任务x、y才有意义.进一步,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?设生产甲产品x件,乙产品y件时,工厂获得利润为z,则如何表示它们的关系?生则z=2x+3y.师这样,上述问题就转化为:当x、y满足上述不等式组并且为非负整数时,z的最大值是多少?教师精讲师把z=2x+3y变形为zxy3132+-=,这是斜率为32-,在y轴上的截距为31z的直线.当z 变化时可以得到什么样的图形?在上图中表示出来.生当z变化时可以得到一组互相平行的直线.(板演)师由于这些直线的斜率是确定的,因此只要给定一个点,就能确定一条直线zxy3132+-=,这说明,截距3z可以由平面内的一个点的坐标唯一确定.可以看到直线z x y 3132+-=与表示不等式组的区域的交点坐标满足不等式组,而且当截距3z最大时,z取最大值,因此,问题转化为当直线z x y 3132+-=与不等式组确定的区域有公共点时,可以在区域内找一个点P ,使直线经过P 时截距3z最大. 由图可以看出,当直线z x y 3132+-=经过直线x =4与直线x +2y -8=0的交点M (4,2)时,截距3z 最大,最大值为314.此时2x +3y =14.所以,每天生产甲产品4件,乙产品2件时,工厂可获得最大利润14万元. 知识拓展再看下面的问题:分别作出x =1,x -4y +3=0,3x +5y -25=0三条直线,先找出不等式组所表示的平面区域(即三直线所围成的封闭区域),再作直线l 0:2x +y =0.然后,作一组与直线l 0平行的直线:l :2x +y =t ,t ∈R (或平行移动直线l 0),从而观察t 值的变化:t =2x +y ∈[3,12].若设t =2x +y ,式中变量x 、y 满足下列条件⎪⎩⎪⎨⎧≥≤+-≤-.1,2553,34x y x y x 求t 的最大值和最小值.分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域ABC .作一组与直线l 0平行的直线:l :2x +y =t ,t ∈R (或平行移动直线l 0), 从而观察t 值的变化:t =2x +y ∈[3,12].(1)从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,t =2x +y =0.点(0,0)在直线l 0:2x +y =0上.作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R. 可知,当l 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0,即t >0. 而且,直线l 往右平移时,t 随之增大(引导学生一起观察此规律).在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点B (5,2)的直线l 2所对应的t 最大,以经过点A (1,1)的直线l 1所对应的t 最小.所以t max =2×5+2=12,t min =2×1+3=3.(2)(3)合作探究诸如上述问题中,不等式组是一组对变量x、y的约束条件,由于这组约束条件都是关于x、y的一次不等式,所以又可称其为线性约束条件.t=2x+y是欲达到最大值或最小值所涉及的变量x、y的解析式,我们把它称为目标函数.由于t=2x+y又是关于x、y的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z=2x+y在线性约束条件下的最大值和最小值的问题,即为线性规划问题.那么,满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.课堂小结用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设t=0,画出直线l0.3.观察、分析,平移直线l0,从而找到最优解.4.最后求得目标函数的最大值及最小值.布置作业1.某工厂用两种不同原料均可生产同一产品,若采用甲种原料,每吨成本1 000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本为1500元,运费400元,可得产品100千克,如果每月原料的总成本不超过6 000元,运费不超过2 000元,那么此工厂每月最多可生产多少千克产品?【解析】将已知数据列成下表:甲原料(吨)乙原料(吨)费用限额成本 1 000 1 500 6 000运费500 400 2 000产品90 100解:设此工厂每月甲、乙两种原料各x吨、y吨,生产z千克产品,则⎪⎪⎩⎪⎪⎨⎧≤+≤+≥≥,2000400500,600015001000,0,0yxyxyxz=90x+100y.作出以上不等式组所表示的平面区域,即可行域,如图:由⎩⎨⎧=+=+.2045,1232yxyx得⎪⎪⎩⎪⎪⎨⎧==.720,712yx令90x+100y=t,作直线:90x+100y=0,即9x+10y=0的平行线90x+100y=t,当90x+100y=t过点M(712,720)时,直线90x+100y=t中的截距最大.由此得出t 的值也最大,z max =90×712+100×720=440. 答:工厂每月生产440千克产品.2.某工厂家具车间造A 、B 型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A 、B 型桌子分别需要1小时和2小时,漆工油漆一张A 、B 型桌子分别需要3小时和1小时;又知木工、漆工每天工作分别不得超过8小时和9小时,而工厂造一张A 、B 型桌子分别获利润2千元和3千元,试问工厂每天应生产A 、B 型桌子各多少张,才能获得利润最大?解:设每天生产A 型桌子x 张,B 型桌子y 张,则⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,93,82y x y x y x 目标函数为z =2x +3y . 作出可行域:把直线l :2x +3y =0向右上方平移至l ′的位置时,直线经过可行域上的点M ,且与原点距离最大,此时z =2x +3y 取得最大值. 解方程⎩⎨⎧=+=+,93,82y x y x 得M 的坐标为(2,3).答:每天应生产A 型桌子2张,B 型桌子3张才能获得最大利润. 板书设计简单的线性规划问题例课堂小结。
