幂函数图像及性质
- 格式:doc
- 大小:18.03 KB
- 文档页数:2
幂函数•冥函数的定义:一般地,函数y=xα叫做幂函数,其中x是自变量,α是常数。
幂函数的解析式:y=xα幂函数的图像:•幂函数图像的性质:所有幂函数在(0,+∞)上都有定义.①α>0,图像都过定点(0,0)和(1,1);在区间(0,+∞)上单调递增;②α<0,图像都过定点(1,1);在区间(0,+∞)上单调递减;③当O<a<l时,曲线上凸,当a>l时,曲线下凸.④当a=l时,图象为过点(0,0)和(1,1)的直线.⑤当a=0时,表示过点(1,1)且平行于x轴的直线(除去点(0,1)) 。
幂函数图象的其他性质:(1)图象的对称性:把幂函数的幂指数a(只讨论a是有理数的情况)表示成既约分数的形式(整数看作是分母1的分数),则不论a>0还是a<0,幂函数的图象的对称性用口诀记为:“子奇母偶孤单单;母奇子偶分两边;分子分母均为奇,原点对称莫忘记”,(2)图象的形状:①若a>0,则幂函数的图象为抛物线形,当a>l时,图象在[0,+∞)上是向下凸的(称为凸函数);当O<a<l时,图象在[o,+∞)上是向上凸的(称为凹函数).②若a<0,则幂函数y=x“的图象是双曲线形,图象与x轴、y轴无限接近,在(0,+∞)上图象都是向下凸的。
幂函数的单调性和奇偶性:对于幂函数(a∈R).(1)单调性当a>0时,函数在第一象限内是增函数;当a<0时,函数在第一象限内是减函数.(2)奇偶性①当a为整数时,若a为偶数,则是偶函数;若a为奇数,则是奇函数。
②当n为分数,即(p,q互素,p,q∈Z)时,若分母q为奇数,则分子p为奇数时,为奇函数;分子p为偶数时,为偶函数,若分母q为偶数,则为非奇非偶函数.。
一知识梳理1、幂函数(1)定义:一般地,形如_________的函数称为幂函数,其中为常数。
几种常见幂函数的图像:①②③④⑤(2)幂函数的性质①所有幂函数在_________都有定义,并且图像都过点________;②时,幂函数的图像通过_________,并且在区间上是_________,特别的,当时,幂函数的图像________,当时,幂函数的图像________。
③时,幂函数的图像在区间上是_________,在第一象限内,当x从右边趋向原点时,图像在y轴右方无限地逼近y轴正半轴,当x趋向时,图像在x轴上方无限地逼近x轴正半轴。
(4)幂函数的图象,在第一象限内,直线的右侧,图象由下至上,指数. 轴和直线之间,图象由上至下,指数.二.常见幂函数的性质:定义域值域奇偶性单调性定点三、例题解析例1.已知函数若关于x的方程有两个不同的实根,则k的取值范围是___________例2.若曲线处的切线与两个坐标轴围城的三角形的面积为18,a=____例3 已知函数为何值时,:(1)是正比例函数,(2)是反比例函数,(3)是二次函数,(4)是幂函数例4 若点在幂函数的图像上,点在幂函数的图像上,定义,试求函数的最大值以及单调区间。
四:巩固练习1.已知幂函数(p,q∈N+且p与q互质)的图象如图所示,则A.p、q均为奇数且<0B.p为奇数,q为偶数且<0C.p为奇数,q为偶数且>0D.p为偶数,q为奇数且<02.给定一组函数解析式:如图所示一组函数图象.图象对应的解析式号码顺序正确的是()A.⑥③④②⑦①⑤B.⑥④②③⑦①⑤C.⑥④③②⑦①⑤D.⑥④③②⑦⑤①3、已知,则()ABCD4、幂函数的图像过点,则它的单调递增区间是()ABCD5.(2011·山东高考)若点(a,9)在函数的图象上,则tan=的值为:(A)0 (B)(C)1 (D)6.设,则使函数的定义域为R且为奇函数的所有值为_________。
幂函数的图像和性质幂函数的图像和性质是指关于某一变量x的多项式形式为y=ax^n(a≠0)的函数,其中a是实数,n∈Z,称为幂函数。
由于幂函数有着独特的形式,它的图像和性质也有许多独特之处。
一、图像1. 对于任意实常数a>0,n>0,y=ax^n的图像是一条以原点为极坐标的曲线;2. 对于任意实常数a>0,n<0,y=ax^n的图像是一条以x轴上的无穷远点为极坐标的曲线;3. 对于任意实常数a<0,n>0,y=ax^n的图像是一条以y轴上的无穷远点为极坐标的曲线;4. 对于任意实常数a<0,n<0,y=ax^n的图像是一条以原点为极坐标的曲线。
