两圆的公切线(2)
- 格式:ppt
- 大小:399.50 KB
- 文档页数:21
两圆的公切线前言在几何学中,我们经常研究圆的性质。
圆是所有平面几何图形中最容易被理解的图形之一,因为它的定义很简单:所有点到给定点的距离相等。
在这篇文档中,我们将讨论如何求解两个圆的公切线问题。
两个圆的公切线考虑两个圆C1和C2,半径分别为r1和r2,圆心之间的距离为d。
我们想要求出连接这两个圆的切线两个切点的坐标。
情况1:两圆相离当两个圆不相交时,它们的公切线如下所示:既然两个圆不相交,它们的距离一定大于它们的半径之和。
因此,我们可以依次执行以下步骤来求解两个圆的公切线:1.计算d=r1+r22.计算sinθ=r2/d3.计算cosθ=r1/d4.对于每个值θ∈[0,π),计算切点的坐标根据上述步骤可以得到两个切点的坐标,它们分别为:(x1,y1)和(x2,y2)。
情况2:两圆内含当一个圆完全包含在另一个圆之内时,两个圆的公切线如下所示:在这种情况下,我们可以依次执行以下步骤来求解两个圆的公切线:1.计算d=r1-r22.计算sinθ=r2/d3.计算cosθ=r1/d4.对于每个值θ∈[0,π),计算切点的坐标在这种情况下,我们只有外部切线。
情况3:两圆相交当两个圆相交时,它们的公切线如下所示:我们可以依次执行以下步骤来求解两个圆的公切线:1.计算d=√((x2-x1)2+(y2-y1)2)2.计算α=asin((r1-r2)/d)3.计算β=tan^(-1)((y2-y1)/(x2-x1))4.对于θ=β+α和θ=β-α,计算切点的坐标请注意,如果两个圆的半径相等,则α=π/4,这是一个非常特殊的情况。
结论本文讨论了如何计算两个圆的公切线。
对于不相交的圆,我们可以直接计算出切点的坐标。
对于相交的圆,我们必须考虑两个角度,以计算出正确的公切线。
如果您对本文所述内容有任何问题或意见,请在评论区中留言。
感谢您的阅读!。
求两圆公切线方程的简捷方法
一、外公切线公式的求法:
设大圆半径为R,小圆半径为r,圆心距为d
过小圆圆心作垂直于大圆的半径(此半径与外公切线垂直)
则有l^2=d^2-(R-r)^2
故l=根号d^2-(R-r)^2
(l是公切线长)
二、内公切线公式的求法:
设大圆半径为R,小圆半径为r,圆心距为d
平移内公切线使公切线的一端端点与小圆圆心重合
则有l^2=d^2-(R+r)^2
故l=根号d^2-(R+r)^2
扩展资料:
外公切线与连心线夹角的正弦值=圆心距分之大圆半径减小圆半径;内公切线与连心线夹角的正弦值=圆心距分之大圆半径加小圆半径。
公切线的条数与两圆的位置关系如下:
若两圆相离,则有4条公切线;
若两圆外切,则有3条公切线(两外切,一内切);
两圆相交,则有2条公切线(外切);
若两圆内切,则有1条公切线;
若两圆内含,则有0条公切线。
数学教案-两圆的公切线引言数学中,圆是一种基本的几何形状,而公切线是指两个圆之间的切线。
研究两个圆的公切线对于培养学生的几何思维、分析问题的能力以及解决实际问题有着重要的作用。
本教案将引导学生通过探究两个圆的公切线的性质,加深对圆形和切线的理解。
教学目标1.了解切线的定义和性质。
2.探究两个圆的公切线的存在条件。
3.理解和应用两个圆的公切线的性质。
教学重点1.公切线的定义和性质。
2.两个圆的公切线的存在条件。
3.两个圆的公切线的性质。
教学内容1. 切线的定义和性质切线的定义在平面几何中,给定一个圆和其上的一个点,过这个点可以作出无数条切线。
切线是与圆仅有一个交点的直线。
切线的性质1.切线与半径的垂直关系:切线与过切点的半径垂直。
2.切线与圆弧的夹角:切线和过切点的切线与圆弧之间的夹角为直角。
2. 两个圆的公切线的存在条件外公切线当两个圆半径之和大于两圆心之间的距离时,两圆存在两条外公切线。
#### 内公切线当两个圆半径之差大于两圆心之间的距离时,两圆存在两条内公切线。
3. 两个圆的公切线的性质1.公切线与两个圆心的关系:两个圆的公切线与两个圆心的连线垂直。
