戴维宁定理及诺顿定理
- 格式:ppt
- 大小:338.00 KB
- 文档页数:12
戴维宁定理与诺顿定理1、戴维宁定理【戴维宁定理】任意线性有源(含有独立电源)一端口电路N,对外电路而言,总可以等效为一个电压源和一个线性电阻串联的支路(戴维宁支路),其中:电压源电压等于原有源一端口电路的端口开路电压,电阻等于原有源一端口电路独立电源置零后的端口入端电阻,如图1所示。
2、诺顿定理【诺顿定理】任意线性有源(含有独立电源)一端口电路N,对外电路而言,总可以等效为一个电流源和一个线性电阻并联的支路(诺顿支路),其中:电流源的电流等于原有源一端口电路的端口短路电流,电阻等于原有源一端口电路独立电源置零后的端口入端电阻,如图4-3-2所示。
【戴维宁定理和诺顿定理的参数关系】根据戴维宁支路和诺顿支路的互换关系,不难得到在图4-3-1和4-3-2所规定的参考方向下,有。
3、戴维宁与诺顿定理的应用【戴维宁定理和诺顿定理的应用】戴维宁定理与诺顿定理常用来获得一个复杂网络的最简单等效电路,特别适用于计算某一条支路的电压或电流,或者分析某一个元件参数变动对该元件所在支路的电压或电流的影响等情况。
【应用的一般步骤】1. 把代求支路以外的电路作为有源一端口网络。
2. 考虑戴维宁等效电路时,计算该有源一端口网络的开路电压。
3. 考虑诺顿等效电路时,计算该有源一端口网络的短路电流。
4. 计算有源一端口网络的入端电阻。
5. 将戴维宁或诺顿等效电路代替原有源一端口网络,然后求解电路。
【例4-3-1】用戴维宁定理计算当图4-3-3中电阻R分别为,时,流过的电流分别是多少?解(1)计算图4-3-3中端口ab的戴维宁等效电路。
戴维宁定理和诺顿定理求等效电阻电学上的戴维宁定理和诺顿定理是解决电路等效电阻的两个重要方法。
本文将介绍它们的基本原理,并通过实例的讲解,帮助读者更好地理解和掌握这两个定理。
一、戴维宁定理戴维宁定理是一种电路分析方法,它可以将任意线性电路转化为等效电源和电阻的串联电路。
通过该定理,我们可以用等效电源和电阻的串联电路来替代原电路,以便进行更方便和准确的电路分析。
具体来说,戴维宁定理的基本思想是将原电路中的各个二端子网络分别短路或开路,得到各自的戴维宁等效电源,再将这些等效电源按照一定的电路拓扑结构连接起来,得到整个电路的戴维宁等效电源和电阻。
下面我们来看一个实例,如图所示是一个简单的电路。
我们将其转化为戴维宁等效电路。
首先,我们断开电路中绿色位置的电阻器,将其取出。
这时,电路就变成了一个二端子网络,如图所示。
我们设短路电流为I,电路总电阻为Rd。
根据欧姆定律,有U1=I*R1和U2=I*R2。
根据电路的基本性质,短路电流I等于U1和U2之差,即I=(U1-U2)/(R1+R2)。
将I代入Rd=V/I,可以得到Rd=(R1*R2)/(R1+R2)。
输出端口,得到图中的戴维宁等效电路。
在这个电路中,电源的电压等于绿色位置电阻器两端的电压,也就是U1-U2。
电源的内阻等于Rd,即(R1*R2)/(R1+R2)。
我们就可以用这个等效电路来代替原电路进行电路分析了。
二、诺顿定理诺顿定理与戴维宁定理一样,是一种电路分析方法,它也可以将任意线性电路转化为等效电源和电阻的串联电路。
不同之处在于,诺顿等效电路中的电源是一个恒定电流源。
具体来说,诺顿定理的基本思想是将原电路中的各个二端子网络分别断开,得到各自的诺顿等效电流源,再将这些等效电流源按照一定的电路拓扑结构连接起来,得到整个电路的诺顿等效电源和电阻。
下面我们同样来看一个实例,如图所示是一个简单的电路。
我们将其转化为诺顿等效电路。