二、性质(1)当n>0时,y=ax^n的图像在x轴上的对称轴是x=0,且函数值y随x的增加而不断增大,直至无穷大;(2)当n<0时,y=ax^n的图像在x轴上的对称轴是x=0,且函数值y随x的增加而不断减小,直至无穷小;(3)当n=0时,y=ax^n即为常数函数y=a,其图像是一条水平线;(4)当n>0时,y=ax^n在x轴上的渐近线是y=0,其图像开口向上;(5)当n<0时,y=ax^n在x轴上的渐近线是y=0,其图像开口向下;(6)对于任意实数m,y=ax^n的图像关于y=m的对称轴是x=(m/a)^(1/n);(7)当n>0时,在y轴上截取y=ax^n的图像时,可以得到一段区间[0, +∞],在这段区间内,函数值y 随x的增加而增大;(8)当n<0时,在y轴上截取y=ax^n的图像时,可以得到一段区间(-∞, 0],在这段区间内,函数值y 随x的增加而减小;三、总结幂函数的图像和性质是指函数形式为y=ax^n(a≠0)的函数的图像和性质,其中a是实数,n∈Z。
幂函数的性质有:对称轴、渐近线、函数值随x的变化而变化等,此外,图像表明幂函数的变化趋势,可以直观地看出函数值y 随x的变化趋势,从而有助于理解函数的特点。
幂函数的像与变化规律幂函数是数学中的一类重要函数,它的图像特点与变化规律一直是数学学习的重点之一。
幂函数的像可以通过对幂函数进行分析和变换来得到。
在本文中,我将介绍幂函数的基本性质、图像特点以及与参数相关的变化规律。
一、幂函数的基本性质幂函数是一种形如f(x) = ax^b的函数,其中a和b为常数,且a不等于0。
幂函数的定义域是实数集,a决定了函数的整体变化趋势,而b决定了函数在坐标系中的形状。
当b为正数时,函数呈现指数增长的趋势;当b为负数时,函数呈现指数衰减的趋势;当b为零时,函数为常数函数。
二、幂函数的图像特点1. 当a>0时,幂函数的图像在坐标系中从左下方向右上方运动,且图像会趋近于x轴正半轴;当a<0时,图像会从右上方向左下方运动,且也趋近于x轴正半轴。
2. 当b>1时,幂函数的图像在原点附近增长得非常迅速,呈现出陡峭的曲线;当0<b<1时,图像在原点附近增长较为缓慢;当b<0时,图像在原点两侧逐渐趋近于x轴。
3. 幂函数的对称轴是y轴,因此具有奇偶性。
对称性使得当幂函数表现递增或递减时,左右两侧的图像形状相似。
4. 幂函数在x轴上的零点称为幂函数的特殊点,特殊点的个数取决于指数b的奇偶性。
三、幂函数的参数对图像的变化规律的影响1. 参数a的变化:当a的绝对值变大时,函数图像的整体变化趋势会加大,增长或衰减的速度会变快;当a趋近于0时,函数图像会趋近于水平线。
2. 参数b的变化:当b的绝对值变大时,函数图像的形状会发生变化,曲线会更加陡峭或平缓;当b为负数时,函数呈现出对称轴对称的特点。
3. 特殊点的变化:当b为奇数时,幂函数有一个特殊点,即原点;当b为偶数时,幂函数没有特殊点。
特殊点的变化会对函数图像的形状产生明显的影响。
综上所述,通过对幂函数的分析和变换,我们可以获得幂函数的像及其变化规律。
幂函数的性质和图像特点使得它在数学和其他学科中都有广泛的应用,深入理解幂函数的性质对我们解决实际问题、优化函数运算具有重要意义。
幂函数与指数函数的性质幂函数和指数函数是数学中常见的函数类型,它们在各个领域中都有广泛的应用。
本文将介绍幂函数和指数函数的性质,包括定义、图像、增减性、奇偶性等方面。
一、幂函数的性质幂函数的一般形式为y = x^a,其中x为自变量,a为常数。
1. 幂函数的定义域幂函数的定义域是所有使x^a有意义的实数x的集合。
根据x^a的定义,当x为负数时,a的值不能是分数或为奇数的负整数,否则会出现无意义的数学运算。
2. 幂函数的图像特点幂函数的图像特点取决于幂指数a的值。
当a为正数时,幂函数的图像在坐标系中从左下方无限趋近于x轴上方;当a为负数时,图像则从左上方无限趋近于x轴下方;当a为零时,图像为常函数y=1。
3. 幂函数的增减性对于幂函数y = x^a,当a为正数时,随着x的增大,y也随之增大,即幂函数是递增的;当a为负数时,随着x的增大,y反而减小,即幂函数是递减的。
当a为偶数时,幂函数的图像关于y轴对称,即为偶函数;当a为奇数时,幂函数的图像关于原点对称,即为奇函数。
二、指数函数的性质指数函数的一般形式为y = a^x,其中a为常数,x为自变量。
1. 指数函数的定义域指数函数的定义域是所有实数x。
2. 指数函数的图像特点指数函数的图像特点取决于底数a的值。
当a大于1时,指数函数的图像在坐标系中以点(0,1)为起点,随着x的增大而无限趋近于正无穷;当0<a<1时,图像则在坐标系中从点(0,1)向右无限延伸,逐渐接近x轴。
当a为1时,指数函数为常函数y=1。
3. 指数函数的增减性对于指数函数y = a^x,当底数a大于1时,随着x的增大,y也随之增大,即指数函数是递增的;当0<a<1时,随着x的增大,y反而减小,即指数函数是递减的。
指数函数没有奇偶性的特点。
综上所述,幂函数和指数函数在定义域、图像特点、增减性、奇偶性等方面都有一些共同点和区别。
