固体能带理论
- 格式:ppt
- 大小:6.37 MB
- 文档页数:7
能带理论能带理论是研究固体中电子运动规律的一种近似理论。
固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。
为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。
能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。
具体的计算方法有自由电子近似法、紧束缚近似法、正交化平面波法和原胞法等。
前两种方法以量子力学的微扰理论作为基础,只分别适用于原子实对电子的束缚很弱和很强的两种极端情形;后两种方法则适用于较一般的情形,应用较广。
能级(Enegy Level):在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。
每个壳层上的电子具有分立的能量值,也就是电子按能级分布。
为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。
能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。
致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。
从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。
禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。
原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。
被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。
价带(Valence Band):原子中最外层的电子称为价电子,与价电子能级相对应的能带称为价带。
简述固体的能带理论晶体中电子所能具有的能量范围,往往形象地用能带理论表示。
各种晶体能带数目及其宽度等都不相同。
相邻两能带间的能量范围称为“带隙”或“禁带”。
完全被电子占据的能带称“满带”。
满带中的电子不会导电;完全末被占据的称“空带”;部分被占据的称“导带”。
导带中的电子能够导电;价电子所占据的能带称“价带”。
能带理论可以解释固体中导体、半导体、绝缘体三大类区别的由来。
一般常见的金属材料,因为其传导带与价带之间的“带隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电。
而绝缘材料则因为能隙很大,电子很难跳跃至传导带,所以无法导电。
一般半导体材料的能隙约为1 至3 电子伏特,介于导体和绝缘体之间。
因此只要给予适当条件的能量激发,或是改变其带隙之间距,此材料就能导电。
;晶体中电子所能具有的能量范围,往往形象地用能带理论表示。
各种晶体能带数目及其宽度等都不相同。
相邻两能带间的能量范围称为“带隙”或“禁带”。
完全被电子占据的能带称“满带”。
满带中的电子不会导电;完全末被占据的称“空带”;部分被占据的称“导带”。
导带中的电子能够导电;价电子所占据的能带称“价带”。
能带理论可以解释固体中导体、半导体、绝缘体三大类区别的由来。
一般常见的金属材料,因为其传导带与价带之间的“带隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电。
而绝缘材料则因为能隙很大,电子很难跳跃至传导带,所以无法导电。
一般半导体材料的能隙约为1 至3 电子伏特,介于导体和绝缘体之间。
因此只要给予适当条件的能量激发,或是改变其带隙之间距,此材料就能导电。
固体能带理论(学号:1120120332 姓名:马英 )摘要:固体能带理论是凝聚态物理学的重要组成部分,在密度泛函理论基础上,对固体能带理论70年来的发展作简单的论述和分析,并阐述固体能带计算各种方法的物理原理及共典型应用。
关键词:固体、半导体、金属、单电子、准粒子、离子、晶体、应力一、自由电子模型在这个模型中,电子与电子,晶格与电子之间的相互作用被忽略.也可以这样说晶格对电子的影响视为平均势场索米菲理论:自由电子模型+费米狄拉克分布 解释: 1.电子气热容量 2.电子发射3.电子气的顺磁与逆磁效应 二、3个重要近似和周期性势场 绝热近似:由于原子核质量比电子的质量大得多,电子的运动速度远大于原子核的运动速度,即原子核的运动跟不上电子的运动。
所以在考虑电子的运动时,认为原子实不动。
单电子近似::一个电子在离子实和其它电子所形成的势场中运动。
又称hartree-Fock 自洽场近似。
周期场近似:原子实和电子所形成的势场是周期性的。
周期性势场 :单电子近似的结果:周期性势场(周期为一个晶格常数)。
