模糊综合评价法与例题
- 格式:ppt
- 大小:1.43 MB
- 文档页数:51
关于模糊综合评价的矩阵算法:1、按模糊矩阵运算(培训教材课堂上的例题):a、权重系数会事先给出,由此会得出集合A = [ 0.2, 0.2, 0.2, 0.4 ]b、指标集和评价集按下式列出,代入数据表示成集合R评价集V1V2V3V4V5指U10 0.1 0.2 0.3 0.4标U2 0.1 0.1 0.4 0.2 0.2 代入数据表示成集U3 0 0.1 0.2 0.6 0.1U4 0 0.2 0.5 0.3 0C、综合评价集合的计算B=A·R即用集合A中第一个数和集合R中的沿第一列方向的第一个数模糊相乘(0.2︿0),然后再模糊相加(﹀)集合A中第二个数和集合R中的沿第一列方向的第二个数模糊相乘(0.2︿0.1),依次类推得到下式(0.2︿0)﹀(0.2︿0.1) ﹀(0.2︿0) ﹀(0.4︿0)按相乘取小,相加取大得出= 0 ﹀0.1﹀0 ﹀0 = 0.1然后再用集合A中第一个数和集合R中的沿第二列方向的第一个数模糊相乘(0.2︿0.1),然后再模糊相加(﹀)集合A中第二个数和集合R中的沿第二列方向的第二个数模糊相乘(0.2︿0.1),依次类推得到下列各算式,按相乘取小,相加取大得出各数值(0.2︿0.1)﹀(0.2︿0.1)﹀(0.2︿0.1)﹀(0.4︿0.2)= 0.2(0.2︿0.2)﹀(0.2︿0.4)﹀(0.2︿0.2)﹀(0.4︿0.5)= 0.4(0.2︿0.3)﹀(0.2︿0.2)﹀(0.2︿0.6)﹀(0.4︿0.3)= 0.3(0.2︿0.4)﹀(0.2︿0.2)﹀(0.2︿0.1)﹀(0.4︿0)= 0.2即A·R = [ 0.1, 0.2, 0.4, 0.3, 0.2 ]归一化:[0.1/1.2, 0.2/1.2, 0.4/1.2, 0.3/1.2, 0.2/1.2]= [ 0.083, 0.167,0.333,0.250,0.167 ]2、按经典矩阵运算(新第二版教材上的例题):a、权重系数会事先给出,由此会得出集合A = [ 0.2, 0.2, 0.2, 0.4 ]b、指标集和评价集按下式列出,代入数据表示成集合R评价集V1V2V3V4V5指U10 0.1 0.2 0.3 0.4标U2 0.1 0.1 0.4 0.2 0.2 代入数据表示成集U3 0 0.1 0.2 0.6 0.1U4 0 0.2 0.5 0.3 0C、综合评价集合的计算B=A·R即用集合A中第一个数和集合R中的沿第一列方向的第一个数相乘0.2×0,然后再相加(+)集合A 中第二个数和集合R中的沿第一列方向的第二个数相乘0.2×0.1,依次类推得到下式(0.2×0)+(0.2×0.1)+(0.2×0 )+(0.4×0)=0.02然后再用集合A中第一个数和集合R中的沿第二列方向的第一个数相乘0.2×0.1,然后再相加(+)集合A中第二个数和集合R中的沿第二列方向的第二个数相乘0.2×0.1,依次类推得到下列各算式及值(0.2×0.1)+(0.2×0.1)+(0.2×0.1)+(0.4×0.2)= 0.14(0.2×0.2)+(0.2×0.4)+(0.2×0.2)+(0.4×0.5)= 0.36(0.2×0.3)+(0.2×0.2)+(0.2×0.6)+(0.4×0.3)= 0.34(0.2×0.4)+(0.2×0.2)+(0.2×0.1)+(0.4×0)= 0.14即A·R = [ 0.02, 0.14, 0.36,0.34, 0.14](因0.02+0.14+0.36+0.34+0.14=1,无需再归一化)3、考试时采用模糊矩阵运算,因教材上给出的全是模糊矩阵运算公式,而此节讲的又是模糊理论方法,理应采用模糊矩阵运算,但不知为啥教材上用经典矩阵计算。
模糊综合评价模型模糊综合评价模型(Fuzzy Synthetic Evaluation Model)目录[隐藏]1 什么是模糊综合评价模型?2 模糊评价的基本思想3 模糊综合评价模型类别[1]o 3.1 模糊评价基本模型o 3.2 置信度模糊评价模型4 模糊综合评价模型的运用5 模糊综合评价模型案例分析o 5.1 案例一:模糊综合评价模型在企业跨国并购风险评价中的应用[2]6 参考文献[编辑]什么是模糊综合评价模型?模糊综合评价方法是模糊数学中应用的比较广泛的一种方法。
在对某一事务进行评价时常会遇到这样一类问题,由于评价事务是由多方面的因素所决定的,因而要对每一因素进行评价;在每一因素作出一个单独评语的基础上,如何考虑所有因素而作出一个综合评语,这就是一个综合评价问题。
[编辑]模糊评价的基本思想许多事情的边界并不十分明显,评价时很难将其归于某个类别,于是我们先对单个因素进行评价,然后对所有因素进行综合模糊评价,防止遗漏任何统计信息和信息的中途损失,这有助于解决用“是”或“否”这样的确定性评价带来的对客观真实的偏离问题。
[编辑]模糊综合评价模型类别[1][编辑]模糊评价基本模型设评判对象为P: 其因素集 ,评判等级集。
对U中每一因素根据评判集中的等级指标进行模糊评判,得到评判矩阵:(1)其中,r ij表示u i关于v j的隶属程度。
(U,V,R) 则构成了一个模糊综合评判模型。
确定各因素重要性指标(也称权数)后,记为,满足,合成得(2)经归一化后,得 ,于是可确定对象P的评判等级。
[编辑]置信度模糊评价模型(1) 置信度的确定。
在(U,V,R)模型中,R中的元素r ij是由评判者“打分”确定的。
