第六章 电磁感应
- 格式:doc
- 大小:396.50 KB
- 文档页数:20
第六章 电磁感应与暂态过程一、判断题1、若感应电流的方向与楞次定律所确定的方向相反,将违反能量守恒定律。
√2、楞次定律实质上是能量守恒定律的反映。
√3、涡电流的电流线与感应电场的电场线重合。
×4、设想在无限大区域内存在均匀的磁场,想象在这磁场中作一闭合路径,使路径的平面与磁场垂直,当磁场随时间变化时,由于通过这闭合路径所围面积的磁感通量发生变化,则此闭合路径存在感生电动势。
×5、如果电子感应加速器的激励电流是正弦交流电,只能在第一个四分之一周期才能加速电子。
√6、自感系数I L ψ=,说明通过线圈的电流强度越小,自感系数越大。
×7、自感磁能和互感磁能可以有负值。
×8、存在位移电流,必存在位移电流的磁场。
×9、对一定的点,电磁波中的电能密度和磁能密度总相等。
√ 10、在电子感应加速器中,轨道平面上的磁场的平均磁感强度必须是轨道上的磁感强度的两倍。
√11、一根长直导线载有电流I ,I 均匀分布在它的横截面上,导线内部单位长度的磁场能量为:πμ1620I 。
√12、在真空中,只有当电荷作加速运动时,它才可能发射电磁波。
√13、振动偶极子辐射的电磁波,具有一定方向性,在沿振动偶极子轴线方向辐射最强,而与偶极子轴线垂直的方向没有辐射。
×14、一个正在充电的圆形平板电容器,若不计边缘效应,电磁场输入的功率是⎪⎪⎭⎫⎝⎛=∙=⎰⎰C q dt d A d S P 22 。
(式中C 是电容,q 是极板上的电量,dA 是柱例面上取的面元)。
√二、选择题1、一导体棒AB 在均匀磁场中绕中点O 作切割磁感线的转动AB 两点间的电势差为: (A )0(B )1/2OA ωB (C )-1/2AB ωB (D )OA ωB A2、如图所示,a 和b 是两块金属板,用绝缘物隔开,仅有一点C 是导通的,金属板两端接在一电流计上,整个回路处于均匀磁场中,磁场垂直板面,现设想用某种方法让C 点绝缘,而同时让C 点导通,在此过程中(A )电路周围的面积有变化。
高三物理第六章知识点梳理高三物理的最重要的内容之一就是电磁学。
其中第六章是一项关于电磁现象的研究。
本章主要包括了三大部分,分别是电磁感应、电磁波和电磁场。
下面我们来详细梳理这些知识点。
一、电磁感应电磁感应是电磁学中的基础知识之一。
通过导体中的电荷运动形成的磁场的变化引起导体中感应电动势的现象称为电磁感应。
常用的电磁感应规律有法拉第电磁感应定律和楞次定律。
根据法拉第电磁感应定律,当磁通量的变化率产生感应电动势时,感应电动势的方向和变化率与磁通量的变化率有关。
而楞次定律则说明在感应电流中,电流方向所产生的磁场的反方向,使得磁场的变化的总效果是阻碍磁通量的变化。
二、电磁波电磁波是一种能量通过电磁场传播的现象。
电磁波可以分为有线电波和无线电波两类。
有线电波是通过导线传播的电流产生的,而无线电波则是通过电磁振荡产生的。
电磁波的传播速度等于光速,即299792458米/秒。
电磁波具有一系列特征:1. 电磁波是横波,传播方向和电磁波的振动方向垂直。
2. 电磁波在真空中的传播速度为光速,而在介质中则会改变。
3. 电磁波具有电场和磁场的相互作用,两者的振动方向垂直且相互垂直。
三、电磁场电磁场是电荷和电流产生的电场和磁场相互作用的结果。
电磁场可以分为静电场和恒定磁场。
静电场是指没有电流存在时的电场,根据库仑定律可知,两个电荷之间的电力与它们之间的距离的平方成反比。
而恒定磁场则是指没有电荷运动时的磁场,根据安培定律可知,磁场的强度与电流成正比,并且与电流所形成的回环的半径成反比。
在电磁场中,电磁波的产生和传播是通过电荷和电流的相互作用实现的。
电子的运动会产生磁场,而变化的磁场又会感应出电场。
因此,电磁场是电荷和电流之间相互作用的结果。
综上所述,高三物理第六章主要涵盖了电磁感应、电磁波和电磁场三个方面的知识点。
电磁感应是指通过导体中的电荷运动形成的磁场的变化引起感应电动势的现象。
电磁波是一种能量通过电磁场传播的现象,其特点包括横波、光速传播等。
第六章电磁感应耦合效应的消除和提取在第五章中,我们讨论了EM效应和IP效应在不同测量波形上的表现形态。
本章则以双频波测量波形为例,讨论直接消除电磁感应耦合效应的斩波去耦方法。
然后,将详细论述双频激电中独特的直接、同时、分别提取和利用EM效应和IP效应的方波相干技术。
第一节双频波形的斩波去耦对于图5.2(b)所示的双频波形,将其减去一次场后作傅氏分析,可得到图6.1所示的双频波供电时纯EM效应的频谱。
对于双频波,由第三章知,在我们关注的频点上,若设基波振幅为1,则三次谐波振幅为1/3;13次谐波振幅由为12/13,39次谐波的为12/39。
然而从图6.1上,其纯EM效应振幅相应的为1、1/3、2.5、2.5,因此,尽管高频一次场振幅仅为低频振幅的12/13,但由于EM效应作用,其纯感应耦合效应明显增强,约为基频感应耦合效应的2.5倍。
