焚烧炉的选型原则是什么
- 格式:doc
- 大小:52.00 KB
- 文档页数:29
城市垃圾焚烧发电厂锅炉炉型的选择摘要:介绍了某地级市新建城市垃圾焚烧厂焚烧炉炉型的确定方案,结合该城市生活垃圾特性和环境特点,通过工艺过程和技术经济的分析与比较,为焚烧炉炉型的选择提供参考。
关键词:生活垃圾;热值;焚烧;流化床;炉排炉1概述某地级市(川西南)垃圾焚烧发电厂项目,厂址距市中心约30公里,紧邻城市垃圾填埋场。
设计规模800t/d,焚烧处理该市以及周边区县的城市生活垃圾,并利用余热发电。
项目建设2条焚烧线,选用2台额定处理量为400t/d,最大处理量500 t/d的垃圾焚烧炉,单台余热锅炉额定产蒸汽量42以亿最大产蒸汽量48t/h。
1.1垃圾特点重庆市环境卫生监测站于2010年12月对该市及周边地区的生活垃圾就成分、含水率、热值进行检测。
从检测结果看出该市及周边地区的生活垃圾具有如下特点:(1)含水率高。
一般约在50%〜60%,而发达国家约为 25〜45%;(2)热值较低。
收到基垃圾平均低位发热值为3200〜4500 kJ/kg,发达国家为 8300〜12500kJ/kg;(3)成分复杂。
由于该市城市垃圾未实行分类收集和分检,同时由于不同地域、不同季节、不同生活水平也使垃圾的成分相去甚远,垃圾中的有机物和可燃物比例低于沿海等发达城市。
1.2垃圾热值确定该城市生活垃圾化学特性见表1:014.png对该市生活垃圾的热值情况分析如下:(1)参考本地垃圾和周边垃圾热值状况。
成都市2004 年一月至九月垃圾热值在2219〜9353kJ/kg之间波动,平均热值为5557kJ/kg。
重庆市2001年一月至2001年十二月垃圾热值在3874〜5204kJ/kg之间波动。
(2)垃圾热值随季节波动情况:一年内夏季热值最低,冬季最高,相差1465〜2930kJ/kg。
(3)常年垃圾热值波动范围:垃圾处理厂运行期30年,根据我国经济增长水平,随着市民生活水平逐步提高,垃圾热值相应增大,沿海经济发达地区的垃圾热值明显高于内地城市就是例证。
殡仪馆焚烧炉规格
摘要:
1.殡仪馆焚烧炉的概述
2.殡仪馆焚烧炉的规格
3.殡仪馆焚烧炉的选购注意事项
正文:
一、殡仪馆焚烧炉的概述
殡仪馆焚烧炉是一种用于殡仪馆火化遗体的设备,它具有环保、节能、高效等特点,是殡葬行业中重要的设施之一。
焚烧炉的设计和制造需要遵循严格的技术标准,以确保火化过程的安全、稳定和高效。
二、殡仪馆焚烧炉的规格
1.尺寸:殡仪馆焚烧炉的尺寸通常根据其容量来确定,常见的规格有1 吨、2 吨、3 吨等,也有根据客户需求定制的特殊规格。
2.温度:焚烧炉的工作温度一般在600-1200 摄氏度之间,这个范围内可以保证遗体得到充分燃烧,且有害物质被有效分解。
3.燃烧时间:焚烧时间根据遗体的数量和尺寸而有所不同,一般需要1-3 小时左右。
4.排放标准:殡仪馆焚烧炉的排放应遵循国家环保标准,对大气污染物的排放应控制在一定范围内。
5.燃料:焚烧炉的燃料一般为柴油、天然气等,也有使用电能的电炉。
三、殡仪馆焚烧炉的选购注意事项
1.选择正规厂家:购买焚烧炉应选择正规厂家,保证设备的质量和售后服
务。
2.考虑实际需求:购买前应根据殡仪馆的实际需求,选择合适的规格和型号。
3.注重环保性能:在选购时,应关注焚烧炉的环保性能,选择符合国家环保标准的设备。
4.考虑运行成本:购买焚烧炉时,需要考虑运行成本,包括燃料费用、维护费用等。
论述生活垃圾焚烧发电厂的炉型选择【摘要】本文对设计中焚烧炉炉型的选择进行了探讨与分析。
分析认为,炉排炉及循环流化床焚烧炉与机械炉排焚烧炉相比,在燃料的适应性、二次污染物排放、灰渣综合利用,以及低热值垃圾焚烧处理方面具有明显优势。
建议垃圾焚烧应尽可能选用循环流化床锅炉。
【关键词】垃圾发电;垃圾焚烧;循环流化床;焚烧炉;炉排炉目前,世界上焚烧炉的种类较多,主要为四大类型:炉排型垃圾焚烧炉、流化床垃圾炉、回转窑垃圾焚烧炉和垃圾热解气化焚烧炉。
下面对这四种炉型分别进行介绍。
1 炉排炉型焚烧炉机械炉排炉技术作为世界主流的垃圾焚烧炉技术,技术成熟、可靠,其应用前景广阔,发展空间较大。
这种焚烧炉因为具有对垃圾的预处理要求不高,对垃圾热值适应范围广,运行及维护简便等优点,是目前在处理城市垃圾中使用最为广泛的焚烧炉。
该类型焚烧炉型式很多,主要有固定炉排(主要是小型焚烧炉)、链条炉排、滚动炉排、倾斜顺推往复炉排、倾斜逆推往复炉排等。
为使垃圾燃烧过程稳定,炉排型焚烧关键是炉排。
炉排的布置、尺寸、形状随着垃圾水分、热值的差异以及生产厂商的不同而不同,炉排有水平布置,也有呈倾斜15°-26°布置,炉排设计分为预热段、燃烧段、燃烬段,段与段之间可以有垂直落差,也可没有落差。
垃圾在炉排上着火,热量不仅来自上方的辐射和烟气的对流,还来自垃圾层内部。
在炉排上已着火的垃圾在炉排的特殊作用下,使垃圾层强烈地翻动和搅动,引起垃圾底部开始着火,连续的翻动和搅动使垃圾层松动,透气性加强,有助于垃圾的着火和燃烧。
炉拱设计要考虑烟气流有利于热烟气对新入垃圾的热辐射预热干燥和燃烬区垃圾的燃烬。
配风设计要确保空气在炉排上垃圾层分布均匀,并合理使用一、二次风。
对于成分复杂的垃圾,炉温太高时,物料熔融结块,炉排、炉壁易烧坏,同时产生过多的氧化氮;炉温太低时,烟气滞留时间过短,产生不完全燃烧,对人体有严重危害的二恶英难以完全分解。
因此,炉膛出口温度应保证不低于850℃,烟气滞留时间不低于2s。
酸性气焚烧炉燃烧器选型建议鉴于对丹麦托普索WSA湿法制硫酸工艺酸性气焚烧炉燃烧器综合考察与评估,建议该设备采用进口品牌,其理由如下:1、酸性气焚烧炉燃烧器本体及烧嘴喷头材质耐腐蚀及耐高温要求高。
2、酸性气焚烧炉燃烧器耐火材料及烧嘴耐火材料须耐强腐蚀。
3、酸性气焚烧炉燃烧器须满足过氧燃烧及高速旋流混合燃烧特点。
4、丹麦托普索WSA湿法制硫酸工艺使用的进口酸性气焚烧炉燃烧器均运行状态良好,装置硫酸回收效率高,运行稳定。
5、酸性气焚烧炉燃烧器须满足灵敏的自控自检要求,紫外火焰检测器及长明点火器须运行稳定且可靠。
6、国产相关类似设备均在实际应用中出现很多设备技术问题,燃烧器材料腐蚀老化严重,耐火材料腐蚀坍塌、以及燃烧不充分、自控系统运行不可靠等问题。
国产酸性气焚烧炉燃烧器部分故障及事故案例:1. 制酸开工烧坏人孔1999年8月15日16:30,河北沧州有色冶炼公司硫酸工艺装置操作员在巡检时发现炉人孔烧坏。
事故经过:1999年7月10日,硫酸工艺装置按计划点炉开工,7月10日点焚烧炉,装置开始烘烤,7月23日烘炉完毕;7月29日至30日装填催化剂,8月6日重新点火开工,8月13日引酸气入焚烧炉,系统继续升温,8月15日加大酸气入炉量,到16:30发现焚烧炉人孔烧坏而紧急停工。
事故分析:造成焚烧炉人孔烧坏的主要原因是:1、酸性气焚烧炉燃烧器选材错误,停炉期间燃烧器内部结露结酸,内部构件已大部腐蚀。
2、酸性气焚烧炉燃烧器碳钢助燃风导流板坍塌,造成配风控制偏差产生炉内超温。
3、风量表偏小,酸气量偏小,造成配风过大,焚烧炉超温。
4、主要仪表存在不少问题:酸气超声波流量计无指示,未投用H2S/CS2成分分析仪及H2O/SO2酸雾分析仪,SO2、O2分析仪不准,酸性气焚烧炉燃烧器火焰检测仪无法投用等问题。
5、整个人孔被错误用保温材料包得严严实实。
6、操作人员经验不足。
采取措施:8月20日至9月20日请制造企业协助修复燃烧器及焚烧炉衬里,更换燃烧器火焰检测仪,校验风量流量表,更换超声波流量计,购置新的H2S/CS2成分分析仪及H2O/SO2酸雾分析仪,维修SO2、O2分析仪。