2.公切线的切点:两个圆的公切线与两个圆的切点在一条直线上。
3.外公切线和内公切线的夹角:两个圆的外公切线和内公切线的夹角为直角。
教学步骤1.导入知识:回顾切线的定义和性质。
2.提出问题:给定两个圆,请确定它们的公切线是否存在。
3.探究实践:让学生自主探究两个圆的公切线的存在条件。
4.总结归纳:让学生总结并提出存在条件和性质。
5.拓展应用:将所学的知识运用到解决实际问题中。
6.小结复习:对所学知识进行小结和复习。
教学资源•教材:数学教材•演示工具:黑板和粉笔思考题1.两个圆的半径分别为r1和r2,它们的圆心距离为d。
请推导出两个圆的外公切线的长度的表达式。
2.两个圆的半径分别为r1和r2,它们的圆心距离为d。
请推导出两个圆的内公切线的长度的表达式。
两圆公切线长的计算方法公切线是两个圆相切于外部或内部时的切线。
计算公切线的长度需要根据两圆的半径和圆心的位置来进行。
本文将介绍两个圆相切于外部和内部时公切线长度的计算方法。
1.两圆外切时的公切线长度计算方法:两个圆外切时,可以通过连接两个圆心、连接圆心与切点来形成一个等边三角形。
而公切线就是这个等边三角形中的一条边,因此其长度可以通过计算这个等边三角形的边长得到。
设两个圆的半径分别为r1和r2,两个圆心之间的距离为d。
连接两个圆心形成一条直线,并过直线的中点画一条垂直于直线的线段,该线段与连接两个圆心的直线相交于切点。
连接切点与两个圆心,可以画出一个等边三角形。
根据等边三角形的性质可知,两条边的长度分别为d-r1、d-r2,而公切线的长度即为d+r1+r2因此,两个圆外切时的公切线长度为d+r1+r22.两圆内切时的公切线长度计算方法:两个圆内切时,可以通过连接两个圆心、连接圆心与切点来形成一个等腰三角形。
而公切线就是这个等腰三角形的底边,因此其长度可以通过计算这个等腰三角形的底边长得到。
设两个圆的半径分别为r1和r2,两个圆心之间的距离为d。
连接两个圆心,并过直线的中点画一条垂直于直线的线段,该线段与连接两个圆心的直线相交于切点。
连接切点与两个圆心,可以画出一个等腰三角形。
根据等腰三角形的性质可知,在底边上有两个等边三角形,而这两个等边三角形边长分别为r1和r2因此,两个圆内切时的公切线长度为r1+r2需要注意的是,当两个圆没有相交或者相切时,公切线的长度为零。
总结:两个圆外切时的公切线长度为d+r1+r2,其中d为两个圆心之间的距离,r1和r2分别为两个圆的半径;两个圆内切时的公切线长度为r1+r2,其中r1和r2分别为两个圆的半径;两个圆没有相交或者相切时,公切线的长度为零。
这就是两圆公切线长度的计算方法。
通过这些方法,我们可以方便地计算出两个圆相切时的公切线长度,有助于进一步的几何计算与分析。
辽宁省北镇市2017届中考数学几何复习第七章圆第30课时两圆的公切线(二)教案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省北镇市2017届中考数学几何复习第七章圆第30课时两圆的公切线(二)教案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省北镇市2017届中考数学几何复习第七章圆第30课时两圆的公切线(二)教案的全部内容。
第七章:圆第30课时:两圆的公切线(二)教学目标:1、使学生学会两圆内公切线长的求法.2.使学生会求出公切线与连心线的夹角或公切线的夹角.2、使学生在学会求两圆内公切线长的过程中,探索规律,培养学生的总结、归纳能力.3、培养学生会根据图形分析问题,培养学生的数形结合能力.教学重点:使学生进一步掌握两圆公切线等有关概念,会求两圆内公切线长及切线夹角.教学难点:两圆内公切线和内公切线长容易搞混.教学过程:一、新课引入:上一节我们学会了求两圆的外公切线长,这一节我们将学习两圆内公切线长的求法及两圆公切线夹角的求法.实际上,我们首先要清楚,什么样的两圆的位置关系存在两圆内公切线?有几条?什么样的两圆位置关系有内公切线长?