拉伸变形应变硬化指数的力学解析
- 格式:pdf
- 大小:245.14 KB
- 文档页数:6
变形与应变计算公式变形与应变是材料力学中非常重要的概念,它们描述了材料在受力作用下发生的形变和应力的关系。
在工程实践中,对材料的变形和应变进行准确的计算是非常重要的,可以帮助工程师设计出更加安全可靠的结构。
本文将介绍变形与应变的基本概念,并给出相应的计算公式。
一、变形与应变的概念。
变形是指材料在受力作用下发生的形状、尺寸或体积的改变。
在受力作用下,材料会产生应力,从而引起变形。
应变是描述材料在受力作用下产生的变形程度的物理量,通常用ε表示。
应变可以分为线性应变和剪切应变两种。
线性应变是指材料在受拉伸或压缩作用下产生的长度变化,通常用ε表示。
其计算公式为:ε = ΔL / L。
其中,ΔL为长度变化量,L为原始长度。
剪切应变是指材料在受剪切作用下产生的形变,通常用γ表示。
其计算公式为:γ = Δθ。
其中,Δθ为变形角度。
二、应变与应力的关系。
应变与应力是材料力学中的两个重要概念,它们描述了材料在受力作用下的变形和应力状态。
应变和应力之间存在着一定的关系,通常用本构关系来描述。
在弹性材料中,应变与应力之间的关系可以用胡克定律来描述,其表达式为:σ = Eε。
其中,σ为应力,E为弹性模量,ε为应变。
在材料的非线性变形阶段,应变与应力之间的关系可以用应力-应变曲线来描述。
应力-应变曲线可以通过实验测得,从而得到材料的应变硬化指数和屈服强度等重要参数。
三、变形与应变的计算公式。
在工程实践中,对材料的变形和应变进行准确的计算是非常重要的。
下面将介绍一些常用的变形与应变的计算公式。
1. 拉伸变形计算公式。
在拉伸过程中,材料会产生线性应变,其计算公式为:ε = ΔL / L。
其中,ΔL为长度变化量,L为原始长度。
2. 压缩变形计算公式。
在压缩过程中,材料也会产生线性应变,其计算公式与拉伸相同。
3. 剪切变形计算公式。
在剪切过程中,材料会产生剪切应变,其计算公式为:γ = Δθ。
其中,Δθ为变形角度。
4. 弯曲变形计算公式。
金属板材的n值和r值解析在冲压领域,我们需要关注金属板材的抗拉强度、屈服强度、延伸率、加工硬化指数、各向异性指数。
本文将详细解析加工硬化指数n和各项异性指数r。
一、加工硬化指数n加工硬化指数英文为hardening index,常用字母n指代。
该指数由真实应力和真实应变定义。
计算n值的方法常用两点法,即利用拉伸试验所得的拉伸曲线,将拉伸力和伸长位移换算成真实应力和真实应变,得到真实σ-ε曲线(如下图),假设该曲线符合指数规律,即:σ = Kε^n(σ—真实应力,ε—真实应变,n —硬化指数,K —强度系数),公式两边取对数得:lnσ=lnK+nlnε,通过两点法可求出K值和n值。
硬化指数n值代表钢板在塑性变形中的硬化能力, 反映了变形均匀度、成形极限和裂纹是否产生等。
n值越大,整个成形过程中的变形越均匀。
对板材成形极限曲线具有明显的影响,n值大材料的成形极限曲线高,n值小材料的成形极限曲线低。
板材的拉胀性能在很大程度上取决于材料的n值,n值高时,拉胀性能也好。
因此,硬化指数n值是评价板材成形性能的重要指标之一。
二、塑性应变比r塑性应变比英文为plastic strain ratio,常用字母r指代,又称各项异性指数。
该指数是板材拉伸试样在试验中宽度方向应变εb和厚度方向应变εt之比。
即:b0和t0分别是试样原始宽度和厚度,b和t分别是试样在某一变形时的宽度和厚度。
板材的力学性能在轧制方向和其他方向有较大差别,故一般取为3个方位试件试验数据的平均值,用r表示:r=(r0 +2r45+r90)/4。
r0、r45、r90分别为沿板材轧制方向、与轧制方向成45°和垂直于轧制方向试件的厚向异性系数。
r值愈大,板材抵抗失稳变薄的能力愈大,愈不容易发展厚向变形;r值愈小,板材抵抗失稳变薄的能力愈弱,厚向变形愈容易。
r=1表示板材不存在厚向异性。
通俗来讲r值高,变形过程中金属在长宽上的流动优先于厚度上的流动。
镁合金板材拉伸实验塑应变比与加工硬化指数的研究论文毕业论文任务书第1页第2页摘要镁及其合金是目前最轻的金属结构材料,具有比强度和比刚度高、吸震性强、导热性好、电磁屏蔽效果好、机加性能优良、零件尺寸稳定等优点,在航空、航天、汽车、电子、家电等领域应用极广。
国内外研究者和生产者一直致力于镁合金成形工艺和方法的研究。
其独特的力学行为使加工工艺较为复杂和困难。
为了提高镁合金产品的加工精度和成品率,需要对其化学成分和力学性能及各影响因素进行分析。
本论文通过采用单向拉伸实验,在DNS200微机控制电子万能试验机上测定了AZ31镁金板料在一定速度下的力学性能,并分析了其特点和原因。
利用实验测出的镁合金板料的拉伸前后宽度和厚度算出镁合金板料的塑形应变比r和加工硬化指数n。
计算结果表明:在沿轧制方向450方向镁板的塑形应变比r最大,沿轧制方向00方向最小;在沿轧制方向900的镁板加工硬化指数n值最大,00方向的n值最小。
