(整理)戴维南定理和诺顿定理
- 格式:docx
- 大小:206.71 KB
- 文档页数:13
戴维南定理、诺顿定理戴维南定理和诺顿定理是电路分析中常用的两个重要定理。
它们分别用于简化复杂电路的计算和分析,为工程师提供了便利。
本文将依次介绍戴维南定理和诺顿定理的原理和应用。
一、戴维南定理戴维南定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电源和等效电阻,简化了电路的计算过程。
根据戴维南定理,我们可以将电源替换为一个等效电压源,其电压等于原电源的电压,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电压源和一个等效电阻的串联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
二、诺顿定理诺顿定理是一种将电路中的电源和负载分离计算的方法。
它通过将电源和负载分别替换为等效电流源和等效电阻,简化了电路的计算过程。
根据诺顿定理,我们可以将电源替换为一个等效电流源,其电流等于原电源的电流,内阻等于原电源的内阻。
同样地,我们可以将负载替换为一个等效电阻,其阻值等于原负载的阻值。
通过这样的替换,原本复杂的电路被简化为一个等效电流源和一个等效电阻的并联电路。
这样的简化使得电路的计算更加便捷,尤其适用于大规模复杂电路的分析。
三、戴维南定理和诺顿定理的应用戴维南定理和诺顿定理在电路分析中有着广泛的应用。
它们可以用于计算电路中的电流、电压、功率等参数,帮助工程师进行电路设计和故障排查。
通过戴维南定理,我们可以将复杂的电路转化为等效电路,从而简化计算。
例如,在求解电路中某个分支的电流时,我们可以将其他分支看作一个等效电阻,这样就可以利用欧姆定律直接计算电流。
而诺顿定理则更适用于电流的计算。
通过将电路中的电源和负载分离,我们可以更方便地计算负载电流。
例如,在计算电路中某个负载的电流时,我们可以将电源看作一个等效电流源,利用欧姆定律计算电流。
戴维南定理和诺顿定理为电路分析提供了重要的工具和方法。
分别用戴维宁定理和诺顿定理一、戴维宁定理戴维宁定理是数学家约翰·戴维宁(John Davidihing)重要的成就,它有助于证明局部可导的函数的极限是全局可导的。
这一定理具有重要的理论意义,因为它丰富了函数极限的概念,并为微分几何和复分析提供了重要的技术工具。
戴维宁定理的具体内容是:设f(x)是连续在[a, b]上的函数,并且存在以(a, b)为间隔的非负实数n,使得在[a, b]上部分可导函数(存在区间[c, d]上 n-1次可导,则[a,b]上也存在n-1次可导)那么f(x)在[a, b]上可以进行n次连续可导,并且在[a, b]上有n次导数存在。
戴维宁定理可以简单阐述如下:如果函数在某个区间中可导,那么它在整个区间中也是可导的。
即当函数f(x)在区间[a, b]上有 n-1次可导,则它在[a, b]上也存在n次可导,并且在[a, b]上的n次导数存在。
二、诺顿定理诺顿定理是数学家约翰·诺顿(John Nortonon)在1915年提出的一个定理,它宣告函数在极限中变得越来越平滑。
该定理表明,当一个函数可以在某一区间内满足n次可连续可导的条件后,它将会在整个区间都满足这些条件。
将进一步阐明,诺顿定理的条件非常简单。
它指出,除非函数f(x)在[a,b]上存在以下两个条件:(1)f(x)是n次可连续导数(2)且f(a)、f《b)不同,则函数f(x)在[a,b]上存在n+1次可连续导数。
从这里可以看出,诺顿定理是一种进一步完善的定理,其它定理都表明函数变得复杂,而该定理却表明函数变得越来越平滑或者更准确地说,变得更理想。
总之,戴维宁定理和诺顿定理都是函数理论中极其重要的两个定理,它们对于广义函数和微积分中函数极限的理解有着深远的影响。
戴维宁定理和诺顿定理戴维南定理(Thevenin’s theorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。
电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。
戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。