焚烧炉的选型原则是什么焚烧炉的结构型式与废物的种类,性质和燃烧形态等因素有关.不同的焚烧方式有相应的焚烧炉与之相配合.通常根据所处理废物对环境和人体健康的危害大小,以及所要求的处理程度,将焚烧炉分为城市垃圾焚烧炉,一般工业废物焚烧炉和危险废物焚烧炉三种类型.不过,更能反应焚烧炉结构特点的分类方法,是按照处理废物的形态,将其分为液体废物焚烧炉,气体废物焚烧炉和固体废物焚烧炉三种类型.固体废物焚烧炉种类繁多,主要有炉排型焚烧炉,炉床型焚烧炉和沸腾流化床焚烧炉三种类型.但每一种类型的炉子又视其具体的结构不同又有不同的型式,具体分为以下几种类型:炉排型焚烧炉将废物置于炉排上进行焚烧的炉子称为炉排型焚烧炉.(a)固定炉排焚烧炉固定炉排焚烧炉只能手工操作,间歇运行,劳动条件差,效率低,拨料不充分时导致焚烧不彻底.(b)活动炉排焚烧炉活动炉排焚烧炉,即为机械炉排焚烧炉.炉排是活动炉排焚烧炉的心脏部分,其性能直接影响垃圾的焚烧处理效果,可使焚烧操作自动化,连续化.按炉排构造不同可分为链条式,阶梯往复式,多段滚动式焚烧炉等.我国目前制造的大部分中小型垃圾焚烧炉为链条炉和阶梯往复式炉排焚烧炉,功能较差.大部分功能较好的机械炉排均为专利炉排.炉床式焚烧炉炉床式焚烧炉采用炉床盛料,燃烧在炉床上物料表面进行,适宜于处理颗粒小或粉状固体废物以及泥浆状废物,分为固定炉床和活动炉床两大类.(a)固定炉床焚烧炉最简单的炉床式焚烧炉是水平固定炉床焚烧炉,其炉床与燃烧室构成一整体,炉床为水平或略呈倾斜,燃烧室与炉床成为一体.废物的加料,搅拌及出灰均为手工操作,劳动条件差,且为间歇式操作,故不适用于大量废物的处理.倾斜式固定炉床焚烧炉的炉床作成倾斜式,便于投料,出灰,并使在倾斜床上的物料一边下滑一边燃烧,改善了焚烧条件.与水平炉床相同,该型焚烧炉的燃烧室与炉床成为一体.这种焚烧炉的投料,出料操作基本上是间歇式的.但如固体废物焚烧后灰分很少,并设有较大的贮灰坑,或有连续出灰机和连续加料装置,亦可使焚烧作业成为连续操作.(b)活动床焚烧炉活动床焚烧炉的炉床是可动的,可使废物能在炉床上松散和移动,以改善焚烧条件,进行自动加料和出灰操作.这种类型的焚烧炉有转盘式炉床,隧道回转式炉床和回转式炉床(即旋转窑)三种.应用最多的是旋转窑焚烧炉.(c)流化床焚烧炉这是一种近年发展起来的高效焚烧炉.利用炉底分布板吹出的热风将废物悬浮起呈沸腾状进行燃烧.一般常采用中间媒体即载体(砂子)进行流化,再将废物加入到流化床中与高温的砂子接触,传热进行燃烧.按照有无流化媒体(载体)及流化状态进行分类.3,多室焚烧炉多室焚烧炉是有多个燃烧室的焚烧炉,可使废物的燃烧过程分为两步进行:首先是引燃室中废物的初级燃烧(或称固体燃烧)过程,接着是二级燃烧(或称气相燃烧)过程,二级燃烧区域由两部分组成,一个是下行烟道(或混合室),另一个为上行的扩大室(或燃烧室).现代多室焚烧炉的结构有两种基本的类型,按其布局不同而命名:一类是气体的回流所通过的各室呈"U"型布局,称为曲径型,另一类各室按直线排列,称为串联型.(a)典型的曲径式多室焚烧炉如左图所示,内部有多个导流板,结构紧凑.导流板所处位置能使燃烧气体在水平和垂直方向上作90度的转弯运动.在每次烟气气流方向变化时,均有灰尘从烟气流中掉出.一燃室内炉排位置较高,收集灰渣的灰坑较深.一次空气和二次空气分别从一燃室炉排的下方和上方,通过鼓风机,以控制的风量进入炉内.辅助燃料气体通过火焰口进入二燃室,或者进入二燃室前的一个较小点的混合室.火焰口实际上是一个把一燃室和二燃室分隔开来的跨接墙上方的孔穴.当有混合室时,二燃室单独设进风口.一燃室和二燃室均设有燃烧器,可加入辅助燃料.如果废物在点燃后炉温可增高到维持废物不断自燃的程度,则一燃室不再需要加入辅助燃料.而二燃室则通常需要不断添加辅助燃料.一燃室是固体废物燃烧室,二燃室为气相燃烧室.由一燃室至二燃室需经过火焰口及混合室,形成燃烧带.废物进入一燃室,投在固定炉排上,经干燥,着火而燃烧.在燃烧时,挥发分及水分挥发通过燃烧室部分氧化.其余部分随气流通过火焰口向下流经混合室与二次空气混合,因为混合室使气流流动区域受到限制和突然改变流向而产生湍流,促使混合均匀并产生气相反应.膨胀的气体受到帘墙阻挡使气流改变方向,经过帘墙口从混合室到达最后的燃烧室,可燃组分在同轴式多室内氧化.飞灰和其他固体颗粒物质受墙碰撞而沉落在燃烧室内.因此,这种类型的焚烧炉排出烟气中的颗粒物浓度相对较低.在许多情况下,即使没有其它空气污染控制设备,也能够满足排放标准.多室焚烧炉的特点是适合采用小量多次间歇式投加,固态含挥发分高的废物的焚烧,其适用范围在10kg/h~375kg/h.(b)同轴多室焚烧炉这种类型的焚烧炉比曲径式多室焚烧炉大,燃烧空气直接进入焚烧炉,同时运动气流只在垂直方向上变化.与曲颈式多室焚烧炉相同,气流在此式焚烧炉内的流动方向变化和碰撞,使飞灰和其他固体颗粒物质随烟气在二燃室混合均匀,能更有效的燃烧.处理量大于500kg/h的焚烧炉通常配备自动连续进料和出灰设备.炉排可用固定式或活动式机械炉排.(c)多室焚烧炉的特点及实用性曲径型多室焚烧炉的基本特点是:燃烧室的布局使燃烧气流在水平和垂直方向上都要转过多个90的弯.气体的回流允许初级和二级燃烧阶段之间的墙壁共用.混合室,火焰口和隔墙口的长宽比为1:1至2.4:1.火焰口下方的挡火墙的厚度是混合室和燃烧室大小的函数;这点使得在建造250kg/h以上的焚烧炉时略显笨重.串联型同轴多室焚烧炉的基本特点是:(1)燃烧气体直接流过焚烧炉,仅在垂直方向上拐几个90°弯.(2)由于运行,维护或其他原因,要求将各室的空间相互分开,这种串联布局安装简捷.(3)所有的孔口和室都能展宽至与焚烧炉相同的宽度.火焰口,混合室和隔墙口通道截面的长宽比为2:1到5:1.多燃烧室焚烧炉因其结构方面固有的特点,在运行和应用方面受到限制.(1)火焰口和混合室的比例决定了气体速度的合适范围.(2)在整个火焰口和混合室中需维持合适的火焰分布,(3)火焰要通过混合室进入燃烧室.这是引起这两种焚烧炉运行性能不同的基本因素.燃烧空气需要量对这二种焚烧炉相同,大约为300%的过剩空气量.约有一半所需燃烧空气是由加料门和焚烧炉的其他地方因泄漏而进入焚烧炉.其余所需空气量的分配为:70%为从炉排进入一燃室的二次空气,10%为由炉排下进入的一次空气,20%进入混合室或二燃室.多室焚烧炉一般多用于处理固态废物.对于可流动的物料,诸如污泥,液体和气体,则只有使用了合适的燃烧喷嘴,才能在多室焚烧炉中焚烧处理.多室焚烧炉通常是间歇进料,常规使用推杆型送料系统.对于含有高挥发性物质的废料,需要经常性地小批量间歇进料.4,机械炉排焚烧炉机械炉排焚烧炉采用活动式炉排,可使焚烧操作连续化,自动化,是目前在处理城市垃圾中使用最为广泛的焚烧炉,其典型结构如右图所示: 焚烧炉燃烧室内放置有一系列机械炉排,通常按其功能分为干燥段,燃烧段和后燃烧段.垃圾经由添料装置进入机械炉排焚烧炉后,在机械式炉排的往复运动下,逐步被导入燃烧室内炉排上,垃圾在由炉排下方送入的助燃空气及炉排运动的机械力共同推动及翻滚下,在向前运动的过程中水分不断蒸发,通常垃圾在被送落到水平燃烧炉排时被完全干燥并开始点燃.燃烧炉排运动速度的选择原则是应保证垃圾在达到该炉排尾端时被完全燃尽成灰渣.从后燃烧段炉排上落下的灰渣进入灰斗.产生的废气流上升而进入二次燃烧室内,与由炉排上方导入的助燃空气充分搅拌,混合及完全燃烧后,废气被导入燃烧室上方的废热回收锅炉进行热交换.机械炉排焚烧炉的一次燃烧室和二次燃烧室并无明显可分的界限,垃圾燃烧产生的废气流在二燃室的停留时间,是指烟气从最后的空气喷口或燃烧器出口到换热面的停留时间.4.1燃烧室及炉排应具备的机能焚烧炉的燃烧室及机械炉排,是机械炉排焚烧炉的心脏,燃烧室几何形状(即气流模式)与炉排的构造及性能,决定了焚烧炉的性能及垃圾焚烧处理效果.为保证垃圾焚烧效率,燃烧室应具备的条件和功能为:有适当的炉排面积,炉排面积过小时,火层厚度会增加,阻碍通风,引起不完全燃烧.燃烧室的形状及气流模式,必须适合垃圾的种类及燃烧方式.提供适当的燃烧温度,为垃圾提供足够的在炉体内进行干燥,燃烧及后燃烧的空间,使垃圾及可燃气体有充分的停留时间而完全燃烧.有适当的设计,便于垃圾与空气充分接触,使燃烧后的废气能混合搅拌均匀.结构及材料应耐高温,耐腐蚀(如采用水墙或空冷砖墙),能防止空气或废气的泄漏.具备有燃烧机,置于炉排上方左右侧壁及炉排尾端上方,供开机或加温时使用.为使垃圾充分,快速地燃烧完全,需要使垃圾在炉排上具有良好的移动及搅拌功能.各段炉排应具备的功能如右表中所列.4.2炉排类型与构造机械炉排类型很多,有链条式,阶梯往复式,多段滚动式和启形炉排等.但除链条式,阶梯往复式外,其他炉排均为专利炉排.(1)链条式炉排链条炉排结构简单,对垃圾没有搅拌和翻动.垃圾只有在从一炉排落到下一炉排时有所扰动,容易出现局部垃圾烧透,局部垃圾又未燃尽的现象,这种现象对于大型焚烧炉尤为突出.此外,链条炉排不适宜焚烧含有大量粒状废物及废塑料等废物.因此,链条炉排目前在国外焚烧厂已很少采用.