它们的性质对于解决实际问题和理解数学概念都具有重要意义。
幂函数图像及其性质幂函数是一种常见的数学函数形式,它的数学表达式为f(x)=ax^b,其中a和b是实数,且a不等于零。
幂函数的图像展示了函数的特性和行为,这对我们进一步了解和应用幂函数有着重要意义。
一、幂函数的图像及其特征通过观察幂函数的图像,我们可以得到以下几个基本特征:1. 幂函数的图像总是通过点(0,0)。
当x等于零时,幂函数的结果总是零。
2. 当b为正数时,幂函数的图像从左上方向右下方斜率逐渐减小,渐近于x轴。
这是因为幂函数中的x不断增大时,幂函数的值以一个较小的速度增加。
3. 当b为负数时,幂函数的图像从右上方斜率逐渐减小,渐近于x 轴。
这是因为幂函数中的x不断减小时,幂函数的值以一个较小的速度增加。
4. 当b为偶数时,幂函数的图像在第一象限和第三象限均为正,且有一个最小值点或者最大值点。
这是由于幂函数的平方等于0或者正数。
5. 当b为奇数时,幂函数的图像在第一象限和第三象限均为正,且没有最小值点或者最大值点。
这是由于幂函数的绝对值在整个定义域内都为正。
二、幂函数图像的变化规律1. 当a大于0时,幂函数的图像在整个定义域内为正。
随着b的增大,幂函数的图像变得平缓,斜率逐渐减小;随着b的减小,幂函数的图像变得陡峭,斜率逐渐增大。
2. 当a小于0时,幂函数的图像在整个定义域内交替在x轴上方和下方。
随着b的增大或减小,幂函数的图像也会随之变化。
3. 当a等于1时,幂函数的图像变成了恒等函数的图像y=x。
即幂函数退化为y=x的特例。
三、幂函数的性质1. 定义域和值域:幂函数的定义域是实数集R,值域取决于a和b 的取值范围。
2. 奇偶性:当b为偶数时,幂函数是偶函数,关于y轴对称;当b 为奇数时,幂函数是奇函数,关于原点对称。
3. 单调性:当b大于0时,幂函数在整个定义域内是单调递增的;当b小于0时,幂函数在整个定义域内是单调递减的。
4. 渐近线和交叉点:当b大于0时,幂函数的图像会渐近于x轴;当b小于0时,幂函数的图像会与x轴交叉于一个点,并渐近于x 轴。
幂函数的像与性质幂函数是高中数学中一个重要的函数概念,它在数学分析、微积分和图像绘制等领域中有着广泛的应用。
在本文中,我们将探讨幂函数的像以及其性质。
一、幂函数的定义和基本形式幂函数的定义如下:f(x) = x^a其中,a为实数,x为定义域内的数值。
幂函数的基本形式有两种:1. 正幂函数:当a>0时,幂函数f(x) = x^a是递增函数,即随着x的增大,f(x)也随之增大。
这种幂函数的图像呈现单调递增的趋势,且过原点(0,0)。
2. 负幂函数:当a<0时,幂函数f(x) = x^a是递减函数,即随着x的增大,f(x)反而减小。
这种幂函数的图像则在第一象限和第三象限之间交替,过原点(0,0)。
二、1. 正幂函数的像正幂函数f(x) = x^a,当a>0时,其像为正实数集(0,+∞),即函数的取值范围为所有大于零的实数。
2. 负幂函数的像负幂函数f(x) = x^a,当a<0时,其像为(0, +∞)的一个区间,不包括0。
也就是说,负幂函数的取值范围是大于零的实数,但不包括0。
3. 幂函数的奇偶性幂函数f(x) = x^a的奇偶性与a的正负有关。
当a为偶数时,函数f(x)为偶函数,即关于y轴对称;当a为奇数时,函数f(x)为奇函数,即关于原点对称。
4. 幂函数的增减性正幂函数f(x) = x^a在定义域内是递增的。
对于a>1,函数的增长趋势会更为迅速;而当0<a<1时,函数f(x)的增长速度会减弱,趋于缓慢增长。
负幂函数f(x) = x^a在定义域内则是递减的。
5. 幂函数的图像幂函数的图像与a的取值密切相关。
当a>1时,幂函数的图像会向上迅速弯曲;当0<a<1时,图像会向下迅速弯曲;而当a<0时,图像在不同象限间变化。
三、幂函数在实际问题中的应用幂函数在实际问题中有广泛的应用。
以经济增长为例,经济学家常常使用幂函数模型来描述生产、消费和投资等经济变量之间的关系。
幂函数知识点1. 幂函数定义幂函数是形如 \(y = x^n\) 的函数,其中 \(n\) 是实数。
当 \(n\) 为正整数时,幂函数的图像是一系列经过原点的点,且随着 \(n\) 的增加,曲线逐渐趋于平坦。
2. 幂函数的图像特征- 当 \(n > 1\) 时,幂函数在 \(x > 0\) 区域内单调递增。
- 当 \(0 < n < 1\) 时,幂函数在 \(x > 0\) 区域内单调递减。
- 当 \(n\) 为负整数时,幂函数在 \(x > 0\) 区域内表现为周期函数,周期为 \(4\pi\)。