关键词:镁合金;塑形应变比;加工硬化指数ABSTRACTMagnesium and its alloys are the lightest metal structural materials at present. And they have many advantages such as high specific strength and specific rigidity, strong absorption shock resistance, good heat conduction, good electromagnetic shielding, excellent mechanical machining performance, stable part dimension etc. They have been widely used in the fields of aviation, aerospace, automobile, electronic and appliance industry. Many experts and producers have been devoted to the study on the forming technology for Magnesium Alloy home and abroad. Its unique mechanics behavior makes processing technology more complex and difficult. In order to improve the machining precision of the magnesium alloy products and yield, need to its chemical composition and mechanical properties and the influence factors were analyzed. The paper by uniaxial tensile test, and measured the mechanical properties of AZ31 magnesium gold sheet under a certain speed in DNS200 computer control electronic universal testing machine, and analyze its characteristics and causes.Before and after the use of the experimentally measured tensile magnesium alloy sheet width and thickness to calculate the magnesium alloy sheet metal shaping strain than r and work hardening exponent n.The results show that: magnesium plate along the rolling direction and the direction of 45 ° shaping strain ratio r, 0 ° direction along the rolling direction; largest magnesium plate hardening exponent n value along the rolling direction of 90 °, 0 °the direction of the minimum value of n.Key words:Magnesium alloy , Plastic strain ratio , Work hardening index目录第一章绪论 (1)1.1镁及镁合金 (1)1.1.1镁及镁合金 (1)1.1.2镁合金的应用及前景 (3)1.1.3镁合金的基本成型工艺 (4)1.2镁合金力学性能 (5)1.2.1拉伸力学性能 (5)1.2.2塑性应变比 (6)1.2.3 拉伸应变硬化指数 (8)1.3 n值r值的研究进展 (10)1.4本文的研究意义及内容 (11)第二章实验方法 (13)2.1实验材料及设备 (13)2.2实验内容及方法 (15)第三章实验数据与计算结果 (17)3.1 0°方向的数据与计算结果 (17)3.2 45°方向的数据与计算结果 (23)3.3 90°方向的数据与计算结果 (29)3.4 总结分析 (34)参考文献: (37)附录一:英文原文 (38)附录二:外文资料翻译 (51)第一章绪论镁合金板材因其密度低、比强度和比刚度高、导热性好、电磁屏蔽效果佳等特点被广泛应用于交通、家电和通讯等工业和民用领域。
反担保股东会决议(担保)
根据《公司法》及公司章程的相关规定,经股东会讨论,现就反担保事宜作出如下决议:
一、同意公司为股东A提供担保,担保金额不超过人民币壹亿元整(¥100,000,000.00)。
二、为保障公司利益,股东A同意以其持有的公司股权作为反担保,反担保的股权比例为股东A在公司总股本中的10%。
三、反担保股权的质押手续由股东A负责办理,并在本决议通过后30日内完成。
四、反担保股权的质押期限与公司为股东A提供的担保期限相同。