3.5.2 简单线性规划教案教学目标(1)了解线性规划的意义、了解可行域的意义;(2)掌握简单的二元线性规划问题的解法.(3)巩固图解法求线性目标函数的最大、最小值的方法;(4)会用画网格的方法求解整数线性规划问题.(5)培养学生的数学应用意识和解决问题的能力.教学重点、难点二元线性规划问题的解法的掌握.教学过程一.问题情境1.问题:在约束条件4104320x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩下,如何求目标函数2P x y=+的最大值?二.建构数学首先,作出约束条件所表示的平面区域,这一区域称为可行域,如图(1)所示.其次,将目标函数2P x y=+变形为2y x P=-+的形式,它表示一条直线,斜率为,且在y轴上的截距为P.平移直线2y x P=-+,当它经过两直线410x y+=与4320x y+=的交点5(,5)4A时,直线在y轴上的截距最大,如图(2)所示.因此,当5,54x y==时,目标函数取得最大值5257.54⨯+=,即当甲、乙两种产品分别生产54t和5t时,可获得最大利润7.5万元.这类求线性目标函数在线性约束条件下的最大值或最小值问题,通常称为线性规划问题.其中5(,5)4使目标函数取得最大值,它叫做这个问题的最优解.对于只含有两个变量的简单线性规划问题可用图解法来解决.说明:平移直线2y x P=-+时,要始终保持直线经过可行域(即直线与可行域有公共点).三.数学运用例1.设2z x y =+,式中变量,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.Oy xA C B430x y -+= 1x =35250x y +-=解:由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.由图知,原点(0,0)不在公共区域内,当0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈, 可知:当l 在0l 的右上方时,直线l 上的点(,)x y满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大. 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小, 所以,max 25212z =⨯+=,min 2113z =⨯+=.例2.设610z x y =+,式中,x y 满足条件4335251x y x y x -≤-⎧⎪+≤⎨⎪≥⎩,求z 的最大值和最小值.解:由引例可知:直线0l与AC 所在直线平行, 则由引例的解题过程知,当l 与AC 所在直线35250x y +-=重合时z 最大,此时满足条件的最优解有无数多个, 当l 经过点(1,1)B 时,对应z 最小, ∴max 61050z x y =+=,min 6110116z =⨯+⨯=.例3.已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l:35150x y --=所围成的三角形内部(不含边界),设1l 与2l ,1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C 坐标分别为153(,)84A ,(0,3)B -,7512(,)1919C -,AB C x yO1l 3l 2l作一组平行线l :x y t +=平行于0l :0x y +=,当l 往0l右上方移动时,t 随之增大,∴当l 过C 点时x y +最大为6319,但不是整数解,又由75019x <<知x 可取1,2,3, 当1x =时,代入原不等式组得2y =-, ∴1x y +=-; 当2x =时,得0y =或1-, ∴2x y +=或1; 当3x =时,1y =-, ∴2x y +=,故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩. 例4.投资生产A 产品时,每生产100吨需要资金200万元,需场地200平方米,可获利润300万元;投资生产B 产品时,每生产100米需要资金300万元,需场地100平方米,可获利润200万元.现某单位可使用资金1400万元,场地900平方米,问:应作怎样的组合投资,可使获利最大?分析:这是一个二元线性规划问题,可先将题中数据整理成下表,以方便理解题意:资 金 (百万元)场 地 (平方米)利 润 (百万元)A 产品 2 2 3B 产品 3 1 2 限 制149然后根据此表数据,设出未知数,列出约束条件和目标函数,最后用图解法求解解:设生产A 产品x 百吨,生产B 产品y 米,利润为S 百万元,则约束条件为23142900x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,目标函数为32S x y =+.作出可行域(如图),将目标函数变形为322S y x =-+,它表示斜率为32-,在y 轴上截距为2S的直线,平移直线322S y x =-+,当它经过直线与29x y +=和2314x y +=的交点135(,)42时,2S最大,也即S 最大.此时,1353214.7542S =⨯+⨯=.因此,生产A 产品3.25百吨,生产B 产品2.5米,利润最大为1475万元.说明:(1)解线性规划应用题的一般步骤:①设出未知数;②列出约束条件(要注意考虑数据、变量、不等式的实际含义及计量单位的统一);③建立目标函数;④求最优解.(2)对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.四.回顾小结:1.简单的二元线性规划问题的解法.2.巩固图解法求线性目标函数的最大值、最小值的方法;3.用画网格的方法求解整数线性规划问题。