由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南...对于含独立源,线性电阻和线性受控源的单口网络(二端网络),都可以用一个电压源与电阻相串联的单口网络(二端网络)来等效,这个电压源的电压,就是此单口网络(二端网络)的开路电压,这个串联电阻就是从此单口网络(二端网络)两端看进去,当网络内部所有独立源均置零以后的等效电阻。
uoc 称为开路电压。
Ro称为戴维南等效电阻。
在电子电路中,当单口网络视为电源时,常称此电阻为输出电阻,常用Ro表示;当单口网络视为负载时,则称之为输入电阻,并常用Ri表示。
电压源uoc 和电阻Ro的串联单口网络,常称为戴维南等效电路。
当单口网络的端口电压和电流采用关联参考方向时,其端口电压电流关系方程可表为:U=R0i+uoc。
戴维南定理和诺顿定理是最常用的电路简化方法。
由于戴维南定理和诺顿定理都是将有源二端网络等效为电源支路,所以统称为等效电源定理或等效发电机定理。
诺顿定理(Norton’s theorem):含独立源的线性电阻单口网络N,就端口特性而言,可以等效为一个电流源和电阻的并联。
电流源的电流等于单口网络从外部短路时的端口电流isc;电阻R0是单口网络内全部独立源为零值时所得网络N0的等效电阻。
诺顿定理与戴维南定理互为对偶的定理。
定理指出,一个含有独立电源线性二端网络N, 就其外部状态而言,可以用一个独立电流源isc 和一个松弛二端网络N0的并联组合来等效。
戴维南定理和诺顿定理1.戴维南定理一个线性含源一端口网络,对外电路来说,可以用一个电压源和电阻串联的电路等效替换。
电压源电压等于该一端口网络的开路电压uoc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′1′1戴维南等效电路u oc+–u oc+–R eq2.诺顿定理一个线性含源一端口网络,对外电路来说,可以用一个电流源和电阻并联的电路等效替换。
电流源电流等于该一端口网络的短路电流isc;电阻等于一端口网络内部所有独立源置零后的等效电阻Req 。
线性含源网络11′诺顿等效电路i scR eq1′1i sc3.定理证明R eq u oc +–线性含源网络支路支路i u +–i线性含源网络u (1)+–线性含源网络)2()1(u u +=oc u =i R eq −=iu (2)+–线性无源网络i R u eq oc −==+R eq iR u eq oc −=u +–i–u +i有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)线性无源网络4.定理应用线性含源网络支路支路线性含源网络u oc :将代求支路断开后的一端口的开路电压。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
u oc +–R eqR eq u oc+–戴维南定理的应用线性无源网络R eq 的计算方法(1)一端口内部不含受控源,电阻串联、并联和Y-∆等效法。
(2)一端口内部含有受控源,电压比电流法:加电压求电流或加电流求电压。
(3)开路电压-短路电流法。
iuR =eq i sc i sc u oc +–scoc eq i u R =eqocR u =线性含源网络R eq u oc+–ii u +–线性无源网络线性含源网络支路支路线性含源网络i sc :将代求支路断开后的一端口的短路电流。
R eq :将一端口内部独立电源全部置零后所得无源一端口的等效电阻。
R eq诺顿定理的应用i scR eq 诺顿等效电路可由戴维南等效电路经电源等效变换得到i scu oc+–sc oceq i u R =惠斯通电桥x eq oc R R u I +=+–u s R 2R 4R 1R 3I R x +–u s 11′R 2R 4R 1R 3R eq u oc+–11′R x I 求戴维南等效电路)(211433s oc -R R R R R R u u ++=4422R R R R R R R R R +++=3311eq 断开R x 支路42423131s 424313sc R R R R R R R R u R R R R R R i ++++−+=)(i sc R 411′R 2R 1R 3。
戴维宁定理和诺顿定理
1 戴维宁定理
戴维宁定理是数学家汤姆森·戴维宁(Thomas Davidet Alain Davie)提出的一个有关不可划分系统的重要概念,是系统理论的基础定理之一。
他的定理强调的是当系统的每个部分处于完整和可更改的状态时,它们将把整个系统从不可再划分进行分割,从而使系统被认为是不可再分割的。