请同学们打开练习本,动手画一画,结合图形,考虑上面的问题.学生动手画图,教师巡视,当所有学生都画完图后,教师打开计算机或幻灯作演示,演示过程由学生回答上述三个问题,并认定只有两圆外离时,存在内公切线长.二、新课讲解:有了上一节求两圆外公切线长的基础,学生不难想到求两圆的内公切线长也要在一个直角三角形中完成,只要稍加提示,学生便会作出直角三角形,同时教师要提醒学生注意两种公切线长的求法中,三角形的边有所不同.例2 如图7-106,P.142已知⊙O1、⊙O2的半径分别为4cm和2cm,圆心距为10cm,AB 是⊙O1、⊙O2的内公切线,切点分别为A、B.求:公切线的长AB.分析:仿照上节的辅助线方法作辅助线,我们会发现,不论从O1或O2向另一条半径作垂线,垂足都落在半径的延长线上,因此O2C是两圆半径之和.例题解法参照教材P.142例2.结论:由于圆是轴对称图形,1.两圆的两条外公切线长相等,两条内公切线长相等.2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在连心线上.练习一,如图7-107,已知⊙O1、⊙O2的半径分别为1.5cm和2.5cm,O1O2=6cm.求内公切线的长.此题分析类同于例题.解:连结O2A、O1B,过点O2作O2C⊥O1B交O1B的延长线于C.在Rt△O2CO1中:∵O1O2=6,O1C=O1B+BC=4,结论:在由公切线长、圆心距、两圆半径的和或差构成的Rt△中,已知任意两量,都可以求出第三量来,同时,我们也可以求出所需角来.例3 P.143要做一个如图7—108.那样的V形架,将两个钢管托起,已知钢管的外径分别为20mm和80mm,求V形角α的度数.分析:首先指导学生将实际问题转化为两圆外公切线问题,V形角α实际上就是求两圆公切线的夹角.由矩形、外公切线的基本图形知,矩形A BO2C的边O2C∥AB,则Rt△O1CO2中的锐角∠CO2O1=∠解:设两圆管的圆心分别为O1、O2,它们与V形架切于点A、B,AB与O1O2交于点P,连结O1A,O2B,过点O2作O2C⊥O1A,垂足为C.∴∠CO2O1=25°23′.∴∠α=50°46′练习二,P.145中1.如图7—109,⊙A、⊙B外切于点C,它们的半径分别为5cm,2cm,直线l与⊙A、⊙B都相切.求直线AB与l所成的角.分析:这是两圆外公切线与两圆连心线夹角问题,属于两圆外公切线的基本图形,只要在Rt△ADB中求出∠ABD的度数即可.解:设l与⊙A、⊙B分别切于点M、N,连结AM、BN,过点B作BD⊥AM,垂足为D.∴∠ABD=25°23′.∴∠1=25°23′.答:直线AB与l所成的角为25°23′.三、课堂小结:为培养学生阅读教材的习惯,让学生看教材P.142—P.145,从中总结出本课主要内容:1.求两圆的内公切线,仍然归结为解直角三角形问题,注意基本图形中的直角三角形,圆心距仍然为斜边,内公切线长、两半径之和作直角边,三个量中已知任何两个量,都可以求出第三个量来.2.如果两圆有两条外(或内)公切线,并且它们相交,那么交点一定在两圆的连心线上.3.求两圆两外(或内)公切线的夹角.要根据基本图形,归结为求Rt△中的锐角.从而根据平行线的同位角相等,进而求出两公切线的夹角.四、布置作业教材P.153中12、13、14.。
两圆的公切线(篇⼆)两圆的公切线第⼀课时(⼀)教学⽬标:(1)理解两圆相切长等有关概念,掌握两圆外公切线长的求法;(2)培养学⽣的归纳、总结能⼒;(3)通过两圆外公切线长的求法向学⽣渗透“转化”思想.教学重点:理解两圆相切长等有关概念,两圆外公切线的求法.教学难点:两圆外公切线和两圆外公切线长学⽣理解的不透,容易混淆.教学活动设计(⼀)实际问题(引⼊)很多机器上的传动带与主动轮、从动轮之间的位置关系,给我们以⼀条直线和两个同时相切的形象.(这⾥是⼀种简单的数学建模,了解数学产⽣与实践)(⼆)概念1、概念:教师引导学⽣⾃学.给出两圆的外公切线、内公切线以及公切线长的定义:和两圆都相切的直线,叫做两圆的公切线.