基于AHP-模糊综合评价法的上海港口物流绩效研究
- 格式:pdf
- 大小:103.34 KB
- 文档页数:1
基于层次分析法的模糊综合评价研究和应用共3篇基于层次分析法的模糊综合评价研究和应用1基于层次分析法的模糊综合评价研究和应用层次分析法(Analytic Hierarchy Process,简称AHP)是一种重要的多指标决策方法,其独特的定量分析模式使其被广泛应用于各种决策场景中。
然而,在实际应用过程中,AHP所依赖的判断矩阵等参数很难满足严格的一致性要求,这就使得AHP方法的有效性存在一定的争议。
针对这一问题,模糊综合评价方法应运而生,它将AHP和模糊理论相结合,充分考虑了决策者的不确定性和模糊性,从而提高了决策效果。
本文将通过研究和应用实例,探究基于层次分析法的模糊综合评价方法的优点和不足,以及如何选取决策指标和构建评价体系。
1. 模糊综合评价方法概述模糊综合评价方法是一种基于模糊数学的决策方法,可以较好地处理决策过程中存在的不确定性和模糊性。
它的基本思想是,将决策问题转化为一个多层次、多指标的评价体系,在每个层次上进行相对重要性的判断和权重赋值,最终得出总体评价结果。
模糊综合评价方法中的模糊数常常用梯形和三角形模糊数表示,如图1所示。
图1 模糊数表示法其中,如(a)所示的梯形模糊数由四个参数a、b、c、d唯一确定,表示变量值在[a,b]和[c,d]之间的可能性;如(b)所示的三角形模糊数由三个参数a、b、c唯一确定,表示变量值在[a,c]之间的可能性。
2. 决策指标的选取和构建评价体系在使用模糊综合评价方法进行决策时,决策指标的选取和评价体系的构建是很关键的。
具体来说,决策指标应具备以下特点:(1) 目标明确:决策指标应当明确对应的决策目标,且目标应该是具有明确定义的。
(2) 可度量性强:决策指标应当具有可度量性和数量化的特点,以便进行量化分析。
(3) 影响因素少:决策指标应当尽量减少具有交叉影响的因素,以避免多重计数和重复计算。
(4) 数据可获取性高:决策指标的数据应当便于获取,能够反映决策现实,以便进行实际应用。
基于ahp-模糊综合评价法的快递服务评价指标体系研究1.引言1.1 概述随着电子商务的快速发展,快递服务作为电商生态链中不可或缺的一环,受到了广泛的关注和重视。
快递服务的质量直接关系到客户的满意度以及企业的声誉,因此对快递服务的评价变得尤为重要。
本文旨在基于AHP-模糊综合评价法,研究并构建出一套科学有效的快递服务评价指标体系。
通过综合考虑各种因素,从多维度、多角度评估快递服务的质量,旨在提高快递服务的质量,满足客户的需求。
文章主要包括四个部分:引言、正文、结论、参考文献。
引言部分对本文的背景和意义进行介绍,概述了快递服务评价指标体系研究的目的。
正文部分将介绍AHP方法和模糊综合评价法的基本原理及应用场景,以及构建快递服务评价指标体系的方法和步骤。
结论部分总结研究结果,并对研究的局限性和未来的发展方向进行展望。
通过本文的研究,我们旨在为快递服务的管理、改进和决策提供参考依据,使其更好地适应市场需求。
同时,本文所提出的指标体系也可为其他相关领域的评价体系构建提供借鉴和参考。
1.2 文章结构本文按照以下结构进行组织和呈现。
首先,引言部分将对本研究的背景和意义进行概述,并介绍本文的目的。
接着,在正文部分,首先介绍AHP方法的原理和应用领域,为后续的研究提供理论基础。
然后,介绍了模糊综合评价法的基本概念和运算过程,以便理解后续研究中的实施步骤。
接下来,我们将详细探讨快递服务评价指标体系的构建过程,包括确定指标的依据和权重。
最后,结合AHP-模糊综合评价法,我们进行了基于该方法的快递服务评价指标体系的研究,以求得到更客观准确的评价结果。
在结论部分,我们将总结研究的主要结果,并对研究的局限性和未来展望进行讨论。
通过以上结构的设计,本文将全面深入地探究基于AHP-模糊综合评价法的快递服务评价指标体系,从而为提升快递服务质量提供理论和方法支持。