不过,我国一些中小型垃圾焚烧炉仍在使用这种炉排.(2)阶梯往复炉排分固定和活动两种炉排.固定和活动炉排交替放置,活动炉排的往复运动由液压油缸或由机械方式推动,往复的频率根据生产能力可以在较大范围内进行调节,操作控制方便.阶梯往复式炉排的往复运动能将料层翻动扒松,使燃烧空气与之充分接触,其性能较链条式炉排好.阶梯往复式炉排焚烧炉对处理废物的适应性较强,可用于含水量较高的垃圾和以表面燃烧和分解燃烧形态为主的固体废物的焚烧,但不适宜细微粒状物和塑料等低熔点废物.(3)逆动式焚烧炉(马丁炉)炉排长度固定,宽度则依炉床所需的面积调整,可由数个炉床横向组合而成,每个炉床包含13个固定及可动阶梯炉条,固定炉条及可动炉条采用横向交错配置,炉床为倾斜度26的倾斜床面.垃圾的干燥,燃烧及后燃烧均在此炉床进行,一次空气由炉床底部经由炉条的空气槽从炉条两侧吹出.可动炉条由连杆及横梁组成,由液压传动装置驱动,其移动速度可调整,以配合各种燃烧条件,其搅拌垃圾方式如图(b),(c),(d)所示,可动炉条逆向移动,使得垃圾因重力而滑落,使垃圾层达到良好的揽拌,最后灰烬经由灰渣滚轮移送至排灰槽.(4)旋转圆桶式焚烧炉炉排由5~7个圆桶形滚轮,呈倾斜式排列,每个圆桶间旋转方向相反,有独立的一次空气导管,由圆桶底部,经由滚筒表面的送气孔到达垃圾层.垃圾因圆桶的滚动而往下移动,并可充分搅拌混合,圆桶以电力驱动,其转速可依垃圾性质调整.此型式炉排炉条冷却效果良好,但圆桶的空气送气口易阻塞,阻塞后易造成气锁.(5)阶段反复摇动式焚烧炉阶段反覆摇动式焚烧炉的每个炉排上都有固定炉条及可动炉条以纵向交错配置,可动炉条由连杆及棘齿组成,在可动炉条支架上水平方向作反覆运动,此种运动方式将剪力作用于垃圾层的前后及左右各方向,使得垃圾层能松动及均匀混合,并与火上空气充分接触.一次空气由炉排底部经由炉条两侧的缝隙吹出.在燃烧区的固定炉条上的炉条有切断刀刃装置,其功能为松动垃圾块,垃圾层及调整垃圾停留时间,使供给空气分布均匀,以及使二次空气的通道有自清作用,垃圾借此力量反覆翻搅及移动.(6)逆动翻转式炉排瑞士W+E逆动翻转式炉排的构造如右图(a)所示,炉排包含固定炉条及可动炉条,每个固定炉条及可动炉条横向交错配置,炉排呈水平设置,无倾角及阶段落差,垃圾的干燥,燃烧及后燃烧均在此炉排进行.一次空气由炉排底部分为数个管道进入炉排,再由炉条两侧吹出.可动炉条由连杆曲柄机构组成,由液压传动装置驱动,其运动方式如图(b)所示,在固定炉条两侧的可动炉条以相反方向作反覆运动,使得垃圾在前进及旋转中达到搅拌的作用.因为此型式的炉排为水平装置,故焚烧炉所需的高度可相对降低.(7)机械反复摇动式焚烧炉此型式炉排构造包含一个干燥炉排,一个燃烧炉排,及一个旋转窑炉排,但旋转窑炉排可视实际情况来决定是否需装设.机械式炉排为倾斜床面,其中固定炉排及可动炉排以纵向交错配置,有阶段落差,可动炉条由炉条组件及可动支架组合而成,由液压装置驱动.一次空气由炉排底部经由干燥区片状炉条的两侧吹出,及由燃烧区板式炉条的前端及表面细孔吹出,板式炉条的优点为可使燃烧用空气分布均匀,炉条冷却效果佳,可避免炉条烧损.燃烧区炉排的可动炉条在前后方向反覆运动,使得垃圾移动,剪断,经由阶段落差,达到搅动混合的作用.通过燃烧炉排的垃圾可经由下游附加的旋转窑进行后燃烧,旋转窑的构造为钢制圆筒,内部以耐火材料施工,窑体稍为倾斜,一次空气由窑体前方吹入,窑体出口有气密装置,以隔绝外部气体入侵,圆桶下方装设有滚轮,操作时以电力驱动滚轮,使其带动圆桶窑体转动,窑尾在面对废气出口方向的炉壁上通常设有一个燃烧器,可由尾端加热窑内的垃圾,在燃烧炉排左右两侧的耐火砖墙上通常也各设有一个燃烧器,垃圾经后燃烧阶段,最后灰渣由重力及滚动方式排出.(8)阶段往复摇动式焚烧炉日本Takuma阶段往复摇动式炉排干燥,燃烧及后燃烧三段炉排均为倾斜床排,固定炉条及可动炉条以纵向交错排列.高压高速的一次空气由炉底的空气导管送入炉条底部,再由盒状炉条两侧的空气喷嘴吹出,如图(a)所示.可动炉条由炉条支架及连杆曲柄机构组成,由液压传动装置驱动,如图(b)所示,各炉排的可动炉条水平前后移动,使得垃圾因重力滑落,及切断垃圾,经过阶段落差使得垃圾产生混合搅拌.垃圾移动所需的力与垃圾自重及炉条的摩擦系数成正比,炉条的倾斜角愈大时,垃圾所需的移动力愈小,同时垃圾作用于炉条的反作用力也愈小.(9)逆摺移动式炉排炉法国Stein逆摺移动式炉排为倾斜床面,无阶段落差.一次空气由炉条底部经由炉条两侧吹出.可动炉条分为前后两部份,分别由连杆及移动架组成,再由液压传动装置驱动,由于可动炉条逆向反覆移动,使得垃圾因重力而落下,而使垃圾层达到良好的搅拌混合作用,灰烬经由调整叶片控制,再移至排灰槽.此型炉排的机械设计与德国Martin的炉排十分类似.(10)西格斯多级炉排比利时西格斯炉排为台阶式炉排,由固定式炉条,滑动式炉条和翻动式炉条的相互结合,并且可以各自单独控制.西格斯炉排由相同标准的元件组成,每一元件包括由刚性梁组成的下层机构,每片炉条的铸钢支撑和覆有耐火材料的钢质炉条.每件标准炉排元件有六行炉条,分三种不同炉条按两套布置:固定式,水平滑动式和翻动式.下层机构的低层框架直接支撑固定炉条.全部炉条顶层表面形成一个带21°斜角的炉排倾斜面,全部元件皆按这个方式布置.滑动炉条推动垃圾层向炉排末端运动,而翻动炉条使垃圾变得膨松并充满空气.在炉条下面的燃烧风经过几个冷却鳍片和位于每片炉条前端的开口和槽后离开炉条,并吹过下一炉排片的顶部.每一片炉条有燃烧风出口开口.从而保证整个炉排表面的空气分布.燃烧室的构造炉体两侧为钢构支柱,侧面设置横梁,以支持炉排及炉壁.垃圾焚烧厂燃烧室依吸热方式的不同,可分为耐火材料型燃烧室与水冷式燃烧室二种.耐火材料型燃烧室仅靠耐火材料隔热,所有热量均由设于对流区的锅炉传热面吸收,此种型式仅用于较早期的焚烧炉.水冷式燃烧室与炉床成为一体,燃烧室四周采用水管墙吸收燃烧产生的辐射热量,为近代大型垃圾焚烧炉所采用.炉壁为可耐高温的耐火砖墙,燃烧火焰最高温度约为l000℃以上,耐火砖墙的外部,须有足够厚度的保温绝热材料及外壳,使炉壁气密性好,避免高温气体外泄,炉体顶部大部分均为水墙构造,其目的是吸收燃烧室高温的辐射热,保护炉壁,同时也可增加锅炉的传热面积,提高锅炉的蒸气产量.炉壁的构造分为砖墙,不定型耐火砖墙,空冷砖墙,以及水墙四种.(a)砖墙由于炉膛温度较高,同时被焚烧物料及燃烧后产物,如碱性熔融物,对炉衬有腐蚀性,一般选用氧化铝含量较高的高铝耐火材料,抗碱性腐蚀的铬镁质,镁质及铝镁质耐火材料.(b)空冷砖墙与水冷壁在砖墙的外侧加设一道板式热交换器,利用炉内的焚烧热源与进炉之前的助燃冷空气进行热交换,既降低炉壁温度,又可回收废热.因降低炉体温度而避免炉壁附着溶渣及抑制氮氧化物的产生,有利于燃烧.5,控气式焚烧炉控气式焚烧炉由一个一燃室和一个二燃室两部分组成,分两段燃烧.操作过程中严格控制进入一燃室和二燃室的空气量.引入一燃室的助燃空气量一般为理论助燃空气量的70-80%.贫氧条件下燃烧产生的含有易燃组分的裂解气体在二燃室中燃烧,二燃室的设计为完全去除裂解气中的有机物提供了足够的停留时间.同一燃室一样,严格控制量的气体被引入二燃室.不过在富氧的情况下,140-200%的理想配比的气体被引入以维持完全燃烧.与其他焚烧方式相比较,一燃室中烧废物的气体量小,速度低.气体的低速和废物的几乎不湍流使得气流带走的颗粒物数量很少.完全燃烧在二燃室中完成,产生的废气清洁且几乎不含颗粒物质,如烟尘和烟灰.通常满足排气标准而不必使用附加的空气净化装置,如涤气器或袋滤器等.在供气量少于完全氧化需氧量的一燃室,其运行控制如下:温度升高时减小进气量;温度降低时增大进气量.二燃室是为完全焚烧设计的,其供气量多于理想配比的供气量.在理想配比的状况下,可燃物质会完全燃烧.过量的气体会使裂解气体熄灭,也就是说,会降低尾气的温度.因此,二燃室的运行控制如下:温度升高,增大进气量;温度降低,减小进气量.(1)模组式CAO模组式固定床焚烧炉是先在工厂内铸造好,再运到现场组装.焚烧炉包括两个圆筒状,内敷耐火砖的碳钢制成的燃烧室.通常不设置昂贵而复杂的空气污染控制系统,仅以粒状污染物控制为主.主燃烧室成阶梯形,每阶梯间装有输送杆,每隔7~8min即往前推进一次,便于废物及灰渣的移动.每个燃烧室至少装置一个辅助燃烧器,以维持炉内温度.