(1)外公切线:两个圆在公切线的同旁时,这样的公切线叫做外公切线.(2)内公切线:两个圆在公切线的两旁时,这样的公切线叫做内公切线.(3)公切线的长:公切线上两个切点的距离叫做公切线的长.2、理解概念:(1)公切线的长与切线的长有何区别与联系?(2)公切线的长与公切线⼜有何区别与联系?(1)公切线的长与切线的长的概念有类似的地⽅,即都是线段的长.但公切线的长是对两个圆来说的,且这条线段是以两切点为端点;切线长是对⼀个圆来说的,且这条线段的⼀个端点是切点,另⼀个端点是圆外⼀点. (2)公切线是直线,⽽公切线的长是两切点问线段的长,前者不能度量,后者可以度量.(三)两圆的位置与公切线条数的关系组织学⽣观察、概念、概括,培养学⽣的学习能⼒.添写教材P143练习第2题表.(四)应⽤、反思、总结例1、已知:⊙O1、⊙O2的半径分别为2cm和7cm,圆⼼距O1O2=13cm,AB是⊙O1、⊙O2的外公切线,切点分别是A、B.求:公切线的长AB.分析:⾸先想到切线性质,故连结O1A、O2B,得直⾓梯形AO1O2B.⼀般要把它分解成⼀个直⾓三⾓形和⼀个矩形,再⽤其性质.(组织学⽣分析,教师点拨,规范步骤)解:连结O1A、O2B,作O1A⊥AB,O2B⊥AB.过 O1作O1C⊥O2B,垂⾜为C,则四边形O1ABC为矩形,于是有O1C⊥C O2,O1C=AB,O1A=CB.在Rt△O2CO1和.O1O2=13,O2C=O2B- O1A=5AB=O1C= (cm).反思:(1)“转化”思想,构造三⾓形;(2)初步掌握添加辅助线的⽅法.例2*、如图,已知⊙O1、⊙O2外切于P,直线AB为,A、B为切点,若PA=8cm,PB=6cm,求切线AB的长.分析:因为线段AB是△APB的⼀条边,在△APB中,已知PA和PB的长,只需先证明△PAB是直⾓三⾓形,然后再根据勾股定理,使问题得解.证△PAB是直⾓三⾓形,只需证△APB中有⼀个⾓是90°(或证得有两⾓的和是90°),这就需要沟通⾓的关系,故过P作CD如图,因为AB是,所以∠CPB=∠ABP,∠CPA=∠BAP.因为∠BAP+∠CPA+∠CPB+∠ABP=180°,所以2∠CPA+2∠CPB=180°,所以∠CPA+∠CPB=90°,即∠APB=90°,故△APB是直⾓三⾓形,此题得解.解:过点P作CD∵ AB是⊙O1和⊙O2的切线,A、B为切点∴∠CPA=∠BAP ∠CPB=∠ABP⼜∵∠BAP+∠CPA+∠CPB+∠ABP=180°∴ 2∠CPA+2∠CPB=180°∴∠CPA+∠CPB=90° 即∠APB=90°在Rt△APB中,AB2=AP2+BP2说明:两圆相切时,常过切点作,沟通两圆中的⾓的关系.(五)巩固练习1、当两圆外离时,外公切线、圆⼼距、两半径之差⼀定组成( )(A)直⾓三⾓形 (B)等腰三⾓形 (C)等边三⾓形 (D)以上答案都不对.此题考察外公切线与外公切线长之间的差别,答案(D)2、外公切线是指(A)和两圆都祖切的直线 (B)两切点间的距离(C)两圆在公切线两旁时的公切线 (D)两圆在公切线同旁时的公切线直接运⽤外公切线的定义判断.答案:(D)3、教材P141练习(略)(六)⼩结(组织学⽣进⾏)知识:、外公切线、内公切线及公切线的长概念;能⼒:归纳、概括能⼒和求外公切线长的能⼒;思想:“转化”思想.(七)作业:P151习题10,11.第⼆课时(⼆)教学⽬标:(1)掌握两圆内公切线长的求法以及公切线与连⼼线的夹⾓或公切线的交⾓;(2)培养的迁移能⼒,进⼀步培养学⽣的归纳、总结能⼒;(3)通过两圆内公切线长的求法进⼀步向学⽣渗透“转化”思想.教学重点:两圆内公切线的长及公切线与连⼼线的夹⾓或公切线的交⾓求法.教学难点:两圆内公切线和两圆内公切线长学⽣理解的不透,容易混淆.教学活动设计(⼀)复习基础知识(1)概念:公切线、内外公切线、内外公切线的长.(2)两圆的位置与公切线条数的关系.(构成数形对应,且⼀⼀对应)(⼆)应⽤、反思例1、(教材例2)已知:⊙O1和⊙O2的半径分别为4厘⽶和2厘⽶,圆⼼距为10厘⽶,AB是⊙O1和⊙O2的⼀条内公切线,切点分别是A,B.求:公切线的长AB。