目的部分的内容可以如下所示:1.3 目的本研究的目的是构建一个基于AHP-模糊综合评价法的快递服务评价指标体系。
AHP——模糊综合评价方法的理论根底1.层次分析法理论根底1970—1980年期间,着名学者Saaty最先开创性地建立了层次分析法,英文缩写为AHP.该模型可以较好地处理复杂的决策问题,迅速受到学界的高度重视.后被广泛应用到经济方案和治理、教育与行为科学等领域.AHP建立层次结构模型,充分分析少量的有用的信息,将一个具体的问题进行数理化分析, 从而有利于求解现实社会中存在的许多难以解决的复杂问题.一些定性或定性与定量相结合的决策分析特别适合使用AHP.被广泛应用到城市产业规划、企业治理和企业信用评级等等方面,是一个有效的科学决策方法.Diego Falsini、Federico Fondi 和Massimiliano M. Schiraldi〔2021〕运用AHP 与DEA的结合研究了物流供给商的选择;Radivojevi、Gordana和Gajovi, Vladimir 〔2021〕研究了供给链的风险因素分析;.Maniya和.Bhatt〔2021〕研究了多属性的车辆自动引导机制;朱春生〔2021〕利用AHP分析了高校后勤HR配置的风险治理;蔡文飞〔2021〕运用AHP分析了煤炭治理中的风险应急处理;徐广业〔2021〕研究了AHP与DEA的交互式应用;林正奎〔2021〕研究了城市保险业的社会责任.第一,递阶层次结构的建立一般来说,可以将层次分为三种类型:〔1〕最高层〔总目标层〕:只包含一个元素,表示决策分析的总目标,因此也称为总目标层.〔2〕中间层〔准那么层和子准那么层〕:包含假设干层元素,表示实现总目标所涉及的各子目标,包含各种准那么、约束、策略等,因此也称为目标层.〔3〕最低层〔方案层〕:表示实现各决策目标的可行方案、举措等,也称为方案层.典型的递阶层次结构如下列图1:一个好的递阶层次结构对解决问题极为重要,因此,在建立递阶层次结构时,应注意到:〔1〕从上到下顺序地存在支配关系,用直线段〔作用线〕表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系.〔2〕整个结构不受层次限制.〔3〕最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层.〔4〕对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构.第二,构造比拟判断矩阵设有m个目标〔方案或元素〕,根据某一准那么,将这m个目标两两进行比较,把第i个目标.=1,2,…,m〕对第j个目标的相对重要性记为a i「这样构造的m 阶矩阵用于求解各个目标关于某准那么的优先权重,成为权重解析判断矩阵, 简称判断矩阵,记作A =〔a〕.ij m x nSatty于1980年根据一般人的认知习惯和判断水平给出了属性间相对重要性等级表〔见表1〕.利用该表取的a^值,称为1-9标度方法.表1目标重要性判断矩阵A中元素的取值假设决策者能够准确估计a..,那么有:a二-1,a=a *a ,a=1 ,其根本的定1]ij a ij ik kj li理如下:第一,设A=(a ij)mxm,A>0,(即2产0间=12・.・加),如果满足条件(1)a ii =1 (i =12・・・,m);⑵a ij=1/a ji(i,j =1,2,…,m),那么称矩阵A为互反正矩阵.第二,设A=(a ij)mxm,A>0,如果满足条件a j= a ik-a kj(i,j,k=12・・・,m)那么称矩阵A为一致性矩阵.第三,对于任何一个m阶互反正矩阵A,均有X ma x Nm,其中勺曲是矩阵A 的最大特征值.第三,m阶互反正矩阵A为一致性矩阵的充分必要条件是A的最大特征根为m.第三,单准那么下的排序层次分析法的信息根底是比拟判断矩阵.