- 当 \(n = 0\) 时,函数退化为常数函数 \(y = 1\)。
3. 幂函数的性质- 奇次幂函数是奇函数,即 \(y(-x) = -y(x)\)。
- 偶次幂函数是偶函数,即 \(y(-x) = y(x)\)。
- 幂函数的导数是 \(y' = n \cdot x^{n-1}\)。
- 幂函数的积分是 \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\),其中 \(C\) 是积分常数。
4. 幂函数的应用- 在物理学中,幂函数常用于描述物体的速度与加速度的关系。
- 在经济学中,幂函数可以用来模拟市场需求与价格的关系。
- 在工程学中,幂函数用于描述材料的强度与应力的关系。
5. 特殊幂函数- 指数函数 \(y = a^x\) 是幂函数的一种特殊形式,其中 \(a\) 是正实数且 \(a \neq 1\)。
- 对数函数 \(y = \log_a x\) 也是幂函数的一种特殊形式,其中\(a\) 是正实数且 \(a \neq 1\)。
6. 幂函数的运算法则- 幂的乘法:\(x^m \cdot x^n = x^{m+n}\)- 幂的除法:\(x^m / x^n = x^{m-n}\)- 幂的幂:\((x^m)^n = x^{m \cdot n}\)7. 幂函数的极限- 当 \(x \to 0\) 时,\(x^n\) 的极限取决于 \(n\) 的值。
高中幂函数图像及性质
幂函数图像及性质总结:1.幂函数图像总结:α>0时,图像过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图像不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立。
1、幂函数的图像
2.幂函数性质总结:幂函数的图像一定在第一象限内,一定不在第四象限,至于是否在第二、三象限内,要看函数的奇偶性;幂函数的图像最多只能同时在两个象限内;如果幂函数图像与坐标轴相交,则交点一定是原点。
(1)正值性质:当α>0时,幂函数y=x有下列性质:
a、图像都经过点(1,1)(0,0)
b、函数的图像在区间[0,+∞)上是增函数
c、在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0
(2)负值性质:当α<0时,幂函数y=x有下列性质:
a、图像都通过点(1,1)
b、图像在区间(0,+∞)上是减函数;(内容补充:若为X易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)
c、在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
幂函数图像与性质有的有有的没有幂函数图像与性质有的有有的没有幂函数的性质与图像1、幂函数的定义一般地,形如y=xα(x∈r)的函数称为幂函数,其中x是自变量,α是常数.如y=x,y=x,y=x等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.2、函数的图像(1)y=x(2)y=x(3)y=x2(4)y=x-1(5)y=x3用描点法在同一坐标系内画出以上五个函数图像,通过观察图像,可以看出幂函数的性质。
3.幂函数性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)x>0时,幂函数的图象都通过原点,并且在[0,+∞]上,就是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.(4)在第一象限内,图象向上及向右都与坐标轴无限趋近.3.幂函数y=xα的图象,在第一象限内,直线x=1的右侧,图象由下至上,指数.y轴和直线x=1之间,图象由上至下,指数α.:4.规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y=xα,我们首先必须分析函数的定义域、值域和奇偶性,由此确认图象的边线,即为所在象限,其次确认曲线的类型,即为α<0,0<α<1和α>1三种情况下曲线的基本形状,还要特别注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀去记忆:“正抛负双,大竖小斜”,即为α>0(α≠1)时图象就是抛物线型;α<0时图象就是双曲线型;α>1时图象就是直角抛物线型;0<α<1时图象就是横躺抛物线型.在[0,+∞]上,y=x、y=x、y=x、y=x就是增函数,在(0,+∞)上,y=x-1就是减至函数。