例如 k 个评判者,要求每个评判者u j对照作一次判断,统计得分和归一化后产生, 且 , 组成 R0。
其中既代表 u j关于v j的“隶属程度”,也反映了评判u j为 v j的集中程度。
数值为1 ,说明 u j为 v j是可信的,数值为零为忽略。
可编辑修改精选全文完整版第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④单级综合评判B A R⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④ 单级综合评判B A R =⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
模糊综合评价方法在物流中心选址的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型与算法相当复杂。
其主要困难在于:(1)即使简单的问题也需要大量的约束条件和变量; (2)约束条件和变量多使问题的难度呈指数增长。
模糊综合评判方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1、模型(1)单级评判模型①将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为且应满足:1,ki i j i U U U U ===∅②权重A 的确定方法很多,在实际运用中常用的方法有:层次分析法、Delphi 法、专家调查法、加权平均法。
③通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④单级综合评判B A R =. (2)多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2、应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见下表:物流中心选址的三级模型 第一级指标 第二级指标第三级指标 自然环境1u(0.1) 气象条件11u (0.25) 地质条件12u (0.25) 水文条件13u (0.25) 地形条件14u (0.25)交通运输2u(0.2) 经营环境3u(0.3)侯选址4u(0.2) 面积41u (0.1)形状42u (0.1) 面积43u (0.4) 面积44u (0.4)公共设施5u(0.2)三供51u (0.4)供水511u (1/3) 供电512u (1/3) 供气513u (1/3) 废物处理52u (0.3)排水521u(0.5)固体废物处理513u(0.5)通信53u (0.2) 道路设施54u (0.1)因素集U 分为三层:第一层为{}12345,,,,U u u u u u =第二层为}{111121314,,,u u u u u =;}{441424344,,,u u u u u =;}{551525354,,,u u u u u = 第三层为}{51511512513,,u uu u =;}{52521522,u u u = 假设某区域有8个候选地址,决断集}{,,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
模糊综合评价法举例企业进行年度绩效评价时,需要综合考虑多个指标,包括销售额、利润率、市场份额等。
为了进行绩效评价,需要将这些指标进行量化,按照一定的评价标准进行评分。
首先,我们需要确定多个评价指标的权重。
假设销售额的权重为0.4,利润率的权重为0.3,市场份额的权重为0.3、权重的确定可以根据不同的评价对象和评价目标进行调整。
接下来,我们需要将每个指标的实际值进行归一化处理,将其转化为[0,1]之间的数值。
假设销售额的最小值为1000万,最大值为2000万;利润率的最小值为10%,最大值为20%;市场份额的最小值为5%,最大值为15%。
通过将每个指标的实际值减去最小值,然后除以最大值减去最小值,得到归一化后的值。
例如,企业的销售额为1500万元,利润率为15%,市场份额为10%,那么归一化后的销售额值为(1500-1000)/(2000-1000)=0.5,归一化后的利润率值为(15-10)/(20-10)=0.5,归一化后的市场份额值为(10-5)/(15-5)=0.5接下来,我们需要确定模糊综合评价的判断矩阵。
判断矩阵是一个n×n的矩阵,其中n是指标的个数。
假设我们有3个指标,判断矩阵如下:归一化指标1归一化指标2归一化指标3归一化指标110.70.4归一化指标20.310.6归一化指标30.60.81判断矩阵的元素表示对应指标之间的重要程度比较,数值越大表示权重越高。
然后,我们需要确定评价等级。
评价等级一般根据实际情况确定,可以是五级评价(优秀、良好、合格、差、很差)等。
最后,我们需要计算模糊矩阵。
模糊矩阵是一个n×r的矩阵,其中n是指标的个数,r是评价等级的个数。
模糊矩阵的元素表示对应指标在不同评价等级下的隶属度。
我们可以根据实际情况给出每个指标在各个评价等级下的隶属度。
例如,企业的销售额在不同评价等级下的隶属度如下:优秀良好合格差很差0.10.40.50.30.1利润率在不同评价等级下的隶属度如下:优秀良好合格差很差0.20.60.40.30.1市场份额在不同评价等级下的隶属度如下:优秀良好合格差很差0.30.70.60.20.1根据判断矩阵和模糊矩阵,我们可以通过计算得出企业的综合评价结果。