由于每个准那么都支配下一层假设干因素,这样对于每一个准那么及它所支配的因素都可以得到一个比拟判断矩阵. 因此根据比拟判断矩阵如何求得各因素w1,w2,…,w m对于准那么A的相对排序权重的过程称为单准那么下的排序.这里设A=(a ij)mxm,A>0.方法一:本征向量法利用AW=九W求出所有九的值,其中!_为九的最大值,求出X max对应的特征向量W*,然后把特征向量W*规一化为向量W,那么W=[W],w2, ・・.w m]T为各个目标的权重.求九需要解m次方程,当mN3时,计算比拟麻烦,可以利用matlab 来求解.(2)判断矩阵的近似解法判断矩阵是决策者主观判断的定量描述,求解判断矩阵不要求过高的精度. 这里,介绍三种近似计算方法:根法、和法及幂法.幂法适于在计算机上运算.第一,根法①A中每行元素连乘并开m次方,得到向量W* =(狡*,狡*,...,狡*)T其中,12 mw* = 1r m a. ml%「1j j=②对W*作归一化处理,得到权重向量W=(w1,w2,…w )T,其中w = w*/£w* 12m l lll=1③对A中每列元素求和,得到向量S=(s1,s2,…s m),其中s j= E a j l=1④计算入max的值,九max=£s w = SW = -!-£ (AW:l=1l=1l方法二:和法①将A的元素按列作归一化处理,得矩阵QXqJmm.其中,q j = ajZa jk=1②将Q的元素按行相加,得向量a = (a ,a,…,a ).其中,a =£q12 mljjT③对向量a作归一化处理,得权重向量W=(w/w2, ・・.w m)T,其中w^a. /£a kk=1④求出最大特征值九=1£〞乜max m ,w ,方法三:幂法幂法是一种逐步迭代的方法,经过假设干次迭代计算,根据规定的精度,求出判断矩阵A的最大特征值及其对应的特征向量.设矩阵A=(a..)mxm,A>0,那么lim2土= CW,其中,W是A的最大特征值对应的的特征向量,C为常数, e T A k e k-8向量 e=(1,1,…,1)T .幂法的计算步骤是:①任取初始正向量X (0)=(x 1(0), x 2(0),…,X m (0))T ,计算=max { X 〔0〕}, Y 〔0〕= X 〔0〕/ mi②迭代计算,对于k=0,1,2,…计算X 〔 k +i 〕= AY 〔 k 〕, m = |X 〔 k +i 〕I = max { X 〔8i③精度检查.当|m k +1 -m j<£时,转入步骤④;否那么,令卜=卜+1,转入步骤②. ④求最大特征值和对应的特征向量,将Y (k+1)归一化,即: W = Y (k +1) / £ y ( k +1),九 =mi =1第四,单准那么下的一致性检验由于客观事物的复杂性,会使我们的判断带有主观性和片面性,完全要求 每次比拟判断的思维标准一致是不太可能的.因此在我们构造比拟判断矩阵时, 我们并不要求n(n-1)/2次比拟全部一致.但这可能出现甲与乙相比明显重要,乙 与丙相比极端重要,丙与甲相比明显重要,这种比拟判断会出现严重不一致的 情况.我们虽然不要求判断具有一致性,但一个混乱的,经不起推敲的比拟判 断矩阵有可能导致决策的失误,所以我们希望在判断时应大体一致.而上述计 算权重的方法,当判断矩阵过于偏离一致性时,其可靠程度也就值得疑心了. 因此,对于每一层次作单准那么排序时,均需要作一致性的检验.一致性指标〔Consistency Index,CI 〕 : CI =九 maxmm — 1 随机指标〔Random Index,RI 〕一致性比率〔Consistency Rate,CR 〕 :CR=CI/RI当CR 取时,最大特征值为=CI ・〔m-1〕+m=・RI ・〔m-1〕+mmaxm = ||X 〔0〕X 〔k +1〕}, Y 〔k +1〕=X 〔 k +i 〕/ m k +1表2随机指标RI ,九 取值表max表中当n=1,2时,RI=0,这是由于1,2阶判断矩阵总是一致的.