例1.已知函数f(x)=(m2-m-1)x-5m-3,当m为何值时,f(x):(1)就是幂函数;(2)就是幂函数,且是(0,+∞)上的增函数;(3)就是正比例函数;(4)就是反比例函数;(5)就是二次函数;简解:(1)m=2或m=-1(2)m=-1(3)m=-变式训练:已知函数f(x)=(m2+m)xm是上升曲线。
幂函数的图像与性质幂函数的图像与性质是指,如果将一个函数定义为f(x)=ax,其中a是一个正常数,那么这个函数就叫做幂函数。
注意,这里的x不必要是整数,可以是任意实数值。
一般来说,如果a>0,则函数的图形表示为一条递增的直线;如果a<0,则函数的图形表示为一条递减的直线;如果a=1,则函数的图形表示为一条水平直线。
在函数的图形中,如果a>1,则函数的图形表示为一条右上斜线,即函数的导数增加得越来越快;如果a<1,则函数的图形表示为一条左下斜线,即函数的导数减少得越来越快;如果a=1,则函数的图形表示为一条水平直线,即函数的导数保持不变。
在函数的性质方面,幂函数的表达式可以写成y=ax,其中a是一个实数,x是一个实数变量,y是一个实数函数。
事实上,它是一个特殊的多项式函数,可以用指数形式表示,即y=ax=e^(lna)x=exlnax。
如果a>0,则此函数在定义域中是递增函数;如果a<0,则此函数在定义域中是递减函数;如果a=1,则此函数在定义域中是一条水平线。
另外,幂函数的导函数为y'=axlnax,其中a、x均为实数,而y'为函数y的导函数。
此外,幂函数的图形也会因其中的参数a的值的大小而有所不同。
如果a>1,则函数的图形表示为一条右上斜线,即函数的导数增加得越来越快;如果a<1,则函数的图形表示为一条左下斜线,即函数的导数减少得越来越快;如果a=1,则函数的图形表示为一条水平直线,即函数的导数保持不变。
综上所述,幂函数的图形与性质取决于参数a的值,它是一个特殊的多项式函数,其导函数为y'=axlnax,其中a、x均为实数,而y'为函数y的导函数。
五种基本函数图像和性质1、幂函数形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
(1)图像几个常见的幂函数图像:注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。
(2)性质:•幕函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点•所有幕函数在(0,+00)上都有定义,并且图像都经过点(1,1)。
•当a≤-1且a为奇数时,函数在第一、第三象限为减函数•当a≤-1且a为偶数时,函数在第二象限为增函数•当a=0且x不为0时,函数图象平行于x轴且y=1、但不过(0,1)•当a=1时,函数图像为过(0,0),(1,1)且关于原点对称的射线•当0<a<1时,函数是增函数•当a≥1且a为奇数时,函数是奇函数•当a≥1且a为偶数时,函数是偶函数(3)规律:把a看成分数•当分母为偶数时,函数为非奇非偶函数,图像只在第一象限•当分母为奇数时,分子为偶数,函数为偶函数,图像在一、二象限,图像关于Y轴对称•当分母为奇数时,分子为奇数,函数为奇函数,图像在一、三象限,图像关于原点对称2、指数函数函数y=a^x(a>0且a≠1)叫做指数函数,自变量x叫做指数,a叫做底数函数的定义域是R.(1)图像(2)性质•指数函数y=a^x(a>0且a≠1)的函数值恒大于零,定义域为R,值域为(0,+00)•指数函数y=a^x(a>0且a≠1)的图像经过点(0,1)•指数函数y=a^x(a>1)在R上递增,指数函数y=a^x(0 <a< 1)在R上递减•函数总是在某一个方向上无限趋向于X轴,并且永不相交。
•函数总是通过(0,1)这点,(若 ,则函数定过点(0,1+b))•指数函数无界•指数函数是非奇非偶函数•指数函数具有反函数,其反函数是对数函数3、对数函数一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
幂函数图像及性质总结幂函数是一种常见的函数形式,表示为 $ f(x) = ax^b $,其中a和b是实数常数,且b不等于零。
在本文中,我们将探讨幂函数的图像和性质,帮助读者更好地理解幂函数在数学中的应用和意义。
幂函数的图像特征幂函数的图像一般呈现为一条曲线,其形状取决于幂函数中的指数b的正负性和大小。
当b>0时,幂函数的图像在第一象限中从左向右递增;当b<0时,幂函数的图像在第一象限中从左向右递减。
若b为偶数,则幂函数的图像在第一和第三象限中均为非负,且在原点处取得最小值;若b为奇数,则幂函数的图像在第一、第三象限中一正一负,且在原点处有切线。