为了避免不完全燃烧气体外泄,炉内的压力略低于炉外,主燃烧室底部装有空气导管,以吸取炉外的空气.一燃室内供风量小,温度在700℃左右,能使生垃圾热解,避免风量过大将大量不完全燃烧的悬浮微粒带入第二燃烧室中;在二燃室再以辅助燃油及超量助燃空气将燃烧温度提升到1000℃以上,以完全氧化不完全燃烧的碳氢化合物.主燃烧室内的温度(或燃烧速率)的变化呈周期性,但顺序控制进料杆及输送杆的移动可以降低温度上下的幅度.此外,将水蒸汽喷入主燃烧室内,也可调节温度的变化,同时减少一氧化碳的产生.由于温度起伏不定,炉内耐火砖经常承受热震,耐火材料必须经常修补.空气控制式模组焚烧炉由于燃烧情况较缺氧式好,而且可以自动连续进料及排灰,废热亦可回收,产生蒸汽及热水,已经成为主要的小型废物焚烧炉,普遍为一般学校,机关,医院,工厂及小型乡镇使用.适用于废纸,城市垃圾和医疗垃圾的处理,也可用于焚烧其它一般固体,液体及污泥废物,但不十分适合危险废物焚烧使用.该焚烧炉的优缺点见下表:(2)螺旋式焚烧炉螺旋式焚烧炉是由华盛顿州西雅图的波音(Boeing)工程和建筑公司开发的.一燃室包括圆柱形燃烧室的外壳,进料装置,出料装置,强制通风系统,集灰器和不等螺距的螺旋推进器.一燃室内有一非等距螺旋推动废物在初级燃烧室内移动.经过破碎的废物(要求90%小于20cm)以一定的控制速度进入燃烧室,并由螺旋推进器的第一个螺旋片推成一堆.然后废物被螺旋推动滚过燃烧室.在螺旋推动废物移动时,也起到了搅拌物料的作用,从而使废物物料最大限度地与注入燃烧室的空气相接触.当物料经过燃烧,体积减少时,推动物料移动的螺旋螺距也相应地减小.废物床的搅拌作用与准确控制注入空气相结合,使一燃室在均匀的中等气温下运行,废物在不完全燃烧的情况下接近气化.燃烧室排出尾气向上通过热导管再向下进入后燃烧室完全燃烧.后燃烧室中的旋风气流也能分离去除从燃烧室中带走的大部分颗粒,注入后燃烧室的空气可以将后燃烧室排出气体的温度控制在使灰分初始软化的最低温度以下的安全水平.燃烧室和后燃烧室都通过预热空气冷却,即注入每一个装置的空气,在注入之前首先通过该装置的换热结构,预热空气,同时也使装置得到冷却.从而减少了热损失并改善了运行性能.(3)熔渣高温气化焚烧炉。
【摘要】:本文对设计中焚烧炉炉型的选择进行了探讨与分析。
分析认为,炉排炉及循环流化床焚烧炉与机械炉排焚烧炉相比,在燃料的适应性、二次污染物排放、灰渣综合利用,以及低热值垃圾焚烧处理方面具有明显优势。
建议垃圾焚烧应尽可能选用循环流化床锅炉。
论文关键词:垃圾发电,垃圾焚烧,循环流化床,焚烧炉,炉排炉1、炉排炉型焚烧炉机械炉排炉技术作为世界主流的垃圾焚烧炉技术,技术成熟、可靠,其应用前景广阔,发展空间较大。
这种焚烧炉因为具有对垃圾的预处理要求不高,对垃圾热值适应范围广,运行及维护简便等优点,是目前在处理城市垃圾中使用最为广泛的焚烧炉。
该类型焚烧炉型式很多,主要有固定炉排(主要是小型焚烧炉)、链条炉排、滚动炉排、倾斜顺推往复炉排、倾斜逆推往复炉排等。
为使垃圾燃烧过程稳定,炉排型焚烧关键是炉排。
炉排的布置、尺寸、形状随着垃圾水分、热值的差异以及生产厂商的不同而不同,炉排有水平布置,也有呈倾斜15°~26°布置,炉排设计分为预热段、燃烧段、燃烬段,段与段之间可以有垂直落差,也可没有落差。
垃圾在炉排上着火,热量不仅来自上方的辐射和烟气的对流,还来自垃圾层内部。
在炉排上已着火的垃圾在炉排的特殊作用下,使垃圾层强烈地翻动和搅动,引起垃圾底部开始着火,连续的翻动和搅动使垃圾层松动,透气性加强,有助于垃圾的着火和燃烧。
炉拱设计要考虑烟气流有利于热烟气对新入垃圾的热辐射预热干燥和燃烬区垃圾的燃烬。
配风设计要确保空气在炉排上垃圾层分布均匀,并合理使用一、二次风。
对于成分复杂的垃圾,炉温太高时,物料熔融结块,炉排、炉壁易烧坏,同时产生过多的氧化氮;炉温太低时,烟气滞留时间过短,产生不完全燃烧,对人体有严重危害的二恶英难以完全分解。
因此,炉膛出口温度应保证不低于850℃,烟气滞留时间不低于2s。
机械炉排炉的技术特点如下:(1)由于鼓风压力小,风机装机容量小,动力消耗小。
(2)由于烟气粉尘量相对其他型式焚烧炉而言较小,除尘器的负荷和运行成本相对降低。
生活垃圾焚烧的重要性及焚烧炉型的选定简述了垃圾焚烧在城市垃圾处理中的必然趋势,以及垃圾焚烧的前景。
并结合工程实例,介绍了垃圾焚烧炉的炉型和目前比较适合我国城市垃圾焚烧处理的机械炉排焚烧炉1.生活垃圾焚烧的重要性随着我国国民经济的不断发展,人民生活水平和城市化水平的不断提高,城市生活垃圾的产量与日剧增,由此带来的环境污染如水源污染、农田土壤污染以及大气污染等问题日益严重。
城市生活垃圾处理已成为影响环境保护、城市建设、人民生活和经济可持续发展的重要因素之一。
因此如何有效地处理好城市生活垃圾,已是我们面临的一个非常紧迫的问题。
现今被广泛采用的生活垃圾处理方法主要有三种,即填埋、堆肥和焚烧,且以传统垃圾处理方法--填埋处理占了较大比例。
自70年代中期,人们逐渐认识到垃圾也是一种可利用的能源。
尤其在人们认识到能源终将枯竭土地资源越来越宝贵以后,许多发达国家都十分重视城市生活垃圾的资源化和能源化,大力推行垃圾分类收集,成功运用了垃圾焚烧发电技术,逐步形成了城市生活垃圾资源化这门新兴产业,并取得了可观的社会和经济效益。
焚烧处理近十年来在发达国家发展极为迅速。
如日本,1976年焚烧处理量占57%83年占67.6%1989年达71.8%美国垃圾处理,原以填埋占绝大部分,焚烧仅占5%1990年全美市长会议决定将焚烧处理作为城市垃圾处理的主要方式,预计到本世纪末,美国焚烧处理可达35-40%英国伦敦市,该城市的垃圾焚烧量已达到40%。
近年来,我国国民经济的高速发展,超级市场、净菜和快餐业的迅速掘起,使得各类商品包装物耗量急剧增加,金融、商务等第三产业的大量兴起,城市煤气的不断普及,使我国城市生活垃圾的成份发生了质的变化,城市生活垃圾的热值都普遍大大提高。
在上海、北京等发达大都市,生活垃圾热值普遍都达到5539kj/kg(1325kcal/kg)左右;在一些中等城市如绍兴、常州等,生活垃圾热值也普遍达到4076-4494kj/kg(975-1075kcal/kg)随着我国城市功能的不断完善,人民生活水平的不断提高,城市生活垃圾的热值将逐年提高,这样城市生活垃圾焚烧处理的可行性和经济性都大大提高。
生活垃圾焚烧炉设计选型应考虑的主要因素摘要:本文介绍了城市生活垃圾焚烧炉设计选型时应考虑的主要因素:垃圾设计低位热值、助燃空气、炉排机械负荷和燃烧室热负荷、炉排尺寸、垃圾干燥过程。
从而对设计安全,高效,经济运行的焚烧炉提供有意义的指导。
关键词:垃圾焚烧炉设计主要因素指导意义Abstract: A description of main factors about Waste incineration Stoker design is presented. The factors mainly include low heat value of maximum continuous rating, primary air and Secondary air, heat intensity per grate are, heat release rate, grate area, waste dried process. As a result,it could provide guiding value about Stoker Design.Key words:Waste incineration stoker design; Main factors; Guiding value垃圾在焚烧炉内的燃烧过程是一个非常复杂的热化学反应的系统工程,炉膛内的垃圾燃烧效果受多方面因素制约。
合理组织炉内的热幅射和烟气流动,加强炉内烟气搅动,混合,强化火床和炉膛内的燃烧,维持火床和炉膛高温焚烧是焚烧炉设计时应实现的主要功能,也是焚烧炉作用的主要体现。
为了实现这些功能,设计焚烧炉必须综合考虑各个相关因素,使焚烧炉达到排放达标,安全,高效,经济运行。
本文介绍了焚烧炉设计选型时应考虑的主要因素。
一、垃圾设计热值垃圾设计低位热值的选取与焚烧炉炉排的面积、炉体的几何尺寸及余热锅炉受热面的布置息息相关,不仅关系到项目的机炉配置及选型,更是关系到本项目今后运行的好坏。