当nN3时,假设CR^P X ma x<认为比拟判断矩阵的一致性可以接受,否那么应对判断矩阵作适当的修正,直到X max小于X max通过一致性检验时,求得的W 才有效.第五,层次总排序计算同一层次中所有元素对最高层(总目标)的相对重要性标度(又称权重向量)称为层次总排序.(1)层次总排序的步骤为:第一,计算同一层次所有因素对最高层相对重要性的权重向量,这一过程是自上而下逐层进行;第二,设已计算出第k-i层上有叱1个元素相对总目标的权重向量为K-1W(k-1)=(W1(k-1), W2(k-1),…,W n(k-1)(k-1))T第三,第k层有个n k个元素,他们对于上一层次(第k-1层)的某个元素j 的单准那么权重向量为p j(k)=(w1j(k), W2j(k),…,W nkj)(k))T (对于与k-1层第j个元素无支配关系的对应W j取值为0);第四,第k层相对总目标的权重向量为W k= (p1(k), p2(k),…p k-1(k),)W(k-1)(2)层次总排序的一致性检验人们在对各层元素作比拟时,尽管每一层中所用的比拟尺度根本一致,但各层之间仍可能有所差异,而这种差异将随着层次总排序的逐渐计算而累加起来,因此需要从模型的总体上来检验这种差异尺度的累积是否显着,检验的过程称为层次总排序的一致性检验.第k 层的一致性检验指标CIk=(CI1(k-1), CI2(k-1),・・・, CIn K(k-1))W(k-1)RI k=(RI1(k-1), RI2(k-1),・・・, RIn K(k-1))W(k-1)CR k=CR k-1+CI k/RI k(34k4n)当CR k <,可认为评价模型在第k层水平上整个到达局部满意一致性.第六,递阶层次结构权重解析过程(1)树状结构目标体系目标可分为多个层次,每个下层目标都隶属于一个而且只隶属一个上层目标,下层目标是对上层目标的具体说明.对于树状结构的目标体系,需由上而下逐步确定权重,即由树干向树梢,求树杈各枝相对于树杈的权重.〔2〕网状结构目标体系网状结构的目标也分为多个层次,每个下层目标隶属于某几个上层目标〔至少有一个下层目标隶属于不止一个上层目标〕.AHP方法的根本步骤:层次分析法大体分为以下六个步骤:〔1〕明确问题;〔2〕建立层次结构;〔3〕两两比拟,建立判断矩阵;〔4〕层次单排序及其一致性检验;〔5〕层次总排序及其一致性检验;〔6〕根据分析计算结果,考虑相应的决策.2.模糊综合评价方法理论根底模糊综合评价是以模糊数学为根底.应用模糊关系合成的原理,将一些边界不清,不易定量的因素定量化,进行综合评价的一种方法.在校园环境质量综合评价中,涉及到大量的复杂现象和多种因素的相互作用,而且,评价中存在大量的模糊现象和模糊概念.因此,在综合评价时,常用到模糊综合评价的方法进行定量化处理,评价出校园环境的质量等级,取得了良好的效果.但权重确实定需要专家的知识和经验,具有一定的缺陷,为此,本文采用层次分析法来确定各指标的权系数.使其更有合理性,更符合客观实际并易于定量表示, 从而提升模糊综合评判结果的准确性.此外,模糊综合评价中常取的取大取小算法,信息丧失很多,常常出现结果不易分辨〔即模型失效〕的情况.模糊综合评价方法和步骤的流程如下列图2:模糊综合评价是通过构造等级模糊子集把反映被评事物的模糊指标进行量化〔即确定隶属度〕,然后利用模糊变换原理对各指标综合.流程如下:〔1〕确定评价对象的因素论域P个评价指标,u=k u2,, u}.〔2〕确定评语等级论域v = 11,\,・・・・・・,V p},即等级集合.每一个等级可对应一个模糊子集.〔3〕建立模糊关系矩阵R在构造了等级模糊子集后,要逐个对被评事物从每个因素ui〔i = 1,2, ・・・・・・,p〕上进行量化,即确定从单因素来看被评事物对等级模糊子集的隶属度〔R I u.