幂函数的性质总结1.定义域和值域:幂函数的定义域为全体实数集 $ \mathbb{R} $,值域取决于指数b的正负性。
2.奇偶性:当指数 $ b $ 为偶数时,幂函数是偶函数;当指数 $ b $ 为奇数时,幂函数是奇函数。
3.对称性:如果 $ b $ 为偶数,则幂函数关于y轴对称;如果 $ b $ 为奇数,则幂函数关于原点对称。
4.增减性:当 $ b > 0 $ 时,幂函数在定义域上递增;当 $ b < 0 $ 时,幂函数在定义域上递减。
5.极值点和拐点:幂函数的极值点和拐点通常出现在指数b为偶数的情况下。
6.与常函数的比较:当幂函数的指数b大于1时,其增长速度快于常函数;当指数b在 0 到 1 之间时,其增长速度为常函数;当指数b为负时,其绝对值小于 1 时,其增长速度慢于常函数。
结语通过以上对幂函数图像及性质的总结,我们可以更深入地理解幂函数在数学中的重要性和应用。
幂函数在数学建模、物理学等领域有着广泛的应用,希望本文能够帮助读者更好地理解幂函数的概念和特性。
幂函数的图像和性质(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!幂函数的图像和性质概念一般地,y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
授课主题:幂函数教学目标1.通过具体实例了解幂函数的图象和性质.2.类比研究指数函数、对数函数的过程与方法,研究幂函数的图象和性质.3.体会幂函数图象的变化规律及蕴含其中的对称性,并能进行简单的应用.教学内容1.幂函数的定义:一般地,形如()Ry xαα=∈的函数称为幂函数,其中α是常数.2.幂函数的图象:函数y x=2y x=3y x=12y x=1y x-=的图象-1-111y=xy=x3y=x2y=xy=1xyxOy x=2y x=3y x=12y x=1y x-=定义域R R R[0,)+∞(0)(0)-∞+∞,,值域R[0,)+∞R[0,)+∞(0)(0)-∞+∞,,奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性单调递增在(0]-∞,上减在[0)+∞,上增单调递增单调递增在(0)-∞,和(0)+∞,上单调递减公共点(11),(11),(11),(11),(11),图象所在象限一、三一、二一、三一一、三3.幂函数的性质:(1)所有的幂函数在(0)+∞,都有定义,并且图象都通过点(11),; (2)0a >时,幂函数的图象通过原点,并且在[0)+∞,上是增函数; (3)0a <时,①幂函数在(0,)+∞上是减函数;②在第一象限内,图象向上与y 轴无限地接近,向右与x 轴无限地接近.(4)任何幂函数图象都不经过第四象限; (5)任何两个幂函数的图象最多有三个交点. (6)任何幂函数的图象与坐标轴至多只有一个交点; (7)幂函数nm y x =奇偶性①当n 为偶数时,nm y x =为偶函数;②当n 为奇数,m 为奇数时,nm y x =为奇函数; ③当n 为奇数,m 为偶数时,n m y x =为非奇非偶函数.特别地,幂函数n y x =(Z n ∈),当n 为偶数时,n y x =为偶函数;当n 为奇数时,n y x =为奇函数.题型一 幂函数概念的理解应用例1 函数223()(1)mm f x m m x +-=--是幂函数,且当()0,x ∈+∞时,()f x 是增函数,求()f x 的解析式.点评:幂函数y =x α(α∈R)其中α为常数,其本质特征是以幂的底x 为自变量,指数α为常数(也可以为0).这是判断一个函数是否为幂函数的重要依据和唯一标准.对例1来说,还要根据单调性验根,以免增根.巩 固 函数221()(2)mm f x m m x +-=+是幂函数且是奇函数,则实数m 的值是___________.答案:-1题型二 利用幂函数的性质比较大小例2 比较下列各组中两个数的大小:点评:比较两个幂的大小的关键是搞清楚底数与指数是否相同,若底数相同,利用指数函数的性质比较大小;若指数相同,利用幂函数的性质比较大小;若底数指数均不同,考虑利用中间值来比较大小.巩固比较下列各组数的大小:题型三求幂函数的解析式例3巩固幂函数f(x)的图象过点(4,2),则f(9)=________.答案:3A组2.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)f(y)”的是() A.幂函数B.对数函数C.指数函数D.二次函数解析:本题考查幂的运算性质f(x)f(y)=a x a y=a x+y=f(x+y).答案:C3.函数f(x)=(m2-3m+3)x m+2是幂函数且函数f(x)为偶函数,求m的值.