首先,我们断开电路中绿色位置的电阻器,将其取出。
戴维宁定理和诺顿定理戴维南定理(Thevenin’s theorem):含独立电源的线性电阻单口网络N,就端口特性而言,可以等效为一个电压源和电阻串联的单口网络。
电压源的电压等于单口网络在负载开路时的电压uoc;电阻R0是单口网络内全部独立电源为零值时所得单口网络N0的等效电阻。
戴维南定理(又译为戴维宁定理)又称等效电压源定律,是由法国科学家L·C·戴维南于1883年提出的一个电学定理。
由于早在1853年,亥姆霍兹也提出过本定理,所以又称亥姆霍兹-戴维南...对于含独立源,线性电阻和线性受控源的单口网络(二端网络),都可以用一个电压源与电阻相串联的单口网络(二端网络)来等效,这个电压源的电压,就是此单口网络(二端网络)的开路电压,这个串联电阻就是从此单口网络(二端网络)两端看进去,当网络内部所有独立源均置零以后的等效电阻。
uoc 称为开路电压。
Ro称为戴维南等效电阻。
在电子电路中,当单口网络视为电源时,常称此电阻为输出电阻,常用Ro表示;当单口网络视为负载时,则称之为输入电阻,并常用Ri表示。
电压源uoc 和电阻Ro的串联单口网络,常称为戴维南等效电路。
当单口网络的端口电压和电流采用关联参考方向时,其端口电压电流关系方程可表为:U=R0i+uoc。
戴维南定理和诺顿定理是最常用的电路简化方法。
由于戴维南定理和诺顿定理都是将有源二端网络等效为电源支路,所以统称为等效电源定理或等效发电机定理。
诺顿定理(Norton’s theorem):含独立源的线性电阻单口网络N,就端口特性而言,可以等效为一个电流源和电阻的并联。
电流源的电流等于单口网络从外部短路时的端口电流isc;电阻R0是单口网络内全部独立源为零值时所得网络N0的等效电阻。
诺顿定理与戴维南定理互为对偶的定理。
定理指出,一个含有独立电源线性二端网络N, 就其外部状态而言,可以用一个独立电流源isc 和一个松弛二端网络N0的并联组合来等效。
戴维宁定理和诺顿定理
1 戴维宁定理
戴维宁定理是数学家汤姆森·戴维宁(Thomas Davidet Alain Davie)提出的一个有关不可划分系统的重要概念,是系统理论的基础定理之一。
他的定理强调的是当系统的每个部分处于完整和可更改的状态时,它们将把整个系统从不可再划分进行分割,从而使系统被认为是不可再分割的。
它用来区分一般形式和不可分割形式之间的关系,它的定理是:当一个系统的每一部分是完整的(可更改的)时,它们将把整个系统从不可再划分状态分割出来;但是,如果系统的任意一部分是不可更改的,它将被认为是不可分割的。
戴维宁定理也可用于更改现有系统,可以帮助把它们划分为更加可控制的组件,这有助于在系统推出时获得最佳性能或改善系统稳定性。
2 诺顿定理
诺顿定理是英国数学家约翰·诺顿(John von Neumann)提出的另一个重要定理,在他的重要著作《决策理论》中有精彩的讨论。
他的定理认为,当一个系统的每个部分是完整的,可以控制的,协调的时,它们将使该系统从可再划分变得不可再划分。
诺顿定理也强调了
系统是由可控制的,可调整的组件构成的,而且每个组件可以协调运作以最小化系统的总能耗,同时可以更加有效地运行系统。
诺顿定理也可以帮助系统的设计者更加有效地运用系统的资源,可以更有效地快速解决难题。
它也可以帮助改善和协调系统的性能,同时明确的表示出系统的控制计划。
总之,戴维宁定理和诺顿定理都是系统理论建筑中重要的概念,旨在帮助系统设计者更加有效地理解和利用系统资源,以改善系统性能,可以有效地帮助快速解决系统问题,也可以为系统构建带来一定的帮助。