相似基本原理与模型试验简介
- 格式:ppt
- 大小:700.50 KB
- 文档页数:30
1、常用的解决物理问题(包括工程力学问题)的方法有:直接试验法、连续试验法、试验设计法(多因素法)、量纲分析法、解析法、数值分析法、模拟试验法(模型试验法)2、三个关于模型的概念:数学模型:描述所研究现象的固有形状和单值条件的物理变量之间的数学关系式(通常是微分方程)。
计算模型:建立在数学模型及其变换基础上的,可直接用于数值计算的代数方程组。
物理模型:将所研究对象根据相似理论的原则按比例制成的物体或系统。
而被研究的对象则称为模型的“原型”。
物理模拟是指基本现象相同情况下的模拟,这时模型与原型的所有物理量相同、物理本质一致。
数学模拟是指存在于不同类型现象之间的模拟,它们的对应量都遵循同样的方程式。
3、模型试验的定义及其作用:模型试验是按一定的几何、物理关系,用模型代替原型进行测试研究,并将研究成果用于原型的试验方法。
作用:(1)对复杂的、尚未或难以建立准确数学模型的结构的力学行为进行研究,为设计或施工方案提供参考和依据,直接服务于工程目的;(2)为建立新的理论或计算(数学)模型提供依据;(3)检验新的理论或计算(数学)模型的正确性或实用性。
意义:(1)模型试验作为一种研究手段,可以严格控制试验对象的主要参数而不受外界和自然条件的限制;(2)模型试验有利于在复杂的试验过程中突出主要矛盾,便于把握、发现现象的内在联系;(3)它制造容易,装拆方便,试验人员少;(4)它能预测尚未建造出来的实物对象或根本不能进行直接研究的实物对象的性能。
4、模型试验的优点与局限:优点:(1)可以严格控制试验对象的主要参数而不受外界环境的影响;(2)可以突出主要因素而略去次要因素,便于改变因素和进行重复试验,有利于验证或校核新的理论;(3)与直接试验相比可节省人力、物力和时间;(4)对于某些正在设计的结构,可用模型试验来比较设计方案并校核该方案的合理性;(5)当所研究的对象尚难或难以建立数学模型时,模型试验可能是最重要的研究手段。
模型试验基本原理模型试验是指利用模型装置对实际问题进行缩尺模拟试验的一种方法,通过模型实验可以研究、预测和评估实际问题的各种特性和性能,以及寻求解决问题的方法。
模型试验的基本原理包括几何相似原理、动力相似原理和相似系数原理。
1.几何相似原理几何相似是指模型和实际问题之间的几何形状和尺寸上具有相似性。
按照几何相似原理,模型的尺寸和实际问题之间需要保持一定的比例关系。
例如,水利工程中的水闸或堤坝的模型试验,模型的尺寸通常要缩小到实际问题的1/10或1/100,控制各个构件的尺寸比例保持一致。
2.动力相似原理动力相似是指模型试验过程中主要的力学特性和动态行为与实际问题的相似性。
按照动力相似原理,模型和实际问题之间需要保持一定的物理量比例关系,如力、速度、加速度等。
这样可以使模型试验的动力特性对应到实际问题中,研究问题时所得到的结果可以推广到实际问题中。
3.相似系数原理相似系数是指模型和实际问题之间的各种物理量相互之间的比例关系。
根据相似系数原理,物理量之间的比例关系可以表示为一组相似系数,对于不同的物理量可以有不同的相似系数。
通常情况下,相似系数包括长度比例系数、速度比例系数、密度比例系数、黏性比例系数等。
通过确定合适的相似系数,可以保证模型试验中的各种物理量之间的比例关系与实际问题保持一致。
模型试验的基本过程包括设计模型、制作模型、试验准备、试验操作和结果分析等阶段。
在设计模型阶段,需要根据实际问题的要求确定模型的尺寸、材料和结构等;制作模型阶段需要按照设计要求制作出符合几何和动力相似原理的模型;在试验准备和试验操作阶段,需要按照实验计划和方法进行试验前的准备工作,包括设置试验装置、调整实验参数等;在试验过程中,需要记录和采集各种数据和结果,以便进行后续的分析和评估。
总之,模型试验是一种对实际问题进行缩尺模拟试验的方法,基于几何相似、动力相似和相似系数原理,通过设计模型、制作模型、试验准备、试验操作和结果分析等阶段,可以研究和评估实际问题的各种特性和性能,以及寻求解决问题的方法。
一、相似理论与结构模型试验相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩大应用范围和领域,成为计算机“仿真”等领域指导性理论。
相似理论是说明自然界和工程中各相似现象相似原理的学说。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
结构模型中的“相似”主要是指原型结构和模型结构的主要物理量相同或成比例。
常需要满足的相似条件有:几何相似、质量相似、荷载相似、物理相似、时间相似和边界初始条件相似。
1.几何相似模型与原结构之间所对应部分的尺寸成比例,模型比例即为几何相似常数。
S l=l ml p=b mb p=ℎmℎp式中:S l——几何相似常数;l、b、ℎ——结构的长、宽、高三个方向的线性尺寸;m、p——分别代表模型和原型。
