模糊综合评价法原理与及案例分析
- 格式:ppt
- 大小:4.22 MB
- 文档页数:41
可编辑修改精选全文完整版第三节 模糊综合评判法的应用案例二、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1) 即使简单的问题也需要大量的约束条件和变量。
(2) 约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型① 将因素集U 按属性的类型划分为k 个子集,或者说影响U 的k 个指标,记为12(,,,)k U U U U =且应满足:1, ki ij i U U U U φ===② 权重A 的确定方法很多,在实际运用中常用的方法有:Delphi 法、专家调查法和层次分析法。
③ 通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④单级综合评判B A R⑵多层次综合评判模型一般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2.应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型因素集U 分为三层: 第一层为 {}12345,,,,U u u u u u =第二层为 {}{}{}111121314441424344551525354,,,;,,,;,,,u u u u u u u u u u u u u u u === 第三层为 {}{}5151151251352521522,,;,u u u u u u u ==假设某区域有8个候选地址,决断集{},,,,,,,V A B C D E F G H =代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示。
stata模糊综合评价法一、概述模糊综合评价是一种基于模糊数学理论的综合评价方法,适用于多指标、多层次、多目标的决策问题。
stata是一种统计分析软件,可以进行数据处理和分析。
本文将介绍如何使用stata进行模糊综合评价分析。
二、模糊综合评价法的基本原理模糊综合评价法是基于模糊数学理论的一种评价方法,其基本原理如下: 1. 模糊数:模糊数是介于0和1之间的实数,表示了事物的隶属度或可信度。
模糊数可以用来描述模糊概念或难以精确描述的信息。
2. 隶属函数:隶属函数描述了模糊数在不同取值下的隶属度。
常用的隶属函数包括三角隶属函数、梯形隶属函数等。
3. 模糊关系:模糊关系是一种模糊数的集合,用于描述事物之间的模糊联系。
4. 模糊综合评价:模糊综合评价是根据模糊关系和隶属函数,对多个指标进行综合评价的方法。
通过设定权重和隶属度函数,将各指标的模糊数进行综合,得到最终的评价结果。
三、stata中的模糊综合评价方法在stata中,可以使用fuzzy命令进行模糊综合评价分析。
具体步骤如下:1. 数据准备首先,需要准备好评价指标的数据。
假设有n个指标,m个评价对象,可以将数据组织为一个n行m列的矩阵。
2. 设定权重和隶属度函数根据评价对象和指标的特点,设定各指标的权重和隶属度函数。
权重表示了各指标对最终评价结果的重要程度,隶属度函数描述了各指标在不同取值下的隶属度。
3. 进行模糊综合评价使用fuzzy命令进行模糊综合评价分析。
具体命令格式如下:fuzzy [varlist] [if] [in] [weightlist] [membershiplist] [options]其中,varlist表示需要评价的指标变量,weightlist表示各指标的权重,membershiplist表示各指标的隶属度函数。
4. 分析结果模糊综合评价分析完成后,可以得到各评价对象的综合评价结果。
可以根据评价结果进行排序,得到最终的评价顺序。
、在物流中心选址中的应用物流中心作为商品周转、分拣、保管、在库管理和流通加工的据点,其促进商品能够按照顾客的要求完成附加价值,克服在其运动过程中所发生的时间和空间障碍。
在物流系统中,物流中心的选址是物流系统优化中一个具有战略意义的问题,非常重要。
基于物流中心位置的重要作用,目前已建立了一系列选址模型与算法。
这些模型及算法相当复杂。
其主要困难在于:(1)即使简单的问题也需要大量的约束条件和变量。
(2)约束条件和变量多使问题的难度呈指数增长。
模糊综合评价方法是一种适合于物流中心选址的建模方法。
它是一种定性与定量相结合的方法,有良好的理论基础。
特别是多层次模糊综合评判方法,其通过研究各因素之间的关系,可以得到合理的物流中心位置。
1.模型⑴ 单级评判模型①将因素集U按属性的类型划分为k个子集,或者说影响U的k个指标,记为U (U1,U2,L ,U k)且应满足:kU U i U, U i I U ji1②权重A的确定方法很多,在实际运用中常用的方法有:Delphi法、专家调查法和层次分析法。
③通过专家打分或实测数据,对数据进行适当的处理,求得归一化指标关于等级的隶属度,从而得到单因素评判矩阵。
④单级综合评判B A oR⑵ 多层次综合评判模型般来说,在考虑的因素较多时会带来两个问题:一方面,权重分配很难确定;另一方面,即使确定了权重分配,由于要满足归一性,每一因素分得的权重必然很小。
无论采用哪种算子,经过模糊运算后都会“淹没”许多信息,有时甚至得不出任何结果。
所以,需采用分层的办法来解决问题。
2•应用运用现代物流学原理,在物流规划过程中,物流中心选址要考虑许多因素。