五、若股东A未能履行担保责任,公司有权依法处置反担保股权,以偿还担保债务。
六、股东A承诺,反担保股权未设置其他质押或权利负担,且在反担保期间不转让、不设置其他权利负担。
七、本决议自股东会通过之日起生效。
八、本决议一式两份,公司和股东A各持一份。
股东会成员签字:
日期:[年][月][日]。
拉伸曲线及形变硬化指数在塑性加工中的应用与探讨引言在机械加工中,塑性加工是常见的一种加工方式,常常需要对金属材料进行塑性变形,从而达到所需的形状和尺寸。
然而,在塑性加工中,金属材料可能会在加工过程中发生形变硬化而导致加工难度增加,因此需要对形变过程加以研究和控制。
本文将就拉伸曲线及形变硬化指数在塑性加工中的应用进行探讨和讲解。
一、拉伸曲线的基本理论和意义拉伸曲线是描述材料在拉伸时所表现出的力与位移之间的关系,通常情况下它是一种先递增后递减的曲线。
在材料学中,拉伸曲线是非常重要的一个概念,它可以用来描述材料的拉伸特性和应力应变关系,在塑性加工中,它可以帮助掌握材料的变形规律,从而更好地控制加工质量。
在拉伸曲线中,有一些特征点是需要重点关注的,比如说屈服点、极限点、破断点等。
屈服点是材料开始发生塑性变形的点,通常用屈服强度来表示。
极限点是材料发生断裂的点,通常用抗拉强度来表示。
破断点是材料彻底断裂的点,通常用断面收缩率和断口形貌来描述。
这些特征点在材料的力学性能研究中都具有重要的意义。
二、形变硬化指数的含义和计算方法形变硬化指数是材料学中的一个比较重要的概念,它描述了材料随着塑性变形程度的增加而呈现出的硬化现象。
通常来说,形变硬化指数越大,说明材料的变形难度越大,材料的加工性能也越差。
形变硬化指数的计算方法通常有几种,其中比较常用的是Hill泰勒公式和Voce公式。
Hill泰勒公式表达式如下:$$ \frac{\Delta\sigma}{\sigma_0} = K\cdot\left(\frac{\varepsilon}{\varepsilon_0}\right)^n $$其中,$K$和$n$是材料的可靠性系数,$\sigma_0$是初始应力,$\varepsilon_0$是初始应变,$\Delta\sigma$是应力增量,$\varepsilon$是应变增量。
该公式适用于高应变区域。
Voce公式表达式如下:$$ \frac{\Delta\sigma}{\sigma_0} = C\cdot \left(1-e^{-m\cdot\varepsilon}\right) $$其中,$C$和$m$是Voce硬化系数,$e$是自然对数的底数,其他符号与Hill泰勒公式中的一致。
镁合金板材拉伸实验塑应变比与加工硬化指数的研究论文毕业论文任务书第1页第2页摘要镁及其合金是目前最轻的金属结构材料,具有比强度和比刚度高、吸震性强、导热性好、电磁屏蔽效果好、机加性能优良、零件尺寸稳定等优点,在航空、航天、汽车、电子、家电等领域应用极广。
国内外研究者和生产者一直致力于镁合金成形工艺和方法的研究。
其独特的力学行为使加工工艺较为复杂和困难。
为了提高镁合金产品的加工精度和成品率,需要对其化学成分和力学性能及各影响因素进行分析。
本论文通过采用单向拉伸实验,在DNS200微机控制电子万能试验机上测定了AZ31镁金板料在一定速度下的力学性能,并分析了其特点和原因。
利用实验测出的镁合金板料的拉伸前后宽度和厚度算出镁合金板料的塑形应变比r和加工硬化指数n。
计算结果表明:在沿轧制方向450方向镁板的塑形应变比r最大,沿轧制方向00方向最小;在沿轧制方向900的镁板加工硬化指数n值最大,00方向的n值最小。
关键词:镁合金;塑形应变比;加工硬化指数ABSTRACTMagnesium and its alloys are the lightest metal structural materials at present. And they have many advantages such as high specific strength and specific rigidity, strong absorption shock resistance, good heat conduction, good electromagnetic shielding, excellent mechanical machining performance, stable part dimension etc. They have been widely used in the fields of aviation, aerospace, automobile, electronic and appliance industry. Many experts and producers have been devoted to the study on the forming technology for Magnesium Alloy home and abroad. Its unique mechanics behavior makes processing technology more complex and difficult. In order to