3. Bloch 波(1)Bloch 定理:在周期性势场中运动的电子,气波函数由如形式 :其中u 具有晶格的周期性,即(2)Bloch 波的性质a.波函数不具有晶体周期性,而(k 为实数时)电子分布几率具有晶格的周期性b.当k 为虚数,描写电子的表面态,k =is(s>0)(S 小于0时无意义.)c. 周期边界条件:)()(r u e r rk i⋅=ϕ)()(332211a n a n a n r u r u+++=)()(x u e x ika=ϕ222|)(||)(||)(|x u a x x =+=ϕϕ)()(x u e x sx-=ϕ)()(x Na x ϕϕ=+)()(ˆ)(x e x TNa x ikNaϕϕϕ==+)()(a x x n K k k +=+ϕϕd. 波矢相差倒格矢整数倍的Bloch 波等效.因此把波矢限制在第一布区内.且第一布区内的分立波矢数为晶体原胞数N 可容纳的电子数为2N.三、单电子近似下电子的能量状态. 电子满足的薛定谔方程:在克龙尼克—潘纳模型下:周期运动中的离子许可能级形成能带.能带之间存在不许可能量范围称为禁带,且禁带位于布区边界. 关于能带的讨论:1.在原理布区边界的区域内, 电子的能量可粗略的视为自由电子的能量.2.在布区边界上,电子能量不连续,出现禁带,禁带的宽度为:3.在同一能带中,能量最大的地方称为带顶,能量最小的地方称为带底,能量最大值与最小值之差称为能带宽度.带底附近能量曲线是一开口向上的小抛物线,带顶附近,能量曲线是一开口向下的小抛物线.4.能量是k 的周期函数,周期为倒格子矢量.5.能量曲线的三种表示方法:(1)第一布区图 (2)扩展区图 (3)周期区图6.E 为k 的多值函数,以视区别 表示第s 个能带的能量,而k 表示在第一布区中取值. 7.每个能带可容纳2N 个电子,第一布区分立k 的数目为N. 考虑自旋2N.)()()()()())(2(22x u e x V na x V x E x x V m ikx ==+=+∇-ψψψ其中: a -b -0c a 0V cb a +=禁带a πa π232V 22V 12V m k E 222 =|2|g l l V E =禁带a πa π232V 22V 12V )(k E s ⎪⎪⎪⎪⎭⎫ ⎝⎛=N Na a ππ22四、费米面的构造费米面是电子的占据态与非占据态之间的分界面.晶体(特别是导体)的许多性质决定于费米面附近电子的行为.因此费米面的形状十分重要。
简述固体能带理论固体能带理论是一种物理学理论,可以用来描述电子在固体中的运动。
它可以解释电子在微观尺度下的能量状态,以及描述不同能量状态下的电子的特性和行为。
能带理论的研究为众多先进的电子学应用提供了基础,并在发展现代半导体技术中发挥着至关重要的作用。
能带理论可以用来描述电子在固体中的能量分布。
它认为,一个固体中存在着一系列能量状态,电子可以跳跃从一个能量状态到另一个能量状态。
因此,电子只能在这些能量状态内移动,而不能跨越这些能量状态。
能带理论还提供了一种电子运动的机制,这种机制可以解释为何电子受到外部作用时会在电子带中运动。
此外,能带理论还可以用来描述固体中不同能量状态下的电子特性和行为。
比如,能带理论可以解释为什么具有较高能量状态的电子会被电场吸引,而具有较低能量状态的电子会被电场排斥。
它还可以解释为什么某些电子受到外部作用时会排斥,而另一些电子却受到吸引,这是因为他们具有不同的能量状态。
能带理论也为众多先进的电子学应用提供了基础,例如电子管和半导体技术。
能带理论的理解对于探究元件的电子行为和功能十分重要,因而它一直是半导体技术发展的基础性质。
其实,固体能带理论只是电子能带理论的一个应用,电子能带理论还可以用来描述大量现实世界中的现象,比如晶体结构,材料性质,光学现象等。
因此,能带理论为物理学、化学和材料科学等研究提供了非常有用的理论框架。
总之,固体能带理论是一种物理学理论,可以用来描述电子在固体中的能量分布和运动,并解释不同能量状态下的电子的特性和行为,它可以为众多先进的电子学应用提供基础,是发展现代半导体技术的基础性质。
它还可以用来描述现实世界中的多种现象,为物理学、化学和材料科学等提供有用的理论框架。
固体物理中,能带论的三个近似1.引言1.1 概述固体物理是研究固体材料中原子或分子的行为和性质的学科领域。
能带论是固体物理中一个非常重要的理论,它描述了电子在晶体中的能量分布及其行为规律。
能带论的三个近似是固体物理中非常重要的概念。
第一个近似是关于能带的定义和特点。
能带是指具有相似能量的电子态的集合。
在固体中,原子间的相互作用引起了电子的周期性排列,形成能带结构。
能带结构决定了电子能量的分布及其在固体中的运动方式。
根据波尔兹曼统计,能带中的电子填充情况将影响固体的导电性、磁性等物理性质。
第二个近似是关于周期势场下的能带结构。
周期势场是指固体中原子间的周期性排列造成的电子受到的平均势场。
在周期势场下,电子的行为将受到布洛赫定理的约束,即电子波函数在晶格周期性重复。