根据因素特点划分层次模块,各因素又可由下一级因素构成,因素集分为三级,三级模糊评判的数学模型见表3-7.表3-7 物流中心选址的三级模型第一级指标第二级指标第三级指标气象条件U li()地质条件U12()自然环境比()水文条件()U13地形条件U i4()交通运输u2()经营环境u3()面积U41()形状U42()候选地u4()周边干线U43()地价U44()供水U511(1/3 )公共设施u5()三供U51()供电U512(1/3 )供气U513(1/3 )废物处理u52()固体废物处理U522 ()通信U53 ()道路设施u54()因素集U分为三层:第一层为U U i,U2,U3,U4,U, U12,U13,U14 ;U4 U41,U42,U43,U44 ;U5第二层为u1U11U51,U52,U53,U54第三层为u51U511, U512,U513 ;U52 U521,U522假设某区域有8个候选地址,决断集V A, B,C,D,E,F,G,H代表8个不同的候选地址,数据进行处理后得到诸因素的模糊综合评判如表3-8所示⑴分层作综合评判U51 比11,比12,%13,权重A51 1/3,1/3,1/3,由表3-8 对u511, u512 ,u513 的模糊评判构成的单因素评判矩阵:0.600.710.770.600.820.950.650.760.600.710.700.600.800.950.650.760.910.900.930.910.950.930.810.89用模型M(?)计算得:B51 A510R51 (0.703,0.773,0.8,0.703,0.857,0.943,0.703,0.803)类似地:B52民2 oR52 (0.895,0.885,0.785,0.81,0.95,0.77,0.775,0.77)0.7030.7730.80.7030.8570.9430.7030.8030.8950.8850.7850.810.950.770.7750.77 B5A5oR3 (0.4 0.3 0.2 0.1)o0.810.940.890.600.650.950.950.890.900.600.920.600.600.840.650.81 =(0.802,0.823,0.826,0.704,0.818,0.882,0.769,0.811)0.600.950.600.950.950.950.950.950.600.690.920.920.870.740.890.95B4A, oR4 (0.1 0.1 0.4 0.4)o0.950.690.930.850.600.600.940.780.750.600.800.930.840.840.600.80=(0.8,0.68,0.844,0.899,0.758,0.745,0.8,0.822)0.910.850.870.980.790.600.600.950.930.810.930.870.610.610.950.87B1 A1 oR1 (0.25 0.25 0.25 0.25)o0.880.820.940.880.640.610.950.910.900.830.940.890.630.710.950.91=(0.905,0.828,0.92,0.905,0.668,0.633,0.863,0.91) (2)高层次的综合评判U u1,u2,u3,u4,u5 ,权重A 0.1,0.2,0.3,0.2,0.2 ,则综合评判B1B2B AoR Ao B3B4B50.9050.8280.920.9050.6680.6330.8630.910.950.900.90.940.600.910.950.94(0.1 0.2 0.3 0.2 0.2)o 0.900.900.870.950.870.650.740.610.80.680.8440.8990.7580.7450.80.8220.8020.8230.8260.7040.8180.8820.7690.811=(0.871,0.833,0.867,0.884,0.763,0.766,0.812,0.789)由此可知,8 块候选地的综合评判结果的排序为:D,A,C, B ,G,H,F,E, 选出较高估计值的地点作为物流中心。
模糊综合评价法是一种基于模糊数学的综合评标方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
由于地质环境与地质灾害系统的复杂性,地质环境与地质灾害评价需要研究的变量关系较多且错综复杂,其中既有确定的可循的变化规律,又有不确定的随机变化规律,人们对地质环境的认识也是既有精确的一面,也有模糊的一面。
用绝对的“非此即彼”有时不能准确地描述地质环境中的客观现实,经常存在着“亦此亦彼”的模糊现象,其刻划与描述也多用自然语言来表达,如某一斜坡地段的工程岩组为软“弱岩体” ,该地段岩体稳定性“较差”等等。
自然语言最大的特点是它的模糊性。
从逻辑上讲,模糊现象不能用 1 真(是)或 0 假(否)二值逻辑来刻划,而是需要一种用区间 [0, 1]的多值(或连续值)逻辑来描述。
可见,运用模糊理论解决地质环境与地质灾害危险性评价问题,是模拟人脑某些思维方式,提高认识地质体的一种有效方法。
因此,地质环境质量与地质灾害危险性评价中引入了模糊综合评判方法是客观事物的需要 ,也是主观认识能力的发展。
模糊综合评判方法是应用模糊关系合成的特性,从多个指标对被评价事物隶属等级状况进行综合性评判的一种方法,它把被评价事物的变化区间作出划分,又对事物属于各个等级的程度作出分析,这样就使得对事物的描述更加深入和客观,故而模糊综合评判方法既有别于常规的多指标评价方法 ,又有别于打分法。
(1)模糊综合评判数学模型设 U={ u1,u2, …,u m}为评价因素集,V={v1,v2, …v n}为危险性等级集。
评价因素论域和危险性等级论域之间的模糊关系用矩阵 R 来表示:式中, r ij = η(u i,v j)(0≤r ij ≤1) ,表示就因素 u i 而言被评为 v j 的隶属度;矩阵中第 i 行R i =(r i1,r i2, …,r in)为第 i 个评价因素 u i 的单因素评判,它是 V 上的模糊子集。