〕, 进而得到模糊关系矩阵:一u r r• • •r11112 1 mR I u r r• • •rR =2一2122 2 m• •*• • •• • •« • ••rR I u r r• • •p 1 p 2pm」p . m矩阵R 中第i 行第/列元素r j,表示某个被评事物从因素4来看对匕等级模糊子 集的隶属度.一个 被评事物在某个因素4方面的表现,是通过模糊向量 〔R ।匕〕=〔/%,……,0来刻画的,而在其他评价方法中多是由一个指标实际值来刻画的,因此,从这个角度讲模糊综合评价要求更多的信息[10. 〔4〕确定评价因素的权向量在模糊综合评价中,确定评价因素的权向量:A = 〔a ,a ,・・・・・・,a 〕.权向量A12p中的元素a.本质上是因素u 对模糊子{对被评事物重要的因素}的隶属度.本文使 用层次分析法来确定评价指标间的相对重要性次序.从而确定权系数,并且在 合成之前归一化.即寸a .=1,a0 , i = 1,2,・・・・・・,n i =1〔5〕合成模糊综合评价结果向量利用适宜的算子将4与各被评事物的R 进行合成,得到各被评事物的模糊 综合评价结果向量B .即:AoR =C a ,a ,……,a ) p r11 r21• • •r 12 r22 • • •• • • • • • • • •r 1 m r2 m• • •=(b , b , (12)•••, b m )=BL r r• • •rp 1 p 2pm」其中?是由4与R 的第j 列运算得到的,它表示被评事物从整体上看对匕等级模 糊子集的隶属程度.〔6〕对模糊综合评价结果向量进行分析实际中最常用的方法是最大隶属度原那么,但在某些情况下使用会有些很勉 强,损失信息很多,甚至得出不合理的评价结果.提出使用加权平均求隶属等 级的方法,对于多个被评事物并可以依据其等级位置进行排序.多级模糊综合评价方法的步骤如下,以二级模糊评价为例:(1)进行一级因素的综合评价即按某一类中的各个因素进行综合评价.设对第i(1=12,,N)类中的第川=12加)元素进行综合评价,评价对象隶属于评价集合中的第k(k=1,2〃,m)个元素的隶属度为争(i=1,2,,,N;j=1,2,,,n;k=1,2〃,m),那么该综合评价的单因素隶属度矩阵为:Ci11 …RmR=()i C ... C in i inm于是第i类因素的模糊综合评价集合为:C11…C i i mB — W .R —(w , w ,.... w ).()i i ii1i2 in C ... Cin i inm同理确定B i.....B n的单因素模糊评价行向量:B -(,,,,) B;=(,,,,) ...B n -(,,,,)I=1,2,,,N,Bi为B层第i个指标所包含的各下级因素对于它的综合模糊运算结果, b 为B层第i个指标下级各因素相对于它的权重;R为模糊评价矩阵.i(2)进行二级因素的模糊综合评价最底层模糊综合评价仅仅是对某一类中的各个因素进行综合,为了考虑各类因素的综合影响,还必须在类之间进行综合.进行类之间因素的综合评价时, 所进行的评价为单因素评价,而单因素评价矩阵应为最底层模糊综合评价矩阵:B i ii - B i i mA — W .R —(w , w,….w ).()i i ii1 i2 in B ... Bin1inm。
ahp-模糊综合评价法全文共四篇示例,供读者参考第一篇示例:AHP-模糊综合评价法AHP(Analytic Hierarchy Process)和模糊综合评价法是两种常用的决策分析方法,它们在不同程度上解决了现实中的复杂决策问题。
本文将介绍AHP和模糊综合评价法的基本原理,以及它们在决策分析中的应用。
一、AHP原理及应用AHP是由美国数学家托马斯·萨蒙提出的一种多目标决策方法。
其基本原理是通过将复杂的决策问题分解成多个层次,构建层次结构,并利用专家判断或数据分析来确定各个层次的权重和优先级,最终得出最佳决策方案。
AHP的应用范围非常广泛,包括工程管理、项目评估、投资决策等多个领域。