固体废盐焚烧炉选型标准
固体废盐焚烧炉的选型标准可以包括以下几个方面:
1. 处理能力:根据废盐的产生量和处理需求,选择合适的焚烧炉处理能力,确保能够满足废盐的处理需求。
2. 热效率:焚烧炉的热效率对能源消耗和运行成本有重要影响,应选择具有较高热效率的设备,以降低能源消耗。
3. 燃烧效果:焚烧炉的燃烧效果决定了废盐的处理效果,应选择具有良好燃烧效果的设备,确保废盐能够完全燃烧。
4. 设备稳定性:焚烧炉的稳定性对设备的运行和维护有重要影响,应选择具有较高稳定性的设备,减少故障和维护次数。
5. 排放标准:焚烧炉的排放标准是环保要求的重要指标,应选择符合国家和地方相关环保法规的设备,确保废盐焚烧过程中的排放符合标准。
6. 维护和保养:焚烧炉的维护和保养对设备的寿命和运行效果有重要影响,应选择易于维护和保养的设备,降低维护成本。
7. 成本效益:除了设备本身的价格,还需要考虑设备的运行成本和维护成本,综合考虑设备的成本效益,选择性价比较高的设备。
【纠结】垃圾焚烧发电厂焚烧炉的选型关键词:垃圾焚烧发电回转窑循环流化床摘要:本文重点介绍了目前垃圾焚烧发电厂中常用的三种焚烧炉:机械炉排焚烧炉、回转窑焚烧炉和循环流化床焚烧炉。
从设备结构、运行原理等方面进行了对比和分析。
对影响垃圾焚烧炉选型的主要因素进行了分析讨论。
从对垃圾热值的适应性、燃烧效率、污染物控制和热能利用效率等方面综合考虑,循环流化床焚烧炉是一种较为合适的垃圾焚烧炉。
随着社会经济的发展,人们的日常生活水平也在逐步提高。
随之而产生的城市生活垃圾也越来越多。
目前,全球垃圾历年存储总量己达60亿t。
以北京市为例,2005年垃圾产量为14710t/d,并且垃圾的产生量呈高速增长趋势。
据专家预测及数据统计分析,2010年北京市每天产生的垃圾量为19000t。
随着生活水平的提高,人们对居住环境的要求也越来越高,大量的垃圾给人们的生活质量造成极大的影响。
垃圾中含有大量的细菌及有害物质,对人的身体健康产生极大的威胁。
因此,城市垃圾必须集中存储、处理。
大中型城市附近经常可以看见一座座的垃圾山,堆放这些垃圾需要占用大量的土地资源,使得可耕种的土地资源越来越少。
同时,垃圾中有色金属资源、有效能量不能回收,造成资源的巨大浪费,不符合国家提倡的发展循环经济的方针政策。
因此,垃圾处理问题己成为影响我国实现可持续发展战略目标的障碍之一。
表1国内部分城市典型城市垃圾组分城市垃圾的成分随地域的不同也不尽相同。
表1给出了国内五个大中型城市的垃圾成分分析。
由表1可知,我国城市垃圾的主要特点为:①水分高。
由表中可以看出,五个城市的垃圾含水率均在45%以上,到了夏季随着食物结构及含水量的变化,垃圾中的水分还会继续升高。
②热值低。
由表1可知,垃圾热值一般在2000kJ/kg~7000kJ/kg 左右。
目前,业内同意认为,垃圾热值在3349kJ/kg以上时才具有开发利用价值。
较为适宜进行焚烧发电的垃圾热值在6000kJ/kg以上。
生活垃圾焚烧发电工程中焚烧炉选型分析对城市生活垃圾的资源化、无害化利用及垃圾焚烧发电技术进行了简介,分别对垃圾焚烧发电工程中机械炉排焚烧炉、流化床焚烧炉、热解焚烧炉、回转空焚烧炉的技术进行了详细分析,为城市生活垃圾焚烧发电工程中焚烧炉炉型选择提供一定的参考。
随着我国社会的发展,人民生活水平有了很大提高,城市生活垃圾以年均10%的增长率迅速增加。
全国有约三分之一的城市存在垃圾围城的现象,并且这一现象日趋严重。
大量的城市生活垃圾已对城镇周边的生态环境构成了严重的威胁。
城市生活垃圾的处理与处置已成为制约我国社会和经济可持续发展的重要因素。
1垃圾资源化利用当前城市生活垃圾无害化处理方式主要包括焚烧处理、高温堆肥、卫生填埋。
在我国,城市里的生活垃圾填埋场占比例较大,此方法填埋处理量大、方便易行,但是对大气、河流、土壤、地下水等容易造成二次污染。
堆肥处理法由于其对垃圾中的有机质含量要求较高,同时该方法使垃圾减量化程度很低,仍然需要占用大量的土地资源,世界范围内应用的比例相对较少。
焚烧法是处理生活垃圾最有效的方法,该方法占地面积少,属于较为彻底的垃圾无害化处理方式,让城市垃圾处理基本实现了资源化、无害化和减量化。
2垃圾焚烧发电垃圾焚烧发电是高温焚烧收集的生活垃圾,产生的热能转化成高温蒸汽,高温蒸汽推动汽轮机转动,将热能转化为机械能,机械能带动发电机发电,将机械能转化为电能,实现垃圾的资源化、减量化。
在整个生产工艺流程方面,垃圾電厂和普通燃煤或燃油电厂基本一致,唯一的区别在于燃料不同,垃圾电厂的燃料是垃圾,而普通燃煤电厂的燃料是煤。
垃圾发电厂系统的组成部分主要包括储料和上料系统、烟气净化系统、汽轮发电机系统、焚烧系统、出渣系统、自动化控制和在线监测系统。
3垃圾焚烧发电工程中焚烧炉比较分析焚烧炉的选型对于垃圾焚烧发电厂的安全、经济、稳定运行都有至关重要的影响。
当前市场上应用最广泛、技术也相应成熟的生活垃圾焚烧炉炉型主要有流化床焚烧炉、回转窑焚烧炉、热解焚烧炉、机械炉排炉四种。
试论垃圾焚烧炉选型问题摘要:本文从垃圾焚烧炉的选用原则出发,对机械炉排炉焚烧炉、流化床焚烧炉、热解焚烧炉、回转窑焚烧炉四种垃圾焚烧炉进行对比分析,并介绍了一些合理配置垃圾余热锅炉的注意点。
关键词:垃圾焚烧炉;余热锅炉;选型一、焚烧炉的选型原则1、先进、成熟、可靠,有运行业绩;2、采用3T技术,达到环保要求;3、结合当地实际,满足以价格较低的煤或煤气作为辅助燃料的特点,降低运行成本;4、单台焚烧炉垃圾焚烧能力大于350 t/d(包括辅助燃料);5、需考虑投资者的利益,节省投资,降低成本。
二、四种垃圾焚烧炉的对比分析1、机械炉排炉焚烧炉这种炉的路床一般采用往复运动炉排,炉排面积较大,炉膛体积较大,不需要对垃圾进行预处理;占地面积较大,灰渣热灼减率容易达标;垃圾炉内停留时间较长,过量空气系数大,单炉最大处理量为1200T/D;燃烧空气供给容易调节,可通过调整干燥段适应不同湿度的垃圾;可通过炉排运往复运动使垃圾反转,使其均匀;烟气中含灰尘量较低,燃烧介质不用载体,燃烧工况控制较易,运行费用低;烟气处理较易,维修工作量较少,运行业绩或市场占有率最多,对工程的适应性面广;总的来讲这种焚烧炉对垃圾的适应性强,故障少,处理性能好,环保性能好,运行成本较低。
2、流化床焚烧炉这种炉的路床一般采用固定式炉排面积和炉膛,体积较小,需要对垃圾进行预处理;占地面积较小,原生垃圾在连续助燃下,灰渣热灼减率可达标;垃圾炉内停留时间较短,过量空气系数一般,单炉最大处理量为500T/D;燃烧空气供给较易调节,炉温易随垃圾含水量的变化而波动;较重垃圾快速到达底部,不易燃烧完全;烟气中含灰尘量高,燃烧介质需要石英砂作为载体,燃烧工况控制不太容易,运行费用低;烟气处理较难,维修工作量较多,运行业绩或市场占有率最少,对工程的适应性面窄;总的来讲这种焚烧炉需要前处理并故障率高,通常加有辅助燃料才能焚烧环保不易达到。
3、热解焚烧炉这种炉的路床一般采用多为立式固定炉排,分2个燃烧室,在热值较低时,需要对垃圾进行预处理;占地面积一般,灰渣热灼减率,原生垃圾在连续不易达标;垃圾炉内停留时间最长,过量空气系数小,单炉最大处理量为200T/D;燃烧空气供给不易调节,可通过调节垃圾在炉内的停留来适应垃圾的湿度;难以实现炉内垃圾翻动,大块垃圾难于燃尽;烟气中含灰尘量较低,燃烧介质不用载体,燃烧工况控制不易,运行费用较高;烟气处理不易,维修工作量少,运行业绩或市场占有率最少,对工程的适应性面窄;总的来讲这种焚烧炉没有熔融焚烧炉的热解炉,灰渣不可燃尽,热灼减率高,环保不易达标。
生活垃圾焚烧工艺及设备选型1 垃圾焚烧炉型选择1.1 垃圾焚烧炉型概述焚烧炉是垃圾焚烧处理工艺中的核心设备,它对整体工艺路线、焚烧效果、工程造价、经济效益等,都起着至关重要的作用。
为此,在焚烧炉型选择上,务必十分慎重。
影响垃圾焚烧锅炉炉型选择的因素主要有以下两个方面:1、燃料适应性垃圾特性是选择炉型的最基本资料。
生活垃圾的含水率高,随季节热值变化较大,因此对焚烧炉在垃圾的干燥、着火燃烧和适应较大范围热值变化方面有较高的要求。
2、技术要求应选择国内广泛应用、技术成熟度高,具有较大的单元处理规模,锅炉效率较高的焚烧炉。
要求设备运行费用较低、操作管理方便、备品备件供应价格合理,供应及时等。