两圆的公切线(二)引言在上一篇文章中,我们讨论了两个圆的公切线的概念以及求解公切线的方法。
本文将进一步探讨两个圆的公切线,并介绍几个实际问题中的应用。
求解两个圆的公切线假设有两个圆C1和C2,它们的圆心分别为O1和O2,半径分别为r1和r2。
我们的目标是求解这两个圆的公切线。
情况一:两个圆相交当两个圆相交时,存在两条内公切线和两条外公切线。
内公切线内公切线示意图内公切线示意图如图所示,设两个圆的半径分别为r1和r2,圆心之间的距离为d。
对于内公切线,设切点分别为A和B。
根据几何性质可知,AO1、BO1是两个圆的半径,且垂直于相应的切线。
因此,我们可以得到以下等式:(O1A)^2 + (O1O2)^2 = r1^2 —-(1)(O2B)^2 + (O1O2)^2 = r2^2 —-(2)将公式(1)和(2)相减,可以消去O1O2:(O1A)^2 - (O2B)^2 = r1^2 - r2^2根据O1A和AO2的互为相反数的关系,可得:(O1A + O2B)(O1A - O2B) = r1^2 - r2^2由于O1A + O2B = AB,我们可以得到:AB(O1A - O2B) = r1^2 - r2^2由于AB是切线的长度,而O1A - O2B是两个圆心之间的距离,即d。
因此,我们可以得到: AB = (r1^2 - r2^2) / d外公切线外公切线示意图外公切线示意图对于外公切线,同样设切点为A和B。
根据几何性质可知,AO1、BO1是两个圆的半径,且垂直于相应的切线。
因此,我们可以得到以下等式:(O1A)^2 - (O1O2)^2 = r1^2 —-(3)(O2B)^2 - (O1O2)^2 = r2^2 —-(4)将公式(3)和(4)相减,可以消去O1O2:(O1A)^2 - (O2B)^2 = r1^2 - r2^2同样由于O1A + O2B = AB,我们可以得到: AB = (r1^2 - r2^2) / d情况二:两个圆外切当两个圆外切时,存在两条内公切线和两条外公切线。
两圆的公切线方程全文共四篇示例,供读者参考第一篇示例:两圆的公切线方程是解析几何中的一个重要概念,它可以帮助我们研究两个圆之间的关系以及它们之间的相互作用。
在数学领域中,圆是一种几何图形,具有一定的特定形状和性质。
而两个圆之间的公切线则是指相切于这两个圆的直线,也就是同时与两个圆相切的一条直线。
通过求解两个圆的公切线方程,我们可以得到关于两圆的一些重要性质和结论,进而为我们的研究和分析提供依据。
在解析几何中,我们通常将两个圆分别表示为两个圆心分别为(a,b)和(c,d),半径分别为r1和r2的圆。
现在我们来研究两个圆之间的公切线。
对于一个与两个圆都相切的公切线,我们可以将其表示为y=kx+m,其中k为斜率,m为截距。
公切线同时与两个圆相切,意味着公切线上的任意一点都满足圆的切线条件。
圆的切线条件是指:圆心到切点的距离等于半径,即(中文维基百科“公切线”一词解释:两个圆的公共切线,相对于两个圆在共同的一个切线。
两个固定圆,存在两个现实的共同切线,并在除开这两个半径正好即的地方,圆心的连线在不发生穿插),公切线的形成条件如下:两个圆的圆心之间的距离等于两个圆半径之差或之和。
根据两个圆的圆心和半径的不同相对位置,可以分为以下几种情况:1. 两个圆外切:当两个圆外切时,它们之间存在4条公共外切线。
这些外切线的斜率以两圆心之间的连线为基准,可以通过简单的几何推导来得到。
3. 一个圆包含另一个圆:当一个圆完全包含另一个圆时,它们之间不存在公共切线。
对于两个圆外切的情况来说,两个圆之间的公切线方程可以通过如下的方法得到。
我们可以设公切线的斜率为k,截距为m。
然后,我们可以根据圆的切线条件,得到两个方程:(a-c)² + (b-d)² = (r1+r2)² (1)y = kx + m (2)将公切线方程(2)代入圆的切线条件方程(1)中,并解方程组,就可以得到两个圆外切时的公切线方程。