在工程管理中,可以用AHP确定工程项目的目标、任务和资源分配方案;在项目评估中,可以用AHP评估项目的风险和收益,并确定最优的项目实施方案;在投资决策中,可以用AHP评估投资项目的收益和风险,并确定最佳的投资方向。
AHP的核心是通过对多个因素进行两两比较,建立一个判断矩阵,然后利用特征向量法计算各个因素的权重,最终确定最佳的决策方案。
二、模糊综合评价法原理及应用模糊综合评价法是一种用来处理模糊信息和不确定性的决策分析方法。
其基本原理是通过建立模糊数学模型,将模糊信息量化,并据此进行决策分析。
模糊综合评价法的应用领域包括环境评价、质量评价、效益评价等多个领域。
在环境评价中,可以用模糊综合评价法评估环境污染的程度和影响因素;在质量评价中,可以用模糊综合评价法评估产品质量的好坏和改进方向;在效益评价中,可以用模糊综合评价法评估项目的效益和影响因素。
模糊综合评价法的核心是建立评价指标体系和评价模型,将模糊信息转化为数值信息,并根据不同指标的权重计算综合评价值,最终确定最佳决策方案。
AHP和模糊综合评价法分别适用于不同类型的决策问题。
AHP更适用于确定多目标多标准的决策问题,它能够通过层次结构和权重计算确定最佳决策方案。
AHP-模糊综合评价方法的分析与研究韩利梅强教授陆玉梅季敏(江苏大学工商管理学院)学科分类与代码:62015020=摘要>系统安全评价是保证生产系统安全生产的基础。
笔者在简要分析层次分析(AHP)与模糊综合评价两种方法的特点的基础上,结合这两种方法的优点,提出了多层次的AHP-模糊综合评价法,并应用于企业作实证分析。
结果表明:该方法具有这两种方法的优点,能够较好地保证评价结果的客观性。
=关键词>层次分析;模糊综合评价;系统安全评价;企业Analysis and Study on AHP-Fuzzy Comprehensive EvaluationHA N Li MEI Qiang,Prof.LU Yu-mei JI Min(School of Business and M anagement,Jiangsu University)C lassification and code of disciplines:620.5020Abstract:Safety assess ment is the base for production safely.Based on the analysis of AHP and fuzzy comprehensi ve evalua-tions,and combined with merits of each one,a multiple layer AHP-fuzzy comprehensi ve evaluation method is put forward.The method is exemplified in an enterprise.The result shows that this compound method not only have the advantages of two methods, but also could guarantee the objectivi ty of the evaluati on result.Key words:Analytic hierarchy process(AHP)Fuzzy comprehensive Evaluation Safety Assess ment Enterprise1序言在工业生产及企业运作过程中,保证系统安全生产是极其重要的。
基于模糊综合评价及AHP法的港口物流危险货物预警方法张晓梅;李红梅【期刊名称】《物流技术》【年(卷),期】2014(000)008【摘要】为了实现对港口物流危险货物危险源的预警,采用模糊综合评价及AHP 法相结合的方法对物流危险源的安全状态进行了评价,建立了相应的预警模型,先通过AHP法确定各指标的权重,再采用模糊综合评价法分析数据,最终得到评价结果。