经过了几十年垃圾焚烧运营和发展,目前国内外用于垃圾焚烧的典型炉型主要包括机械炉排焚烧炉、流化床焚烧炉、热解气化焚烧炉与回转窑焚烧炉等四类。
1.2 机械炉排焚烧炉机械炉排炉采用层状燃烧技术,具有对垃圾的预处理要求不高,对垃圾热值适应范围广,运行及维护简便等优点,是目前世界最常用、处理量最大的城市生活垃圾焚烧炉。
机械炉排焚烧炉根据炉排的结构和运动方式不同而形式多样,但燃烧的基本原理大致相同,垃圾在炉排上进行层状燃烧,经过干燥、燃烧、燃烬后灰渣排出炉外,各种炉排都会采取不同的方式使垃圾料层不断得到松动以及使垃圾与空气充分接触,从而达到较理想的燃烧效果。
垃圾的燃烧空气由炉排底部送入,根据垃圾热值与水份不同,送入炉排风可以是热风或是冷风,不同的炉排结构其炉排透风方式各异。
图1.1 机械炉排炉根据炉排的结构形式,机械炉排焚烧炉可分为:往复式炉排炉和滚筒式炉排炉。
往复式炉排炉按其运动方式和结构形式分为顺推式往复炉排与逆推式往复炉排。
一般往复式炉排由成排相间布置的运动炉排片组与固定炉排片组构成。
运动炉排片组在推动垃圾向炉渣出口方向移动时,把部分新垃圾推到下一层已经燃烧的垃圾层上,返回时又会把部分已经燃烧的垃圾带入未燃烧垃圾的底部,达到对垃圾层较强的拨火作用,增强垃圾与空气的接触,并使垃圾层疏松、透气性加强,强化燃烧。
焚烧炉技术方案第1篇焚烧炉技术方案一、项目背景随着我国经济的快速发展,工业生产过程中产生的固体废物、危险废物数量逐年增加,对环境造成了严重污染。
为了有效解决这一问题,国家提出了焚烧处理的方式,将固体废物、危险废物进行高温焚烧,实现无害化、减量化、资源化处理。
本方案旨在为某地区焚烧炉项目提供一套合法合规的技术方案。
二、项目目标1. 满足国家及地方环保要求,确保焚烧过程中各项排放指标达到国家标准。
2. 实现固体废物、危险废物的无害化、减量化、资源化处理。
3. 提高焚烧炉运行效率,降低运营成本。
4. 保障焚烧炉设备安全、稳定、可靠运行。
5. 提升项目整体自动化水平,降低人工劳动强度。
三、技术方案1. 焚烧炉类型选择根据项目需求,选用回转窑焚烧炉作为主体设备。
回转窑焚烧炉具有处理能力强、燃烧温度高、污染物排放低等优点,适用于处理各类固体废物、危险废物。
2. 焚烧工艺流程(1)废物预处理:将废物进行破碎、筛分等预处理,使其符合焚烧要求。
(2)进料系统:采用自动进料系统,确保废物均匀、稳定地送入焚烧炉。
(3)焚烧系统:废物在回转窑内进行高温焚烧,实现无害化处理。
(4)尾气处理系统:焚烧产生的尾气经过冷却、净化等处理,确保排放指标达到国家标准。
(5)灰渣处理系统:焚烧后的灰渣进行稳定化处理,实现资源化利用。
3. 关键技术参数(1)焚烧温度:≥1100℃(2)焚烧效率:≥99.9%(3)尾气排放指标:满足《危险废物焚烧污染控制标准》(GB 18484-2001)中的一类标准(4)灰渣稳定化:满足《危险废物填埋污染控制标准》(GB 18598-2001)中的要求4. 自动化控制系统(1)采用集散式控制系统,实现焚烧炉的自动控制。
(2)配置工业电视监控系统,实时监控焚烧炉运行状态。
(3)设置安全防护装置,确保设备运行安全。
四、环保措施1. 严格按照国家及地方环保法规要求,进行环境影响评价,取得相关环保手续。
2. 优化焚烧工艺,确保污染物排放达到国家标准。
论述垃圾焚烧炉设备选型及机械设计发布时间:2022-11-04T02:33:09.015Z 来源:《中国科技信息》2022年13期7月作者:吴磊[导读] 目前,我国垃圾主要的处理方式便是焚烧处理,垃圾成分复杂,热值低,灰分高,含水量吴磊广州维港环保科技有限公司广东广州 510000摘要:目前,我国垃圾主要的处理方式便是焚烧处理,垃圾成分复杂,热值低,灰分高,含水量因季节变化而波动范围大,垃圾热值随之变化也很大。
影响垃圾焚烧的主要因素包括垃圾热值、焚烧炉型式、燃烧温度、料层停留时间以及过量空气系数等。
焚烧炉是垃圾焚烧过程的基本设备,对垃圾的焚烧过程、燃尽情况起主要影响作用,对后续的余热锅炉、炉后烟气净化系统的配置等都起到重要作用,是影响系统工程总成本和经济效益的关键设备。
关键词:垃圾;焚烧炉设备;选型;机械设计引言:利用焚烧炉设备进行垃圾处理,在一定程度上减轻了垃圾运输费用以及相关人力、物力等成本支出,有利于减少国家财政支出,节约资源。
但,我国城市处理垃圾技术还不完全成熟,例如,我国焚烧炉设备设计理念不成熟以及选型不合理等,这都不利于焚烧炉设备的稳定运行,不能有效保障焚烧炉连续性燃烧垃圾。
所以为了提高垃圾处理效率,需要对焚烧炉进行科学选型与设计。
一、垃圾焚烧炉简介在垃圾焚烧系统中主要包括垃圾接收系统、储存系统、烟气处理系统、热能利用系统与飞灰收运系统,在各个子系统共同运行的情况下才能够完成对垃圾的有效处理。
在设备运行中,各系统各司其职,如若任意一个系统发生了故障或者效率降低,则势必会影响到整个垃圾焚烧系统的正常运行与效率提升。
在该系统中,垃圾接收与储存系统是垃圾进入与存储的地点;烟气处理系统主要负责处理焚烧中产生的烟气;热能利用系统负责将燃烧的能量转化为热能;飞灰收运系统负责对垃圾燃烧后的灰渣进行处理。
对于不同类型的焚烧炉来说功效不一,因此在使用前需要慎重的选择与设计。
二、垃圾焚烧炉的运行机理与选型对于不同垃圾来说,成分、热值等方面存在差异,焚烧炉作为垃圾处理的主要设备,在选择与设计时应充分考虑到焚烧时间、温度等,使垃圾得到充分燃烧,避免出现二噁英。
焚烧炉的选型原则是什么焚烧炉的结构型式与废物的种类,性质和燃烧形态等因素有关.不同的焚烧方式有相应的焚烧炉与之相配合.通常根据所处理废物对环境和人体健康的危害大小,以及所要求的处理程度,将焚烧炉分为城市垃圾焚烧炉,一般工业废物焚烧炉和危险废物焚烧炉三种类型.不过,更能反应焚烧炉结构特点的分类方法,是按照处理废物的形态,将其分为液体废物焚烧炉,气体废物焚烧炉和固体废物焚烧炉三种类型.固体废物焚烧炉种类繁多,主要有炉排型焚烧炉,炉床型焚烧炉和沸腾流化床焚烧炉三种类型.但每一种类型的炉子又视其具体的结构不同又有不同的型式,具体分为以下几种类型:炉排型焚烧炉将废物置于炉排上进行焚烧的炉子称为炉排型焚烧炉.(a)固定炉排焚烧炉固定炉排焚烧炉只能手工操作,间歇运行,劳动条件差,效率低,拨料不充分时导致焚烧不彻底.(b)活动炉排焚烧炉活动炉排焚烧炉,即为机械炉排焚烧炉.炉排是活动炉排焚烧炉的心脏部分,其性能直接影响垃圾的焚烧处理效果,可使焚烧操作自动化,连续化.按炉排构造不同可分为链条式,阶梯往复式,多段滚动式焚烧炉等.我国目前制造的大部分中小型垃圾焚烧炉为链条炉和阶梯往复式炉排焚烧炉,功能较差.大部分功能较好的机械炉排均为专利炉排.炉床式焚烧炉炉床式焚烧炉采用炉床盛料,燃烧在炉床上物料表面进行,适宜于处理颗粒小或粉状固体废物以及泥浆状废物,分为固定炉床和活动炉床两大类.(a)固定炉床焚烧炉最简单的炉床式焚烧炉是水平固定炉床焚烧炉,其炉床与燃烧室构成一整体,炉床为水平或略呈倾斜,燃烧室与炉床成为一体.废物的加料,搅拌及出灰均为手工操作,劳动条件差,且为间歇式操作,故不适用于大量废物的处理.倾斜式固定炉床焚烧炉的炉床作成倾斜式,便于投料,出灰,并使在倾斜床上的物料一边下滑一边燃烧,改善了焚烧条件.与水平炉床相同,该型焚烧炉的燃烧室与炉床成为一体.这种焚烧炉的投料,出料操作基本上是间歇式的.但如固体废物焚烧后灰分很少,并设有较大的贮灰坑,或有连续出灰机和连续加料装置,亦可使焚烧作业成为连续操作.(b)活动床焚烧炉活动床焚烧炉的炉床是可动的,可使废物能在炉床上松散和移动,以改善焚烧条件,进行自动加料和出灰操作.这种类型的焚烧炉有转盘式炉床,隧道回转式炉床和回转式炉床(即旋转窑)三种.应用最多的是旋转窑焚烧炉.(c)流化床焚烧炉这是一种近年发展起来的高效焚烧炉.利用炉底分布板吹出的热风将废物悬浮起呈沸腾状进行燃烧.一般常采用中间媒体即载体(砂子)进行流化,再将废物加入到流化床中与高温的砂子接触,传热进行燃烧.按照有无流化媒体(载体)及流化状态进行分类.3,多室焚烧炉多室焚烧炉是有多个燃烧室的焚烧炉,可使废物的燃烧过程分为两步进行:首先是引燃室中废物的初级燃烧(或称固体燃烧)过程,接着是二级燃烧(或称气相燃烧)过程,二级燃烧区域由两部分组成,一个是下行烟道(或混合室),另一个为上行的扩大室(或燃烧室).