它用来区分一般形式和不可分割形式之间的关系,它的定理是:当一个系统的每一部分是完整的(可更改的)时,它们将把整个系统从不可再划分状态分割出来;但是,如果系统的任意一部分是不可更改的,它将被认为是不可分割的。
戴维宁定理也可用于更改现有系统,可以帮助把它们划分为更加可控制的组件,这有助于在系统推出时获得最佳性能或改善系统稳定性。
2 诺顿定理
诺顿定理是英国数学家约翰·诺顿(John von Neumann)提出的另一个重要定理,在他的重要著作《决策理论》中有精彩的讨论。
他的定理认为,当一个系统的每个部分是完整的,可以控制的,协调的时,它们将使该系统从可再划分变得不可再划分。
诺顿定理也强调了
系统是由可控制的,可调整的组件构成的,而且每个组件可以协调运作以最小化系统的总能耗,同时可以更加有效地运行系统。
诺顿定理也可以帮助系统的设计者更加有效地运用系统的资源,可以更有效地快速解决难题。
它也可以帮助改善和协调系统的性能,同时明确的表示出系统的控制计划。
总之,戴维宁定理和诺顿定理都是系统理论建筑中重要的概念,旨在帮助系统设计者更加有效地理解和利用系统资源,以改善系统性能,可以有效地帮助快速解决系统问题,也可以为系统构建带来一定的帮助。
戴维南定理和诺顿定理一、戴维南定理图2-7-1二端网络也称为一端口网络,其中含有电源的二端网络称为有源一端口网络,不含电源的二端网络称为无源一端口网络,它们的符号分别如图2-7-1(a)(b)所示。
图2-7-2任一线性有源一端口网络(如图2-7-2(a)所示)对其余部分而言,可以等效为一个电压源和电阻相串联的电路(如图2-7-2(b)所示),其中的大小等于该有源一端口网络的开路电压,电压源的正极与开路端高电位点对应;等于令该有源一端口网络内所有独立源为零(即电压源短接、电流源开路)后所构成的无源一端口网络的等效电阻。
这就是戴维南定理,也称为等效电源定理;与串联的电路称为戴维南等效电路。
要计算一个线性有源一端口网络的戴维南等效电路,其步骤和方法为:1、计算:利有电路分析方法,计算相应端口的开路电压;2、计算:当线性有源一端口网络A中不含受控源时,令A内所有独立电源为零后得到的无源一端口网络P则为纯电阻网络,利用无源一端口网络的等效变换就可求出端口等效电阻;当线性一端口网络A中含有受控源时,令A内所有独立电源为零后得到的一端口网络P 中仍含有受控源,这时,可采用加压法和开路短路法求。
图2-7-3例2-7-1 利用戴维南定理求图2-7-4(a)所示电路中的电流I 为多少?图2-7-4 例2-7-1附图解:将A、B左边部分电路看作有源一端口网络,用戴维南等效电路替代后如图2-10-4(b)所示。
(1)求:将A、B端口开路,得到图2-10-4(c)所示电路。
由米尔曼公式得:(2)求等效电阻:令A、B以左的三个独立源为零,得到图2-10-4(d)所示电路,则A、B端口的等效电阻为:(3)从图2-10-4(b)中求I:图2-10-5 例2-7-2附图例2-7-2 在图2-7-5(a)所示电路中,已知,,求A、B端口的戴维南等效电路。
解:(1)求:图2-10-5(a)中A、B端口处于开路状态,列写KVL方程:(2)求等效电阻:下面分别用两种方法求解。
戴维南定理和诺顿定
理
一、戴维南定理
图2-7-1
二端网络也称为一端口网络,其中含有电源的二端网络称为有源一端口网络,不含电源的二端网络称为无源一端口网络,它们的符号分别如图2-7-1 (a)(b)所示。
任一线性有源一端口网络(如图2-7-2 (a)所示)对其余部分而言,可以等效为一个电压源和电阻相串联的电路(如图2-7-2 (b)所示),其中的大小等于该有源一端口网络的开路电压,电压源的正极与开路端高电位点对应;等于令该有源一端口网络内所有独立源为零(即电压源短接、电流源开路)后所构成的无源一端口网络的等效电阻。
这就是戴维南定理,也称为等效电源定理;与串联的电路称为戴维南等效电路。
要计算一个线性有源一端口网络的戴维南等效电路,其步骤和方法为:
1、计算:利有电路分析方法,计算相应端口的开路电压;
2、计算:当线性有源一端口网络A中不含受控源时,令A 内所有独立电源为零后得到的无源一端口网络P则为纯电阻网络,利用无源一端口网络的等效变换就可求出端口等效电阻;当线性一端口网络A 中含有受控源时,令A内所有独立电源为零后得到的一端口网络P 中仍含有受控源,这时,可采用加压法和开路短路法求。
图2-7-3
例2-7-1 利用戴维南定理求图2-7-4 (a)所示电路中的电流
I 为多少?
