电磁感应中的电路问题
- 格式:ppt
- 大小:501.53 KB
- 文档页数:5
电磁感应中的电路问题
1、用均匀导线做成的正方形线框每边长为0.2m, 正方形的一半放在
和纸面垂直向里的匀强磁场中, 如图甲所示, 当磁场以10T/s的
变化率增强时, 线框中a、b两点电势着是( )
A. U ab=0.1V
B. U ab=-0.1V
C. U ab=0.2V
D. U ab=-0.2V
2、如图所示, 面积为0.2m2的100匝线圈A处在磁场中, 磁场方向垂直于线圈平面, 磁感强
度随时间变化的规律是B=(6-0.2t)T, 已知R1=4Ω, R2=6Ω, 电容C=30μF, 线圈A的电阻不计, 求:(1)闭合S后, 通过R2的电流强度大小和方向;
(2)闭合S一段时间后再断开S, S断开后通过R2的电荷量是多少?
3、如图(a)所示的螺线管, 匝数n=1500匝, 横截面积S=20cm2, 电阻r=1.5Ω, 与螺线管串联
的外电阻R1=3.5Ω, R2=25Ω, 方向向右, 穿过螺线管的匀强磁场的磁感应强度按图(b)所示规律变化, 试计算电阻R2的电功率和a、b两点的电势(设c点电势为零).
4、粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中, 磁场方向垂直于线框平面, 其边界与正方形线框的边平行, 现使线框以同样大小的速度沿四个不同方向平移出磁场, 如图所示, 则在移出过程中线框的一边a,b两点间电势差绝对值最大的是( )。
考点三电磁感应中的电路和图象问题
基础点
知识点1 电磁感应中的电路问题
1.内电路和外电路
(1)切割磁感线运动的导体或磁通量发生变化的线圈相当于电源。
电源的正负极可用右手定则或楞次定律判定,要特别注意在内电路中电流由负极到正极。
(2)该部分导体或线圈的电阻相当于电源的内电阻,其余部分是外电路。
2.电源电动势和路端电压
(1)电动势:E=n ΔΦ
Δt或
E=BLv sinθ。
(2)路端电压:U=IR=E-Ir。
知识点2 电磁感应中的图象问题
一、电磁感应中的电路问题
1.电磁感应与电路知识的关系图
2.电磁感应电路问题的几个等效关系。
专题三电磁感应中的电路及图像问题一、电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等。
这种电源将其他形式的能转化为电能。
2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。
3.解决电磁感应中的电路问题三步曲:(1)确定电源。
利用E=n ΔΦΔt或E=BL v求感应电动势的大小,利用右手定则或楞次定律判断电流方向。
(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图。
(3)利用电路规律求解。
主要应用欧姆定律及串、并联电路的基本性质等列方程求解。
[复习过关]1.如图1甲所示,面积为0.1 m2的10匝线圈EFG处在某磁场中,t=0时,磁场方向垂直于线圈平面向里,磁感应强度B随时间变化的规律如图乙所示。
已知线圈与右侧电路接触良好,电路中的电阻R=4 Ω,电容C=10 μF,线圈EFG的电阻为1 Ω,其余部分电阻不计。
则当开关S闭合,电路稳定后,在t=0.1 s至t=0.2 s这段时间内()图1A.电容器所带的电荷量为8×10-5 CB.通过R的电流是2.5 A,方向从b到aC.通过R的电流是2 A,方向从b到aD.R消耗的电功率是0.16 W解析线圈EFG相当于电路的电源,电动势E=n ΔBΔt·S=10×20.2×0.1 V=10 V。
由楞次定律得,电动势E 的方向是顺时针方向,故流过R 的电流是a →b ,I =E R +r=104+1A =2 A ,P R =I 2R =22×4 W =16 W ;电容器U C =U R ,所带电荷量Q =C ·U C =10×10-6×2×4 C =8×10-5 C ,选项A 正确。
答案 A2.三根电阻丝如图2连接,虚线框内存在均匀变化的匀强磁场,三根电阻丝的电阻大小之比R 1∶R 2∶R 3=1∶2∶3,其余电阻不计。
专题16 电磁感应中的电路问题(解析版)电磁感应中的电路问题(解析版)电磁感应是电磁学中的重要概念,也是我们日常生活中常常遇到的现象。
在电磁感应中,涉及到很多与电路相关的问题。
本文将围绕电磁感应中的电路问题展开讨论,解析其中的关键概念和原理。
一、电磁感应简介电磁感应是指由于磁场的变化而在导体中产生感应电动势的现象。
根据法拉第电磁感应定律,当磁场的磁通量发生变化时,穿过电路的感应电动势将产生导致电流的运动。
二、电路中的电磁感应问题在电路中,由于电磁感应的存在,会出现一系列问题需要解决。
其中包括以下两个重要方面:1. 阻抗和电感在电路中,电感是指导体中感应电流的产生和变化所产生的自感现象。
与电感相关的一个重要概念是阻抗,它是交流电路中的电阻和电感的综合表达。
当电磁感应作用下,电路的阻抗会发生变化,从而影响电流的流动。
2. 感应电动势和电路中的能量转化电磁感应中产生的感应电动势可以引发电路中的能量转化。
当磁场发生变化时,电磁感应会引发感应电动势,从而使电流在电路中产生。
这种能量转化可以用于各种电器设备的工作。
三、解析实例:电动车发电机原理为了更好地理解电磁感应中的电路问题,我们以电动车发电机为例进行解析。
在电动车发电机中,磁场的变化产生感应电动势,从而驱动发电机工作。
首先,通过燃料燃烧,发动机带动发电机转子旋转。
转子上的永磁体与固定的线圈之间产生磁场的变化,导致感应电动势产生。
感应电动势通过电路中的导线,形成感应电流,进而为电动车提供所需的电能。
电动车发电机中的电路问题值得我们深入研究。
在这个电路中,电流的大小和方向需要合理设置,以保证发电机正常工作。
同时,电路中的电阻、电感和阻抗等参数的选择也对电磁感应的效果产生重要影响。
四、应用领域及进一步研究的方向电磁感应中的电路问题在许多领域都有重要的应用,值得我们进一步研究和探索。
例如,在能源领域,电磁感应可以用于发电机、变压器等设备中,实现能源的转化和传输。
专题十六 电磁感应中的电路问题基本知识点解决电磁感应电路问题的基本步骤:1.用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向:感应电流方向是电源内部电流的方向,从而确定电源正、负极,明确内阻r .2.根据“等效电源”和电路中其他各元件的连接方式画出等效电路图.3.根据E =Blv 或E =n ΔΦΔt结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题分析一、电磁感应中的简单电路问题例1 如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T 。
