相似理论与模型试验 PPT讲解
- 格式:ppt
- 大小:7.55 MB
- 文档页数:56
结构检测技术(第5讲)本科生专业选修课程结构检测技术—Technology of Structural Detection主讲教师:纪金豹 开课时间:星期四(9:55~11:30)内 封2013-3-16第5章 模型试验和模型相似理论结构检测技术—北京工业大学本科专业选修课程知识点回顾 • 试验加载技术 • 传感器和数据采集技术结构检测技术—北京工业大学本科专业选修课程本次课程的主要内容• • • • • • 1.模型试验的应用范围(含模型的分类) 2.模型结构的相似关系 3. 相似条件的确定—模型相似理论 4. 试验模型的设计 5. 模型材料的选择 6. 模型试验要点结构检测技术—北京工业大学本科专业选修课程5.1 模型试验的应用范围结构检测技术—北京工业大学本科专业选修课程结构检测技术—北京工业大学本科专业选修课程模型结构尺寸 缩尺比例 = 原结构尺寸缩尺模型的优点:• 1.经济 • 2.针对模型结构的相似关系性好 • 3. 数据准确,突出主要问题缩尺模型的应用:• 1.代替大型结构试验或作为辅助试验 • 2.作为结构分析计算的辅助手段 • 3. 验证和发展设计理论结构检测技术—北京工业大学本科专业选修课程缩尺模型的分类:• 1.弹性模型(不要求材料相似) • 2.强度模型(材料相似) • 3. 间接模型(不要求和原结构相似)5.2 模型结构的相似关系相似的概念(比例) 几何相似、物理量相似、物理过程相似结构检测技术—北京工业大学本科专业选修课程1. 几何相似hm bm lm Sl = = = hp bp l p支承条件、约束情况、边界受力情况为研究一简支梁在集中荷载作用下的作用点处的弯矩、应力和挠度,设计一个缩尺模型试验梁,假定梁在弹性范围内工作,其它因素对材料性能的影响(如时效、徐变等)可忽略。
作用点截面处的正应力为:PabWLσ=223Pa b f EIL=同理有:E常用物理量及物理常数的量纲仍以简支梁为例说明用量纲分析法求相似条件:“π两个方程包含模型结构和原型结构相似的条件是相应的量纲分析法归纳为:思考:谢谢大家。
一、相似理论与结构模型试验相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩大应用范围和领域,成为计算机“仿真”等领域指导性理论。
相似理论是说明自然界和工程中各相似现象相似原理的学说。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
结构模型中的“相似”主要是指原型结构和模型结构的主要物理量相同或成比例。
常需要满足的相似条件有:几何相似、质量相似、荷载相似、物理相似、时间相似和边界初始条件相似。
1.几何相似模型与原结构之间所对应部分的尺寸成比例,模型比例即为几何相似常数。
S l=l ml p =b mb p=ℎmℎp式中:S l——几何相似常数;l、b、ℎ——结构的长、宽、高三个方向的线性尺寸;m、p——分别代表模型和原型。
对一矩形截面,模型和原型结构的面积相似常数、截面抵抗矩相似常数和惯性矩相似常数分别为:S A=A mA p =ℎm·b mℎp·b p=S l2式中:S A——面积相似常数。
S w=W mW p =16b m·ℎm216b p·ℎp2=S l3式中:S w——截面抵抗矩相似常数。
S I=I mI p =112b m·ℎm3112b p·ℎp3=S l4式中:S I——惯性矩相似常数相似常数。
2.质量相似要求模型与原型结构对应部分质量成比例,质量之比称为质量相似常数。
S m=m mm p式中:S m——质量相似常数。
对于具有分布质量部分,用质量密度ρ表示。
Sρ=S mS V =S mS l3式中:Sρ——质量密度相似常数。
3.荷载相似要求模型与原型在各对应点所受的荷载方向一致,大小成比例。
S p=P mP p =A m·σmA p·σp=Sσ·S l2式中:S p——集中荷载相似常数。
第五章相似理论与结构模型试验1.引言在工程设计和实验研究中,通常无法进行真实比例的试验,因此需要采用相似理论和结构模型来进行模拟和预测。
相似理论是根据物体的物理和几何属性之间的相似关系进行推导和分析。
结构模型是将实际系统缩小比例而制成的模型,通过对模型进行试验,可以得到实际系统的响应和行为。
2.相似理论相似理论是将实际系统的物理和几何属性与模型的物理和几何属性之间的相似关系进行研究和描述的理论。
根据相似理论,可以得到各种物理量之间的关系,并且可以根据这些关系对实际系统进行预测和分析。
相似理论主要分为几何相似性、动力相似性和物理相似性。
2.1几何相似性几何相似性是指实际系统和模型之间的几何形状和尺寸之间的相似关系。
根据几何相似理论,可以得到实际系统和模型之间的比例关系,并根据这些比例关系对实际系统进行预测和分析。
例如,在建筑工程中,通常采用比例模型来对建筑结构进行模拟和预测。
2.2动力相似性动力相似性是指实际系统和模型之间的动力响应和行为之间的相似关系。
根据动力相似理论,可以得到实际系统和模型之间的动力特性之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在风洞实验中,通常采用比例模型来对空气动力学特性进行研究和分析。
2.3物理相似性物理相似性是指实际系统和模型之间的物理属性之间的相似关系。
根据物理相似理论,可以得到实际系统和模型之间的物理量之间的关系,并根据这些关系对实际系统进行预测和分析。
例如,在流体力学实验中,通常采用模型来对流体的流动行为进行模拟和预测。
结构模型试验是指将实际系统缩小比例而制成的模型进行试验和分析。
通过对结构模型进行试验,可以得到实际系统的响应和行为,并对实际系统进行评估和优化。
3.1模型制备在结构模型试验中,首先需要制备结构模型。
根据相似理论,可以确定结构模型的几何形状和尺寸,同时需要选择合适的材料和制备工艺。
模型制备通常采用加工、焊接等技术,以保证模型的质量和精度。