improve the machining precision of the magnesium alloy products and yield, need to its chemical composition and mechanical properties and the influence factors were analyzed. The paper by uniaxial tensile test, and measured the mechanical properties of AZ31 magnesium gold sheet under a certain speed in DNS200 computer control electronic universal testing machine, and analyze its characteristics and causes.Before and after the use of the experimentally measured tensile magnesium alloy sheet width and thickness to calculate the magnesium alloy sheet metal shaping strain than r and work hardening exponent n.The results show that: magnesium plate along the rolling direction and the direction of 45 ° shaping strain ratio r, 0 ° direction along the rolling direction; largest magnesium plate hardening exponent n value along the rolling direction of 90 °, 0 °the direction of the minimum value of n.Key words:Magnesium alloy , Plastic strain ratio , Work hardening index目录第一章绪论 (1)1.1镁及镁合金 (1)1.1.1镁及镁合金 (1)1.1.2镁合金的应用及前景 (3)1.1.3镁合金的基本成型工艺 (4)1.2镁合金力学性能 (5)1.2.1拉伸力学性能 (5)1.2.2塑性应变比 (6)1.2.3 拉伸应变硬化指数 (8)1.3 n值r值的研究进展 (10)1.4本文的研究意义及内容 (11)第二章实验方法 (13)2.1实验材料及设备 (13)2.2实验内容及方法 (15)第三章实验数据与计算结果 (17)3.1 0°方向的数据与计算结果 (17)3.2 45°方向的数据与计算结果 (23)3.3 90°方向的数据与计算结果 (29)3.4 总结分析 (34)参考文献: (37)附录一:英文原文 (38)附录二:外文资料翻译 (51)第一章绪论镁合金板材因其密度低、比强度和比刚度高、导热性好、电磁屏蔽效果佳等特点被广泛应用于交通、家电和通讯等工业和民用领域。
板料的力学性能与成形性能汽车车身钣金件生产过程中,经常遇到一些不明具体原因的停台,我们将其中的一些归类为材料停台:比如说,这一拍料生产时很顺利,一换另一拍料板料就缩径拉裂、四处开花。
但是,我们并不清楚材料哪里出了问题。
我们明眼就能看出的板料问题:如板料脏、有杂物(灰尘、料屑、皮带上的杂物等)、板料锈蚀和夹杂、坑包和棱子。
但是这和板料内部的性能并没有太大的关系。
那么,板料的力学性能包括哪些方面,它们具体指什么,与板料的成形有什么关系呢?厂家提供的质量说明书中包含的内容有:①卷料的基本尺寸、重量;②化学成分;③室温拉伸试验得到的力学性能参数;④镀层重量。
其中,力学性能参数包括屈服强度(yield strength,87版国标为σs,2002版国标为R eL)、抗拉强度(tensile strength,87版国标为σb,2002版国标为R eM)、延伸率(elongation,87版国标δ,现用国标为A)、垂直轧制方向的应变硬化指数(n)、塑性应变比(R,也叫厚向异性系数)这五个参数。
这些力学性能参数都是通过取垂直板材轧制方向取样后,进行单向拉伸试验后得到的。
因此,在了解这些力学性能参数之前,先讨论一下拉伸试验是有必要的。
进行拉伸试验后,可以得到载荷—行程曲线,经过转换后得到一条应力—应变曲线。
应力的概念类似于压强,是指单位面积上力的大小。
工程应变指试样在单位长度上的变形相对于原长度的百分比。
下图是产生微量变形时的应力—应变曲线。
板料在开始产生塑性变形前,先产生弹性变形。
对于目前车间使用的钢板、铝板,均没有像低碳钢那样的屈服台阶,所以我们一般取产生0.2%应变时的应力为板材的屈服强度。
我们把整个成形过程中的最大应力(也是缩颈开始产生时的应力)称为抗拉强度。
断裂时试样的伸长比例,称为板料的延伸率。
屈服应力大小直接影响冲压力及成形后回弹量大小。
在相同工艺条件下,低的屈服强度板材成形后回弹量小,形状更稳定。