以连云港液化石油气管道安全系统为实例,搜集相关数据,对其安全状态进行了评价。
结果表明提出的方法是可行有效的,对实际问题有一定参考价值。
%In this paper, in order to realize the prewarning of the danger sources in harbor logistics, we combined the fuzzy comprehensive evaluation and AHP to evaluate the safety status of the logistics danger sources by building the corresponding prewarning model and at the end, in connection with the Lianyungang LNG pipeline security system, demonstrated the feasibility and validity of the method proposed in this paper.【总页数】3页(P316-318)【作者】张晓梅;李红梅【作者单位】四川文理学院,四川达州 635000;四川文理学院,四川达州635000【正文语种】中文【中图分类】F550;F224【相关文献】1.基于AHP的模糊综合评价法在滑坡危险度评价中的应用 [J], 骆伟;蒋忠诚2.基于AHP法的石化重大危险源模糊综合评价模型 [J], 李润;李涛;李金明3.基于AHP法的石化管道重大危险源模糊综合评价分析 [J], 王凤翔;叶继红;俞笔豪4.基于AHP-模糊综合评价法的公路岩质崩搨危险牲评价--以甘肃S306公路礼县段为例 [J], 李飞;;5.基于AHP-模糊综合评价法的公路岩质崩塌危险性评价r——以甘肃S306公路礼县段为例 [J], 李飞因版权原因,仅展示原文概要,查看原文内容请购买。
目前,对于港口物流竞争力的评价研究的学者还不是很多,近几年有几位学者运用不同的的评价方法对港口物流竞争力进行了相关的评价研究。
大致归纳有以下几种评价方法。
(1)基于模糊综合评价法模糊综合评价法是以模糊数学的知识为理论基础,应用模糊合成的原理,把边界范围模糊不清、不容易具体定量化的因素数值化,据以从多个角度对评价对象的隶属关系级别展开综合评判的数学方法[1]。
张艳,赵刚(2007)认为模湖综合评价法考虑与被评价对象相关的各个因素,其能够较好地适应复杂的港口系统,且与定性为主的港口物流竞争力指标体系相协调。
他们根据此评价方法发现苏州港太仓港区和南京港属于物流竞争力较强的港口,可以作为江苏省现阶段的重点发展港口,而南通港的发展潜力巨大[2]。
肖汉斌、熊玲燕、陈雯英(2008)从港口物流现状的角度出发,利用层次分析法(AHP)、模糊综合评价法和专家评价法对影响秦皇岛港和广州港的港口物流竞争力的主要因素进行了客观分析。
得出秦皇岛的主要优势在于港口有较高的单元通过能力、铁路运输能力、吞吐能力和充足的货源。
其劣势在于临港产业和集装箱运输的能力弱。
而广州港的优势具有经济发展良好的经济腹地、较高的靠泊能力以及良好的服务质量,港口面积较小就成了广州港的薄弱点[3]。
杜向云,寻琛,周升起(2015)基于模糊综合评价法和AHP方法对青岛港与大连港、天津港、宁波-舟山港和上海港的国际物流竞争力进行评价和分析,并建立了评价指标系统,较为客观地得出各港口的国际物流竞争力状况,并根据评价结果得出青岛港的国际物流发展水平相对较高,具有较强的竞争力。
虽然与上海港的差距大,但在保持现有的发展优势上,进一步完善港口物流设施及相关服务[4]。
(2)基于主成分分析法主成分分析法是Hotelling在1993年提出的,它主要是利用“降维”的思想来对变量进行处理,在实际科学研究中会出现变量繁多而且具有相关性的问题,主成分分析法通过一定的方法将较多的变量转化成少数的几个综合性的新变量从而使问题得到解决[1]。