现代多室焚烧炉的结构有两种基本的类型,按其布局不同而命名:一类是气体的回流所通过的各室呈"U"型布局,称为曲径型,另一类各室按直线排列,称为串联型.(a)典型的曲径式多室焚烧炉如左图所示,内部有多个导流板,结构紧凑.导流板所处位置能使燃烧气体在水平和垂直方向上作90度的转弯运动.在每次烟气气流方向变化时,均有灰尘从烟气流中掉出.一燃室内炉排位置较高,收集灰渣的灰坑较深.一次空气和二次空气分别从一燃室炉排的下方和上方,通过鼓风机,以控制的风量进入炉内.辅助燃料气体通过火焰口进入二燃室,或者进入二燃室前的一个较小点的混合室.火焰口实际上是一个把一燃室和二燃室分隔开来的跨接墙上方的孔穴.当有混合室时,二燃室单独设进风口.一燃室和二燃室均设有燃烧器,可加入辅助燃料.如果废物在点燃后炉温可增高到维持废物不断自燃的程度,则一燃室不再需要加入辅助燃料.而二燃室则通常需要不断添加辅助燃料.一燃室是固体废物燃烧室,二燃室为气相燃烧室.由一燃室至二燃室需经过火焰口及混合室,形成燃烧带.废物进入一燃室,投在固定炉排上,经干燥,着火而燃烧.在燃烧时,挥发分及水分挥发通过燃烧室部分氧化.其余部分随气流通过火焰口向下流经混合室与二次空气混合,因为混合室使气流流动区域受到限制和突然改变流向而产生湍流,促使混合均匀并产生气相反应.膨胀的气体受到帘墙阻挡使气流改变方向,经过帘墙口从混合室到达最后的燃烧室,可燃组分在同轴式多室内氧化.飞灰和其他固体颗粒物质受墙碰撞而沉落在燃烧室内.因此,这种类型的焚烧炉排出烟气中的颗粒物浓度相对较低.在许多情况下,即使没有其它空气污染控制设备,也能够满足排放标准.多室焚烧炉的特点是适合采用小量多次间歇式投加,固态含挥发分高的废物的焚烧,其适用范围在10kg/h~375kg/h.(b)同轴多室焚烧炉这种类型的焚烧炉比曲径式多室焚烧炉大,燃烧空气直接进入焚烧炉,同时运动气流只在垂直方向上变化.与曲颈式多室焚烧炉相同,气流在此式焚烧炉内的流动方向变化和碰撞,使飞灰和其他固体颗粒物质随烟气在二燃室混合均匀,能更有效的燃烧.处理量大于500kg/h的焚烧炉通常配备自动连续进料和出灰设备.炉排可用固定式或活动式机械炉排.(c)多室焚烧炉的特点及实用性曲径型多室焚烧炉的基本特点是:燃烧室的布局使燃烧气流在水平和垂直方向上都要转过多个90的弯.气体的回流允许初级和二级燃烧阶段之间的墙壁共用.混合室,火焰口和隔墙口的长宽比为1:1至2.4:1.火焰口下方的挡火墙的厚度是混合室和燃烧室大小的函数;这点使得在建造250kg/h以上的焚烧炉时略显笨重.串联型同轴多室焚烧炉的基本特点是:(1)燃烧气体直接流过焚烧炉,仅在垂直方向上拐几个90°弯.(2)由于运行,维护或其他原因,要求将各室的空间相互分开,这种串联布局安装简捷.(3)所有的孔口和室都能展宽至与焚烧炉相同的宽度.火焰口,混合室和隔墙口通道截面的长宽比为2:1到5:1.多燃烧室焚烧炉因其结构方面固有的特点,在运行和应用方面受到限制.(1)火焰口和混合室的比例决定了气体速度的合适范围.(2)在整个火焰口和混合室中需维持合适的火焰分布,(3)火焰要通过混合室进入燃烧室.这是引起这两种焚烧炉运行性能不同的基本因素.燃烧空气需要量对这二种焚烧炉相同,大约为300%的过剩空气量.约有一半所需燃烧空气是由加料门和焚烧炉的其他地方因泄漏而进入焚烧炉.其余所需空气量的分配为:70%为从炉排进入一燃室的二次空气,10%为由炉排下进入的一次空气,20%进入混合室或二燃室.多室焚烧炉一般多用于处理固态废物.对于可流动的物料,诸如污泥,液体和气体,则只有使用了合适的燃烧喷嘴,才能在多室焚烧炉中焚烧处理.多室焚烧炉通常是间歇进料,常规使用推杆型送料系统.对于含有高挥发性物质的废料,需要经常性地小批量间歇进料.4,机械炉排焚烧炉机械炉排焚烧炉采用活动式炉排,可使焚烧操作连续化,自动化,是目前在处理城市垃圾中使用最为广泛的焚烧炉,其典型结构如右图所示: 焚烧炉燃烧室内放置有一系列机械炉排,通常按其功能分为干燥段,燃烧段和后燃烧段.垃圾经由添料装置进入机械炉排焚烧炉后,在机械式炉排的往复运动下,逐步被导入燃烧室内炉排上,垃圾在由炉排下方送入的助燃空气及炉排运动的机械力共同推动及翻滚下,在向前运动的过程中水分不断蒸发,通常垃圾在被送落到水平燃烧炉排时被完全干燥并开始点燃.燃烧炉排运动速度的选择原则是应保证垃圾在达到该炉排尾端时被完全燃尽成灰渣.从后燃烧段炉排上落下的灰渣进入灰斗.产生的废气流上升而进入二次燃烧室内,与由炉排上方导入的助燃空气充分搅拌,混合及完全燃烧后,废气被导入燃烧室上方的废热回收锅炉进行热交换.机械炉排焚烧炉的一次燃烧室和二次燃烧室并无明显可分的界限,垃圾燃烧产生的废气流在二燃室的停留时间,是指烟气从最后的空气喷口或燃烧器出口到换热面的停留时间.4.1燃烧室及炉排应具备的机能焚烧炉的燃烧室及机械炉排,是机械炉排焚烧炉的心脏,燃烧室几何形状(即气流模式)与炉排的构造及性能,决定了焚烧炉的性能及垃圾焚烧处理效果.为保证垃圾焚烧效率,燃烧室应具备的条件和功能为:有适当的炉排面积,炉排面积过小时,火层厚度会增加,阻碍通风,引起不完全燃烧.燃烧室的形状及气流模式,必须适合垃圾的种类及燃烧方式.提供适当的燃烧温度,为垃圾提供足够的在炉体内进行干燥,燃烧及后燃烧的空间,使垃圾及可燃气体有充分的停留时间而完全燃烧.有适当的设计,便于垃圾与空气充分接触,使燃烧后的废气能混合搅拌均匀.结构及材料应耐高温,耐腐蚀(如采用水墙或空冷砖墙),能防止空气或废气的泄漏.具备有燃烧机,置于炉排上方左右侧壁及炉排尾端上方,供开机或加温时使用.为使垃圾充分,快速地燃烧完全,需要使垃圾在炉排上具有良好的移动及搅拌功能.各段炉排应具备的功能如右表中所列.4.2炉排类型与构造机械炉排类型很多,有链条式,阶梯往复式,多段滚动式和启形炉排等.但除链条式,阶梯往复式外,其他炉排均为专利炉排.(1)链条式炉排链条炉排结构简单,对垃圾没有搅拌和翻动.垃圾只有在从一炉排落到下一炉排时有所扰动,容易出现局部垃圾烧透,局部垃圾又未燃尽的现象,这种现象对于大型焚烧炉尤为突出.此外,链条炉排不适宜焚烧含有大量粒状废物及废塑料等废物.因此,链条炉排目前在国外焚烧厂已很少采用.不过,我国一些中小型垃圾焚烧炉仍在使用这种炉排.(2)阶梯往复炉排分固定和活动两种炉排.固定和活动炉排交替放置,活动炉排的往复运动由液压油缸或由机械方式推动,往复的频率根据生产能力可以在较大范围内进行调节,操作控制方便.阶梯往复式炉排的往复运动能将料层翻动扒松,使燃烧空气与之充分接触,其性能较链条式炉排好.阶梯往复式炉排焚烧炉对处理废物的适应性较强,可用于含水量较高的垃圾和以表面燃烧和分解燃烧形态为主的固体废物的焚烧,但不适宜细微粒状物和塑料等低熔点废物.(3)逆动式焚烧炉(马丁炉)炉排长度固定,宽度则依炉床所需的面积调整,可由数个炉床横向组合而成,每个炉床包含13个固定及可动阶梯炉条,固定炉条及可动炉条采用横向交错配置,炉床为倾斜度26的倾斜床面.垃圾的干燥,燃烧及后燃烧均在此炉床进行,一次空气由炉床底部经由炉条的空气槽从炉条两侧吹出.可动炉条由连杆及横梁组成,由液压传动装置驱动,其移动速度可调整,以配合各种燃烧条件,其搅拌垃圾方式如图(b),(c),(d)所示,可动炉条逆向移动,使得垃圾因重力而滑落,使垃圾层达到良好的揽拌,最后灰烬经由灰渣滚轮移送至排灰槽.(4)旋转圆桶式焚烧炉炉排由5~7个圆桶形滚轮,呈倾斜式排列,每个圆桶间旋转方向相反,有独立的一次空气导管,由圆桶底部,经由滚筒表面的送气孔到达垃圾层.垃圾因圆桶的滚动而往下移动,并可充分搅拌混合,圆桶以电力驱动,其转速可依垃圾性质调整.此型式炉排炉条冷却效果良好,但圆桶的空气送气口易阻塞,阻塞后易造成气锁.(5)阶段反复摇动式焚烧炉阶段反覆摇动式焚烧炉的每个炉排上都有固定炉条及可动炉条以纵向交错配置,可动炉条由连杆及棘齿组成,在可动炉条支架上水平方向作反覆运动,此种运动方式将剪力作用于垃圾层的前后及左右各方向,使得垃圾层能松动及均匀混合,并与火上空气充分接触.一次空气由炉排底部经由炉条两侧的缝隙吹出.在燃烧区的固定炉条上的炉条有切断刀刃装置,其功能为松动垃圾块,垃圾层及调整垃圾停留时间,使供给空气分布均匀,以及使二次空气的通道有自清作用,垃圾借此力量反覆翻搅及移动.(6)逆动翻转式炉排瑞士W+E逆动翻转式炉排的构造如右图(a)所示,炉排包含固定炉条及可动炉条,每个固定炉条及可动炉条横向交错配置,炉排呈水平设置,无倾角及阶段落差,垃圾的干燥,燃烧及后燃烧均在此炉排进行.