这样,能带结构就可以通过布洛赫定理进行简化描述,从而得到电子能量与波矢的关系。
第三个近似是近自由电子近似。
近自由电子近似是指在某些特定材料中,电子在晶格势场下的运动表现出类似自由电子的行为。
在近自由电子近似下,电子的能量分布可以用简单的能带模型来描述,以及电子的运动类似于自由电子在真空中的运动。
这种近似计算方法在一些金属或导体中得到了广泛应用。
综上所述,能带论的三个近似是固体物理中不可或缺的工具,它们对于解释和预测固体材料的性质具有重要意义。
本文将对这三个近似进行详细的介绍和分析,并展望能带论在未来的发展和应用前景。
1.2文章结构1.2 文章结构本文将分为三个主要部分,分别是引言、正文和结论。
每个部分将有不同的子节,以便深入探讨和解释固体物理中能带论的三个近似。
引言部分将提供对整篇文章的概述,阐明本文的目的和重要性。
我们将简要介绍固体物理领域中的能带论及其在研究材料性质和电子行为上的重要性。
同时,引言还将展示本文的结构,介绍每个部分的主要内容及其相互关系。
正文部分将详细讨论能带论的三个近似。
第一个近似部分将探讨能带的定义和特点,以及简化的布洛赫定理。
简述固体能带理论固体能带理论是量子力学关于固体中微观粒子行为的一种理论,它有助于描述量子物理学领域中重要的诸多性质,如电导率、电阻率、拉曼散射、热导率等电子性质。
一般来说,固体能带理论将一个固体分解为由许多电子组成的能带系统。
该理论着重于研究电子在晶体中的能带结构,以及这些能带之间的相互作用,从而解释固体中各种电子性质的变化。
固体能带理论的基础源自费米子的研究,他发现以光的波长为单位切割金属表面的电子能量等级,其中可能会有大量的能量等级,由此派生出能带理论,它将光谱转化为一系列的能级,从而说明光的行为和物质的结构之间的关系。
费米子发现,电子在晶体中能够在一系列被称为能带的能量水平中移动,并且通过不同能带之间的相互作用,电子才能在晶体中移动。
他对能带结构进行了深入分析,为固体能带理论奠定了基础。
随着费米子的研究,晶体物理学家们利用凝聚态物理的理论和表征,更详细地研究了固体能带结构,最终发展出固体能带理论。
固体能带理论的最重要的思想是绝热处理和热力学,即将晶体能带结构看作由一系列不同类型的能带组成,每一类都由一系列不同的能级组成。
根据固体中电子的迁移和能量转换机制,晶体的电子特性可以分为受斥力和相互作用,从而解释固体中的电子性质的变化。
固体能带理论的另一个重要思想是能带的费米子结构,它描述了电子在不同的能带中的空间分布,以及电子在不同能带之间的跃迁和能量转换的规律。
根据这一理论,晶体中的电子性质可以定量描述,从而说明固体中各种物理量的变化。
固体能带理论是量子力学领域的一个重要研究课题,也是许多重要物理性质的解释者。
它拓宽了我们对固体中电子性质的认识,开发了由电子能带结构组成的新材料,从而更好地实现人类在电子电路、半导体等领域的技术创新。
固体物理学中的能带理论固体物理学是研究固体物质特性和行为的学科。
其中,能带理论是固体物理学中的重要内容之一。
这个理论的提出和发展,深刻地影响着我们对物质的认识和应用。
在本文中,将介绍能带理论的基本概念、理论构建的主要过程以及对实际应用的影响。
1. 能带理论的基本概念能带理论是描述固体材料中电子结构的理论框架。
它基于量子力学的原理,认为在固体中,电子的运动状态和能量分别由多个能带和能带间的禁带带宽所决定。
能带是指具有类似能量水平的电子能级。
禁带带宽则表示在能带之间禁止电子的能量范围。
2. 理论构建的主要过程能带理论的构建经历了一系列的发展过程。
最早的一些能带理论如卢瑟福模型和Drude模型,是基于经典力学和经典电动力学的假设,对于一些简单情况具有一定的解释能力。
然而,这些模型无法解释复杂固体中的行为,因为它们没有考虑到量子力学效应。
在量子力学的框架下,人们使用薛定谔方程和波函数的理论来描述电子在固体中的行为。
经典的能带理论建立在Bloch定理的基础上,该定理认为固体中的电子具有周期性的晶格势场作用下的波函数形式。
通过求解薛定谔方程,我们可以得到电子的能量本征值和本征态。
3. 对实际应用的影响能带理论的提出和发展对固体物理学的研究产生了深远的影响。
首先,能带理论提供了解释固体材料电子运动行为的一个理论模型。
它可以解释金属、绝缘体和半导体等不同类型材料的电导特性,以及它们在外界条件下的响应。
其次,能带理论对材料的设计和合成起着重要作用。
通过对能带结构的调控,我们可以设计出具有特定能带特性的新材料。
例如,针对光电子器件应用的材料,我们可以通过调节能带结构来实现不同波长的能带过渡和光电转换。
而且,能带理论也对半导体器件的工作原理给出了关键的解释。
例如,能带理论对于理解和优化半导体二极管、晶体管和太阳能电池等器件的性能至关重要。
它可以揭示不同物理机制对器件行为的影响,为器件的设计和优化提供了指导。
总结起来,能带理论是固体物理学中一项重要的理论构建。