解析:∵f(x)=(m2-3m+3)x m+2是幂函数,∴m2-3m+3=1,即m2-3m+2=0,∴m=1或m=2.当m=1,f(x)=x3为奇函数,不符合题意;当m=2时,f(x)=x4为偶函数,符合题意,∴m=2.B组1.下列所给出的函数中,属于幂函数的是()A.y=-x3B.y=x-3C.y=2x3D.y=x3-1答案:B答案:B 3.函数y =x-2在区间⎣⎡⎦⎤12,2上的最大值是( )A.14 B .-14 C .4 D .-4答案:①< ②< ③> ④<答案:AC 组1.给出两个结论:(1)当α=0时,幂函数y =x α的图象是一条直线;(2)幂函数y =x α的图象都经过(0,0)和(1,1)点,则正确的判断是( )A .(1)对(2)错B .(1)错(2)对C .(1)(2)都错D .(1)(2)都对 答案:C2.上图所示的曲线是幂函数y =x α在第一象限内的图象,已知α分别取-1,1,12,2四个值,则相应图象依次为:______.答案:C 4,C 2,C 3,C 1 3.设f (x )=(a -3)x (a+1)(a -2),当a 为何值时,(1)f (x )为常数函数? (2)f (x )为幂函数?(3)f (x )为正比例函数? 答案:1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13 B .y =x -12 C .y =x 53D .y =x 23解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同.2.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C 1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12解析:选B.当x =2时,22>212>2-12>2-2, 即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2. 3.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错 解析:选C.∵y =x 0,可知x ≠0, ∴y =x 0的图象是直线y =1挖去(0,1)点. 4.函数f (x )=(1-x )0+(1-x )12的定义域为________.解析:⎩⎪⎨⎪⎧1-x ≠01-x ≥0,∴x <1.答案:(-∞,1)5.已知幂函数f (x )的图象经过点(2,22),则f (4)的值为( ) A .16 B.116 C.12D .2解析:选C.设f (x )=x n ,则有2n =22,解得n =-12,即f (x )=x -12,所以f (4)=4-12=12. 6.下列幂函数中,定义域为{x |x >0}的是( )A .y =x 23 B .y =x 32 C .y =x -13D .y =x -34解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x ≥0;C.y =x -13=13x ,x ≠0;D.y =x -34=14x3,x >0.7.已知幂函数的图象y =xm 2-2m -3(m ∈Z ,x ≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m ≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B. 8.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③D .①④解析:选D.y =x α,当α=0时,x ≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确. 9.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A .1个B .2个C .3个D .4个解析:选B.y =x 2与y =x 0是幂函数.10.幂函数f (x )=x α满足x >1时f (x )>1,则α满足条件( )A .α>1B .0<α<1C .α>0D .α>0且α≠1解析:选A.当x >1时f (x )>1,即f (x )>f (1),f (x )=x α为增函数,且α>1. 11.幂函数f (x )的图象过点(3,3),则f (x )的解析式是________.解析:设f (x )=x α,则有3α=3=312⇒α=12.答案:f (x )=x 1212.