一次空气由炉排底部分为数个管道进入炉排,再由炉条两侧吹出.可动炉条由连杆曲柄机构组成,由液压传动装置驱动,其运动方式如图(b)所示,在固定炉条两侧的可动炉条以相反方向作反覆运动,使得垃圾在前进及旋转中达到搅拌的作用.因为此型式的炉排为水平装置,故焚烧炉所需的高度可相对降低.(7)机械反复摇动式焚烧炉此型式炉排构造包含一个干燥炉排,一个燃烧炉排,及一个旋转窑炉排,但旋转窑炉排可视实际情况来决定是否需装设.机械式炉排为倾斜床面,其中固定炉排及可动炉排以纵向交错配置,有阶段落差,可动炉条由炉条组件及可动支架组合而成,由液压装置驱动.一次空气由炉排底部经由干燥区片状炉条的两侧吹出,及由燃烧区板式炉条的前端及表面细孔吹出,板式炉条的优点为可使燃烧用空气分布均匀,炉条冷却效果佳,可避免炉条烧损.燃烧区炉排的可动炉条在前后方向反覆运动,使得垃圾移动,剪断,经由阶段落差,达到搅动混合的作用.通过燃烧炉排的垃圾可经由下游附加的旋转窑进行后燃烧,旋转窑的构造为钢制圆筒,内部以耐火材料施工,窑体稍为倾斜,一次空气由窑体前方吹入,窑体出口有气密装置,以隔绝外部气体入侵,圆桶下方装设有滚轮,操作时以电力驱动滚轮,使其带动圆桶窑体转动,窑尾在面对废气出口方向的炉壁上通常设有一个燃烧器,可由尾端加热窑内的垃圾,在燃烧炉排左右两侧的耐火砖墙上通常也各设有一个燃烧器,垃圾经后燃烧阶段,最后灰渣由重力及滚动方式排出.(8)阶段往复摇动式焚烧炉日本Takuma阶段往复摇动式炉排干燥,燃烧及后燃烧三段炉排均为倾斜床排,固定炉条及可动炉条以纵向交错排列.高压高速的一次空气由炉底的空气导管送入炉条底部,再由盒状炉条两侧的空气喷嘴吹出,如图(a)所示.可动炉条由炉条支架及连杆曲柄机构组成,由液压传动装置驱动,如图(b)所示,各炉排的可动炉条水平前后移动,使得垃圾因重力滑落,及切断垃圾,经过阶段落差使得垃圾产生混合搅拌.垃圾移动所需的力与垃圾自重及炉条的摩擦系数成正比,炉条的倾斜角愈大时,垃圾所需的移动力愈小,同时垃圾作用于炉条的反作用力也愈小.(9)逆摺移动式炉排炉法国Stein逆摺移动式炉排为倾斜床面,无阶段落差.一次空气由炉条底部经由炉条两侧吹出.可动炉条分为前后两部份,分别由连杆及移动架组成,再由液压传动装置驱动,由于可动炉条逆向反覆移动,使得垃圾因重力而落下,而使垃圾层达到良好的搅拌混合作用,灰烬经由调整叶片控制,再移至排灰槽.此型炉排的机械设计与德国Martin的炉排十分类似.(10)西格斯多级炉排比利时西格斯炉排为台阶式炉排,由固定式炉条,滑动式炉条和翻动式炉条的相互结合,并且可以各自单独控制.西格斯炉排由相同标准的元件组成,每一元件包括由刚性梁组成的下层机构,每片炉条的铸钢支撑和覆有耐火材料的钢质炉条.每件标准炉排元件有六行炉条,分三种不同炉条按两套布置:固定式,水平滑动式和翻动式.下层机构的低层框架直接支撑固定炉条.全部炉条顶层表面形成一个带21°斜角的炉排倾斜面,全部元件皆按这个方式布置.滑动炉条推动垃圾层向炉排末端运动,而翻动炉条使垃圾变得膨松并充满空气.在炉条下面的燃烧风经过几个冷却鳍片和位于每片炉条前端的开口和槽后离开炉条,并吹过下一炉排片的顶部.每一片炉条有燃烧风出口开口.从而保证整个炉排表面的空气分布.燃烧室的构造炉体两侧为钢构支柱,侧面设置横梁,以支持炉排及炉壁.垃圾焚烧厂燃烧室依吸热方式的不同,可分为耐火材料型燃烧室与水冷式燃烧室二种.耐火材料型燃烧室仅靠耐火材料隔热,所有热量均由设于对流区的锅炉传热面吸收,此种型式仅用于较早期的焚烧炉.水冷式燃烧室与炉床成为一体,燃烧室四周采用水管墙吸收燃烧产生的辐射热量,为近代大型垃圾焚烧炉所采用.炉壁为可耐高温的耐火砖墙,燃烧火焰最高温度约为l000℃以上,耐火砖墙的外部,须有足够厚度的保温绝热材料及外壳,使炉壁气密性好,避免高温气体外泄,炉体顶部大部分均为水墙构造,其目的是吸收燃烧室高温的辐射热,保护炉壁,同时也可增加锅炉的传热面积,提高锅炉的蒸气产量.炉壁的构造分为砖墙,不定型耐火砖墙,空冷砖墙,以及水墙四种.(a)砖墙由于炉膛温度较高,同时被焚烧物料及燃烧后产物,如碱性熔融物,对炉衬有腐蚀性,一般选用氧化铝含量较高的高铝耐火材料,抗碱性腐蚀的铬镁质,镁质及铝镁质耐火材料.(b)空冷砖墙与水冷壁在砖墙的外侧加设一道板式热交换器,利用炉内的焚烧热源与进炉之前的助燃冷空气进行热交换,既降低炉壁温度,又可回收废热.因降低炉体温度而避免炉壁附着溶渣及抑制氮氧化物的产生,有利于燃烧.5,控气式焚烧炉控气式焚烧炉由一个一燃室和一个二燃室两部分组成,分两段燃烧.操作过程中严格控制进入一燃室和二燃室的空气量.引入一燃室的助燃空气量一般为理论助燃空气量的70-80%.贫氧条件下燃烧产生的含有易燃组分的裂解气体在二燃室中燃烧,二燃室的设计为完全去除裂解气中的有机物提供了足够的停留时间.同一燃室一样,严格控制量的气体被引入二燃室.不过在富氧的情况下,140-200%的理想配比的气体被引入以维持完全燃烧.与其他焚烧方式相比较,一燃室中烧废物的气体量小,速度低.气体的低速和废物的几乎不湍流使得气流带走的颗粒物数量很少.完全燃烧在二燃室中完成,产生的废气清洁且几乎不含颗粒物质,如烟尘和烟灰.通常满足排气标准而不必使用附加的空气净化装置,如涤气器或袋滤器等.在供气量少于完全氧化需氧量的一燃室,其运行控制如下:温度升高时减小进气量;温度降低时增大进气量.二燃室是为完全焚烧设计的,其供气量多于理想配比的供气量.在理想配比的状况下,可燃物质会完全燃烧.过量的气体会使裂解气体熄灭,也就是说,会降低尾气的温度.因此,二燃室的运行控制如下:温度升高,增大进气量;温度降低,减小进气量.(1)模组式CAO模组式固定床焚烧炉是先在工厂内铸造好,再运到现场组装.焚烧炉包括两个圆筒状,内敷耐火砖的碳钢制成的燃烧室.通常不设置昂贵而复杂的空气污染控制系统,仅以粒状污染物控制为主.主燃烧室成阶梯形,每阶梯间装有输送杆,每隔7~8min即往前推进一次,便于废物及灰渣的移动.每个燃烧室至少装置一个辅助燃烧器,以维持炉内温度.为了避免不完全燃烧气体外泄,炉内的压力略低于炉外,主燃烧室底部装有空气导管,以吸取炉外的空气.一燃室内供风量小,温度在700℃左右,能使生垃圾热解,避免风量过大将大量不完全燃烧的悬浮微粒带入第二燃烧室中;在二燃室再以辅助燃油及超量助燃空气将燃烧温度提升到1000℃以上,以完全氧化不完全燃烧的碳氢化合物.主燃烧室内的温度(或燃烧速率)的变化呈周期性,但顺序控制进料杆及输送杆的移动可以降低温度上下的幅度.此外,将水蒸汽喷入主燃烧室内,也可调节温度的变化,同时减少一氧化碳的产生.由于温度起伏不定,炉内耐火砖经常承受热震,耐火材料必须经常修补.空气控制式模组焚烧炉由于燃烧情况较缺氧式好,而且可以自动连续进料及排灰,废热亦可回收,产生蒸汽及热水,已经成为主要的小型废物焚烧炉,普遍为一般学校,机关,医院,工厂及小型乡镇使用.适用于废纸,城市垃圾和医疗垃圾的处理,也可用于焚烧其它一般固体,液体及污泥废物,但不十分适合危险废物焚烧使用.该焚烧炉的优缺点见下表:(2)螺旋式焚烧炉螺旋式焚烧炉是由华盛顿州西雅图的波音(Boeing)工程和建筑公司开发的.一燃室包括圆柱形燃烧室的外壳,进料装置,出料装置,强制通风系统,集灰器和不等螺距的螺旋推进器.一燃室内有一非等距螺旋推动废物在初级燃烧室内移动.经过破碎的废物(要求90%小于20cm)以一定的控制速度进入燃烧室,并由螺旋推进器的第一个螺旋片推成一堆.然后废物被螺旋推动滚过燃烧室.在螺旋推动废物移动时,也起到了搅拌物料的作用,从而使废物物料最大限度地与注入燃烧室的空气相接触.当物料经过燃烧,体积减少时,推动物料移动的螺旋螺距也相应地减小.废物床的搅拌作用与准确控制注入空气相结合,使一燃室在均匀的中等气温下运行,废物在不完全燃烧的情况下接近气化.燃烧室排出尾气向上通过热导管再向下进入后燃烧室完全燃烧.后燃烧室中的旋风气流也能分离去除从燃烧室中带走的大部分颗粒,注入后燃烧室的空气可以将后燃烧室排出气体的温度控制在使灰分初始软化的最低温度以下的安全水平.燃烧室和后燃烧室都通过预热空气冷却,即注入每一个装置的空气,在注入之前首先通过该装置的换热结构,预热空气,同时也使装置得到冷却.从而减少了热损失并改善了运行性能.(3)熔渣高温气化焚烧炉。