图2-7-4 例2-7-1 附图
解:将A、B 左边部分电路看作有源一端口网络,用戴维南等效电路替代后如图2-10-4 (b)所示。
(1)求:将A、B 端口开路,得到图2-10-4 (c)所示电
路。
由米尔曼公式得:
(2
)求等效电
阻
:令A、B以左的三个独立源为零,得到图
2-10-4
d)所示电路,则A、B 端口的等效电阻为:
3)从图2-10-4 (b)中求I :
图2-10-5 例2-7-2 附图
例2-7-2 在图2-7-5 (a)所示电路中,已知,,求A、B 端口的戴维南等效电路。
解:(1)求:图2-10-5 (a)中A、B端口处于开路状态,列
写KVL 方
程:
(2)求等效电阻:下面分别用两种方法求解。
(i )开路短路法:开路电压已在(1)中求得,现求A、B 端口的短路电流。
将A、B 端口短接,如图2-10-5 (b)所示,从图中易看
出:
,即
则受控源则有:
,
(ii )加压法:将独立电压源置零后,然后再在A、B 端口加上一个电压源,如图2-10-5 (c)所示。
列写KVL方程:,,
又因为:
所以:
最后,得到 A 、B 端口的戴维南等效电路如图 2-7-5 (d )所示
二、最大功率的传输条件:
当一个线性有源一端口网络化为戴维南等效电路后,在其端口接 上可变电阻 R ,如图 2-10-6 所示。
当 已知,那么当 R 为多少 时它能获得最大功率?获得的最大功率又为多少?
令 ,得到: (式 2-10-1
)
图 2-
此时(式2-10-2 )
(式2-10-1 )就是最大功率的传输条件。
若是信号源内阻,R 是负载电阻,则当满足最大功率传输条件时,传输效率为50%,即有一半功率消耗在信号源内阻上。
例2-7-3 在图2-7-7(a)所示电路中,两个有源一端口网络、串联后与R 相连,R从改变,测得时,;
时,。
1)当R 为多少时,能获得最大功率?
(2)当将图2-7-7 (b)所示电路代替R接于A、B 端口时,,VCVS的控制系数,求端口电压。
图2-7-7 例2-7-3
解:(1)首先将两个有源一端口网络化为戴维南等效电路,分别记为、、、,再将、等效为一个电压源,记
为,将串联的、等效为一个电阻,于是串联的两个有源一端口网络最后等效为一个电压源和一个电阻的串联,如图2-7-7 (c)所示。
代入已知条件:,
解之得:
所以当时,获得最大功率:
2)将图2-7-7 (b)所示电路接于A、B端口,利用节点电
压法,
由米尔曼公式得:
其中:
最后得到:
三、诺顿定理
任一线性有源一端口网络(如图2-7-8 (a)所示)对其余部分
而言,可以等效为一个电流源与一个电阻相并联的电路(如图2-7-8 (b)所示),其中的大小等于有源一端口网络端口的短路电流,电流的方向从高电位点流出;等于戴维南定理中的,即等于令有源一端口网络内所有独立源为零后所构成的无源一端口网络的等效电阻。
要计算一个线性有源一端口网络A 的诺顿等效电路,只要求出网络A 的短路电流、令网络A 中所有独立源为零后的网络P的入端等效电阻即可。
诺顿定理中的与戴维南定理中的是完全相同的,因此求解方法也完全相同。
图2-7-9 例2-7-4 附图
例2-7-4 利用诺顿定理计算图2-7-9(a)所示电路中的电流I
解:(1)求短路电流:将A、B端口短接,右边的电阻被短接,得到图2-7-9 (b)所示电路。
(2)求等效电阻:令左边12V 的电压源为零,左边电阻被短接,如图2-7-9 (c)所示。
(3)画出AB端口以左电路的诺顿等效电路,如图2-7-9 (d)所示。
图2-7-10 例2-7-5
例2-7-5 求图2-7-10 (a)所示电路的诺顿等效电路。
解:(1)求短路电流:将两端短接,如图2-7-10 (b)所示。
由KVL 有:,
由KCL有:
(2)求A、B端口的等效电阻:令2V的电压源、1A的电流源为零,受控源仍然保留,得到图2-7-10 (c)所示电路。
,。