39次谐波的EM效应强度与13次谐波EM效应强度相当,因此说在13次谐波和39次谐波的频率上,EM效应明显强于其它频率。
另外,三次谐波和其它各次谐波的EM效应强度大致相当,约为基波EM效应强度的1/3。
由此可见,纯EM效应随频率的增大而强,而且与其激发场强弱有关。
图6.2斩波去耦方法示意图图6.1 双频波形纯EM效应的频谱曲线图(a)斩波前测量波形;(b)斩波后测量波形如前图5.2所反映的,EM效应主要表现在波形的上升沿和下降沿的尖脉冲中,且其1/2频成分的EM效应明显大于低频EM效应。
因此在测量波形中,可以将受电磁感应耦合效应影响严重的部分(尖脉冲部分)及其一次场从波形上去掉,从而获得无EM 效应的场。
如图6.2所示。
这种方法即称为“斩波去耦”。
显然,这种去耦方法是直接的,既不需增加野外测量工作,也不需进行室内数据处理,因此是一种简便、快速、可行的直接去耦方法。
这种去耦方法的应用效果取决于斩波的宽度,如图6.3所示,它在消除EM效应的同时也部分地损失了IP效应,其压抑程度也同样受斩波宽度影响。
高三物理第六章知识点总结高三物理的第六章主要涉及电磁感应、电动机和发电机等内容。
在这个章节中,我们将学习有关电磁感应现象、电动机和发电机的基本原理和应用。
下面,我将为大家总结并讨论一些重要的知识点。
一、电磁感应电磁感应是指当导体中的磁通量发生变化时,导体中就会产生感应电动势的现象。
电磁感应是电磁学的基本现象之一,也是电动机和发电机等电磁设备的运转原理。
1.法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本定律。
根据该定律,当导体中的磁通量发生变化时,导体两端就会产生电动势,这个电动势是与磁通量的变化率成正比的。
即ε = -N(dΦ/dt)其中,ε是感应电动势,N是匝数,Φ是磁通量,t是时间。
这个负号表示电动势的方向与磁通量变化的方向相反。
2.楞次定律根据楞次定律,感应电流的方向总是使导体中产生磁通量的变化受阻。
楞次定律与能量守恒定律密切相关,它告诉我们感应电流产生的方向,以及感应电路中的电磁场与磁通量变化的关系。
3.感应电动势和电流的大小根据法拉第电磁感应定律,感应电动势的大小取决于磁通量的变化率。
同时,感应电流的大小和电阻、电磁感应的快慢以及导体的几何形状等因素有关。
二、电动机电动机是将电能转化为机械能的装置。
它是现代工业化生产的重要工具,广泛应用于各个领域。
1.直流电动机直流电动机是最常见的一种电动机。
它的基本结构包括线圈、碳刷和永磁铁。
当给直流电流通过电动机线圈时,线圈内就会产生磁场,与永磁铁的磁场相互作用,从而产生转矩使电动机运转。
2.交流电动机交流电动机又分为异步电动机和同步电动机。
同步电动机是通过与电网同步运行的,它的转速与电网频率成正比。
异步电动机使用的是产生感应电磁力的原理,通过转矩来启动和推动机械的运转。
三、发电机发电机是将机械能转化为电能的设备。
它是电力工业的基础,可以为人们提供充足的电力供应。
1.直流发电机直流发电机的基本原理与直流电动机相似。
当发电机转子旋转时,通过导线的切割磁力线产生感应电动势,最终输出直流电。
课堂教学安排
在磁场中向前或向后运动。
现象:电流表指针发生偏转,说明电路中有了电流。
静止或做上、下运动。
现象:电流表指针不发生偏转,说明电路中无电流。
.闭合电路中的一部分导体做切割磁感线运动时,电路中就有电流产生。
)把磁铁插入线圈或从线圈中抽出。
现象:电流表指针发生偏转。
)磁铁插入线圈后静止不动,或磁铁和线圈以同一速度运动。
现象:电流表指针不偏转,说明闭合电路中没有电流。
只要闭合电路的一部分导体切割磁感线,电路中就有电流产生。
第二节感应电流的方向
判断感应电流方向的方法:
)分析:能量守恒定律,磁力阻碍磁铁运动,外力克服磁力的阻碍做了功,其它形式的能转化为感应电流的电能。
用右手定则、楞次定律判定AB中感应电流的的方向。
课堂教学安排
,以速度v沿垂直磁感线方向匀速向右运动,
F = B I l ;F out = F
W1= F out l aa'= Fl aa' = B I l v t
T);
课堂教学安排
HL1、HL2亮度相同,再调节R
正常发光,HL1逐渐亮起来。
)如图接通电路,灯HL正常发光,再断开电路。
)现象:断电的一瞬间,白炽灯突然发出很强的亮光,然后才熄灭。
当线圈中的电流发生变化时,线圈本身就产生感应电动势,这个电动势总是阻碍线圈中原来电流的变化。
课堂教学安排
课堂教学安排
)已知线圈绕法时,可用楞次定律直接判定(如上例))不知线圈绕法时,可用实验方法来确定。
如下图。
增大,图中电源上“+”下“-”,如A 表正偏,表明()端为同名端,A 表反偏,表明(4)端与(3)端为同名端。
二、互感线圈的串联
E = E L 1 + E M 1 + E L 2 + E M 2
=L 1
t i ∆∆+ L 2t i ∆∆ +2i t
i ∆∆
= E L1-E M1+E L2-E M2
=L1i∆
+ L2
i∆
- 2M
i∆
课堂教学安排。