对一矩形截面,模型和原型结构的面积相似常数、截面抵抗矩相似常数和惯性矩相似常数分别为:S A=A mA p=ℎm·b mℎp·b p=S l2式中:S A——面积相似常数。
S w=W mW p=16b m·ℎm216b p·ℎp2=S l3式中:S w——截面抵抗矩相似常数。
S I=I mI p=112b m·ℎm3112b p·ℎp3=S l4式中:S I——惯性矩相似常数相似常数。
2.质量相似要求模型与原型结构对应部分质量成比例,质量之比称为质量相似常数。
S m=m m m p式中:S m——质量相似常数。
对于具有分布质量部分,用质量密度ρ表示。
Sρ=S mS V=S mS l3式中:Sρ——质量密度相似常数。
3.荷载相似要求模型与原型在各对应点所受的荷载方向一致,大小成比例。
S p=P mP p=A m·σmA p·σp=Sσ·S l2式中:S p——集中荷载相似常数。
第五章相似理论与结构模型试验1.引言在工程设计和实验研究中,通常无法进行真实比例的试验,因此需要采用相似理论和结构模型来进行模拟和预测。
相似理论是根据物体的物理和几何属性之间的相似关系进行推导和分析。
结构模型是将实际系统缩小比例而制成的模型,通过对模型进行试验,可以得到实际系统的响应和行为。
2.相似理论相似理论是将实际系统的物理和几何属性与模型的物理和几何属性之间的相似关系进行研究和描述的理论。
根据相似理论,可以得到各种物理量之间的关系,并且可以根据这些关系对实际系统进行预测和分析。
相似理论主要分为几何相似性、动力相似性和物理相似性。
2.1几何相似性几何相似性是指实际系统和模型之间的几何形状和尺寸之间的相似关系。
根据几何相似理论,可以得到实际系统和模型之间的比例关系,并根据这些比例关系对实际系统进行预测和分析。
例如,在建筑工程中,通常采用比例模型来对建筑结构进行模拟和预测。
2.2动力相似性动力相似性是指实际系统和模型之间的动力响应和行为之间的相似关系。
根据动力相似理论,可以得到实际系统和模型之间的动力特性之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在风洞实验中,通常采用比例模型来对空气动力学特性进行研究和分析。
2.3物理相似性物理相似性是指实际系统和模型之间的物理属性之间的相似关系。
根据物理相似理论,可以得到实际系统和模型之间的物理量之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在流体力学实验中,通常采用模型来对流体的流动行为进行模拟和预测。
结构模型试验是指将实际系统缩小比例而制成的模型进行试验和分析。
通过对结构模型进行试验,可以得到实际系统的响应和行为,并对实际系统进行评估和优化。
3.1模型制备在结构模型试验中,首先需要制备结构模型。
根据相似理论,可以确定结构模型的几何形状和尺寸,同时需要选择合适的材料和制备工艺。
模型制备通常采用加工、焊接等技术,以保证模型的质量和精度。
土木工程相似试验原理一、相似试验是啥呢?土木工程中的相似试验啊,就像是给那些大型的土木工程项目做个小模型来进行测试一样。
你想啊,要是直接在真正的大楼或者大桥上搞试验,那得费多少钱,还多危险呀。
相似试验就是按照一定的比例把那些土木工程的结构缩小,然后在这个小模型上做各种测试,就像玩缩小版的土木工程项目一样有趣呢。
二、相似三要素1. 几何相似这就是说啊,模型和实际的土木工程结构在形状上是相似的,就好比一个小房子模型和真正的房子,它们的各个部分的比例是一样的。
比如说实际的房子长10米,宽8米,高3米,按照1:10的比例做模型的话,那模型的长就是1米,宽0.8米,高0.3米啦。
2. 物理相似这里面包含的东西就多喽。
像材料的力学性能,比如说弹性模量啊、泊松比这些。
如果实际工程中用的钢材弹性模量是多少多少,那在模型里用的材料也要有相似的弹性模量比例关系。
还有像荷载相似,实际工程承受的是大风啊、地震啊这些荷载,那模型上施加的荷载也要按照一定比例来,这样才能模拟出实际的情况呢。
3. 边界条件相似这个边界条件就像是给土木结构设定的一个环境限制。
比如实际的桥梁一端是固定在桥墩上,一端是可以伸缩的,那模型的桥梁也要有类似的边界条件设置,这样才能准确地反映出实际结构在各种情况下的表现。
三、相似试验的原理应用1. 在建筑设计中的应用在设计新的大楼的时候,设计师可以先做个相似试验模型。
通过在模型上施加模拟的风荷载,看看这个大楼的结构会不会摇晃得太厉害,是不是能够承受得住这样的外力。
如果模型都撑不住,那肯定要对设计进行修改啦,不然真盖起来那可就危险了。
2. 在桥梁工程中的应用对于桥梁来说,相似试验可以帮助工程师研究桥梁在车辆荷载、水流冲击等情况下的反应。
比如说,看看桥梁的哪个部位最容易出现疲劳损坏,这样就可以提前在这些部位进行加固设计,提高桥梁的安全性和使用寿命。
四、相似试验的局限性虽然相似试验很有用,但是它也有自己的小缺点哦。