设x ∈(0,1)时,y =x p (p ∈R )的图象在直线y =x 的上方,则p 的取值范围是________.解析:结合幂函数的图象性质可知p <1. 答案:p <113.如图所示的函数F (x )的图象,由指数函数f (x )=a x 与幂函数g (x )=x α“拼接”而成,则a a 、a α、αa 、αα按由小到大的顺序排列为________.解析:依题意得⎩⎨⎧ a 14=1214α=12⇒⎩⎨⎧a =116,α=12.所以a a=(116)116=[(12)4]116,a α=(116)12=[(12)32]116,αa =(12)116,αα=(12)12=[(12)8]116,由幂函数单调递增知a α<αα<a a <αa . 答案:a α<αα<a a <αa11 14.函数f (x )=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f (x )是增函数,试确定m 的值.解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f (x )=x 2在(0,+∞)上是增函数;当m =-2时,f (x )=x -3在(0,+∞)上是减函数,不符合要求.故m =3.15.已知函数f (x )=(m 2+2m )·x m 2+m -1,m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?解:(1)若f (x )为正比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=1m 2+2m ≠0⇒m =1. (2)若f (x )为反比例函数,则⎩⎪⎨⎪⎧ m 2+m -1=-1m 2+2m ≠0⇒m =-1. (3)若f (x )为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m ≠0⇒m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1,∴m =-1±2.16.已知幂函数y =x m 2-2m -3(m ∈Z )的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.解:由已知,得m 2-2m -3≤0,∴-1≤m ≤3.又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意.∴m =±1或m =3.当m =-1或m =3时,有y =x 0,其图象如图(1).当m =1时,y =x -4,其图象如图(2).。
幂函数图像及性质
什么是幂函数?幂函数是指在极坐标或复平面上将某一点按某一规则移动,使其形成一种函数。
这种函数是关于某一点的未知函数,这一点可以表示为一个复数,且该复数可以表示某一点的坐标。
幂函数也可以用复数表示,其中一个具体的形式为:z =
r^n*cos(θ+2πm) + ir^n*sin(θ+2πm),其中r 为极径,θ为极角,m为整数,n为实常数。
幂函数的图像是一条曲线,所以它也被称为曲线函数,它的图像可以根据x,y轴的定义方法来确定。
在极坐标系中,幂函数的形状一般是环状曲线,并且其形状受n值的影响很大,比如当n=1时,图像的形状为单个圆;当n=2时,图像的形状为集中的双圆;当n=3时,图像的形状为三角形;当n=4时,图像的形状为集中的四方形;当n=5时,图像的形状为五角星状等。
幂函数的性质可以用幂函数的微积分形式来说明,即
dz/dr=n*r^(n-1),其中n 为实常数,r 为极径,z为极坐标系的一点的坐标,推导出dz/dr的值,可以用于表示幂函数的形状及特性。
此外,还可以用基本物理运算来说明,所谓幂函数是指坐标变换时r和θ之间存在一定的关系,此关系可以表示为r=f(θ),其中f(θ)是幂函数,这里的幂函数可以通过幂函数的大小因子或者指数来表示,而指数n就是幂函数的性质,只有当n>0或者n<0时,才能使幂函数表达出不同的性质。
幂函数在物理学中也被广泛使用,例如,在声学领域,幂函数
可以用来描述声波的传播规律,这就是为什么音量大小是一个幂函数的原因。
此外,在光学领域,幂函数可以用来描述光的传播规律,例如,可以用来计算光的反射系数或者折射系数。
而在数学中,幂函数不仅表示曲线的性质,还可以用来研究复数的性质,以及形成更复杂的曲线。
以上就是我们关于幂函数图像及性质的简单介绍,幂函数是一种非常有趣的曲线函数,它在物理学,数学及光学领域有着重要的应用。
虽然它看起来很复杂,但它所提供的知识却是非常有价值的,只要我们多多使用幂函数,就能够获得丰富的经验和数学知识。