导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。
导轨和导体棒的电阻均可忽略不计。
在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s 。
(1)求感应电动势E 和感应电流I ;(2)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U 。
(对应训练)如图所示,MN、PQ为平行光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50 cm,导体棒AB在两轨道间的电阻为r=1 Ω,且可以在MN、PQ上滑动,定值电阻R1=3 Ω,R2=6 Ω,整个装置放在磁感应强度为B=1.0 T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=5 m/s的速度做匀速运动。
求:(1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向;(2)导体棒AB两端的电压U AB。
二、电磁感应中的复杂电路问题例2如图所示,ab、cd为足够长、水平放置的光滑固定导轨,导体棒MN的长度为L=2 m,电阻r=1 Ω,有垂直abcd平面向下的匀强磁场,磁感强度B=1.5 T,定值电阻R1=4 Ω,R2=20 Ω,当导体棒MN以v=4 m/s的速度向左做匀速直线运动时,电流表的示数为0.45 A,灯泡L正常发光。
2025届高三物理一轮复习多维度导学与分层专练专题63电磁感应中的电路和图像问题导练目标导练内容目标1电磁感应中的电路问题目标2电磁感应中的图像问题【知识导学与典例导练】一、电磁感应中的电路问题1.电磁感应中电路知识的关系图2.“三步走”分析电路为主的电磁感应问题【例1】如图所示,水平放置的平行光滑导轨左端连接开关K 和电源,右端接有理想电压表。
匀强磁场垂直于导轨所在的平面。
ab 、cd 两根导体棒单位长度电阻相同、单位长度质量也相同,ab 垂直于导轨,cd 与导轨成60°角。
两棒的端点恰在导轨上,且与导轨接触良好,除导体棒外,其余电阻不计。
下列说法正确的是()A .闭合开关K 瞬间,两棒所受安培力大小相等B .闭合开关K 瞬间,两棒加速度大小相等C .断开开关K ,让两棒以相同的速度水平向右切割磁感线,电压表无示数D .断开开关K ,固定ab ,让cd 棒以速度v 沿导轨向右运动时电压表示数为1U ;固定cd ,让ab 棒以速度v 沿导轨向右运动时电压表示数为2U ,则12U U =【答案】A【详解】A .设ab 导体棒的长度为L ,则cd导体棒为cd sin 603L L ==︒ab 、cd 两根导体棒单位长度电阻相同,所以ab 、cd两根导体棒的电阻之比为ab cd :2R R =闭合开关K 瞬间,通过ab 、cd两根导体棒的电流之比为ab cd :2I I =F BIL =可知ab 、cd 两根导体棒所受安培力为ab cd :1:1F F =B .ab 、cd 两根导体棒单位长度质量相同,所以ab 、cd两根导体棒的质量之比为ab cd :2m m 根据牛顿第二定律可知,闭合开关K 瞬间,ab 、cd 两根导体棒的加速度之比为ab cd :2a a =故B 错误;C .断开开关K ,让两棒以相同的速度水平向右切割磁感线,ab 、cd 两根导体棒的有效长度相等,设两棒运动的速度v ,则电压表示数为U BLv =故C 错误;D .断开开关K ,固定ab ,让cd 棒以速度v 沿导轨向右运动时,则有1E BLv =电压表示数为ab 11ab cd R U E R R ==+cd ,让ab 棒以速度v 沿导轨向右运动时,则有2E BLv =电压表示数为cd 22ab cd R U E R R ==+D 错误;故选A 。
电磁感应中的电路问题详解知识点回顾电磁感应现象利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。
(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0。
(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。
产生感应电动势的那部分导体相当于电源。
(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。
磁通量磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量。
定义式:Φ=BS。
如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S′,即Φ=BS′,国际单位:Wb求磁通量时应该是穿过某一面积的磁感线的净条数。
任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。
反之,磁通量为负。
所求磁通量为正、反两面穿入的磁感线的代数和。
楞次定律感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。
(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。
②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。
③如何阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”。
④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。
(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。
法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。
表达式E=nΔΦ/Δt当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsinθ。