二次回归正交试验
- 格式:doc
- 大小:148.50 KB
- 文档页数:5
二次回归正交旋转组合设计优化大肥蘑菇液体培养基杨琴;张桂香;杨建杰;王英利【摘要】为优化大肥蘑菇液体培养基,通过单因子试验确定大肥蘑菇最佳碳源(葡萄糖)、最佳氮源(蛋白胨)及矿物质的适宜浓度(用量)范围,采用二次回归旋转组合设计研究3个参数对大肥蘑菇菌丝生物量的影响,建立数学模型,以获得适宜的配方组合.结果表明,葡萄糖浓度、蛋白胨浓度对大肥蘑菇菌丝体生物量的影响达极显著水平,矿物质添加剂用量达显著水平.最优培养基参数为葡萄糖浓度33.26 g/L、蛋白胨浓度4.24 g/L、矿物质添加剂1.82 mL/L,在该参数组合下,28℃振荡培养8 d,菌丝干重可达16.44 g/L,且经反复试验验证可行.【期刊名称】《甘肃农业科技》【年(卷),期】2017(000)011【总页数】6页(P12-17)【关键词】大肥蘑菇;培养基;二次回归旋转组合;优化【作者】杨琴;张桂香;杨建杰;王英利【作者单位】甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070;甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070;甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070;甘肃省农业科学院蔬菜研究所, 甘肃兰州 730070【正文语种】中文【中图分类】S646.9博斯腾湖位于巴音郭楞蒙古自治州焉耆盆地的博湖县境内,总面积1 228 km2,蓄水量8.0×109m3,是开都河的归宿,孔雀河的源头,更是一座天然的大型调节水库,也是新疆最大的内陆淡水湖。
大肥蘑菇(经ITS序列分析确定[1])是在新疆博斯腾湖特殊环境条件下形成的极为珍贵的野生食用菌,在分类上隶属于担子菌纲(Basidiomycetes)伞菌目(Agaricales)蘑菇科(Agaricaceae)蘑菇属(Agaricua),其子实体硕大、菌肉肥厚细嫩,通过营养成分、氨基酸组成、矿物质、脂肪酸营养成分的测定[2-3],发现大肥蘑菇具有极高的风味物质、营养价值和保健作用。
回归正交试验设计一、概述(1)回归分析与正交试验设计的主要优缺点回归分析的主要优点是可以由试验数据求出经验公式,用于描述自变量与因变量之间的函数关系。
它的主要缺点是毫不关心试验数据如何取得,这样,不仅盲目地增加了试验次数,而且试验数据还往往不能提供充分的信息。
因此,有些工作者将经典的回归分析方法描述成:“这是撒大网,捉小鱼,有时还捉不到鱼”。
所以说,回归分析只是被动地处理试验数据,并且回归系数之间存在相关关系,若从回归方程中剔除某个不显著因素时,需重新计算回归系数,耗费大量的时间。
正交试验设计的主要优点是科学地安排试验过程,用最少的试验次数获得最全面的试验信息,并对试验结果进行科学分析(如方差分析),从而得到最佳试验条件,但是它的主要缺点是试验结果无法用一个经验公式来表达,从而不便于考察试验条件改变后,试验指标将作如何变化。
(2)回归正交试验设计回归正交试验设计,实际上就是将线性回归分析与正交试验设计两者有机地结合起来而发展出的一种试验设计方法,它利用正交试验设计法的“正交性”特点,有计划、有目的、科学合理地在正交表上安排试验,并将试验结果用一个明确的函数表达式即回归方程来表示,从而达到既减少试验次数、又能迅速地建立经验公式的目的。
根据回归模型的次数,回归正交试验设计又分为一次回归试验设计和二次回归试验设计。
二、一次回归正交试验设计(一)一次回归正交试验设计的概念一次回归设计研究的是一个因素z (或多个因素z 1,z 2,……)与试验指标y 之间的线性关系。
当只研究一个因素时,其线性回归模型:y =β0+β1z +e (1)其回归方程为:z y ∧∧∧+=10ββ (2)式中∧0β、∧1β称为回归系数,e 是随机误差,是一组相互独立、且服从正态分布N(0,σ2)的随机变量。
可以证明,∧0β、∧1β和∧y 是β0、β1和y 的无偏估计,即E(∧0β)=β0,E(∧1β)=β1,E(∧y )=y一次回归正交试验设计是通过编码公式x =f(z) −− 即变量变换,将式(2)变为:x b b y 10+=∧(3)且使试验方案具有正交性,即使得编码因素X的各水平之和为零:∑==mi ix1(4)式中m 是因素x 的水平数。
二次回归正交试验
为了检测某种原料的吸水倍率,重点考察氮肥含量和催化剂对试验指标的影响,已知氮肥含量(x1)的变化范围为0.7~0.9,催化剂(x2)的变化范围为1~3 mL,用二次正交组合设计分析出这两个因素与试验指标(y)之间的关系。
(1)因素水平编码
计算依据
m=2,取m0=2,根据星号臂γ计算公式或查表得γ=1.078
X(1γ)=0.9 ,x(-1γ)=0.7, x(10)=0.8
Δ1=(0.9-0.8)/1.078=0.093
X(2γ)=3 ,x(-1γ)=1, x(10)=2
Δ2=(3-2)/1.078=0.93
(2)试验方案
(3)回归方程的建立借助excel分析如下:
①回归方程显著性检验:F=186.5564,,,12.4)74(95.0=F
因此回归方程非常显著。
'74.41'37.2375.656.2609.952.468y 212121z z z z z z ----+= ②偏回归系数的显著性检验
9
.496.113305.113806.113308.47058.14583.1822.44615.5528.4705701.274.41)(8.1458701.224.23)(3.182475.6)(2
.4461324.656.265.552324.609.95.113801046852206303)(122111221221222222221
121111221
21212
1222
1222222
1121122121
=-=-==++++=++++==⨯===⨯===⨯===⨯===⨯===-=-=∑∑∑∑∑∑∑=======R T e R n
i i
n i i n
i n
i i n i i
n i i n i i
T SS SS SS SS SS SS SS SS SS z b SS z
b SS z z b SS z b SS z b SS y n y SS 方差分析:
dfT=n-1=10-1=9 df1=df2=df12=df1’=df2’=1
dfR=df1+df2+df12+df1’+df2’=1+1+1+1+1=5
dfe=dfT-dfR=9-5=4
MS1=522.5/1=522.5 MS2=SS2/df2=4461.2/1=4461.2 MS12=SS12/df12=182.3
MS1’=SS1’/df1’=1458.8
MS2’=SS2’/df1’=4705.8
MSR=SSR/dfR=11330.6/5=2266.1
MSe=SSe/dfe=49.9/4=12.5
F1=MS1/MSe=522.5/12.5=41.8
F2=MS2/MSe=4461.2/12.5=356.9
F12=MS12/MSe=182.3/12.5=14.6
F1’=MS1’/MSe=1458.8/12.5=116.7
F2’=MS2’/MSe=4705.8/12.5=376.5
FR=MSR/MSe=2266.1/12.5=181.3
F0.01(1,4)=21.20 F0.05(1,4)=7.71 F0.01(5,4)=15.52 F0.05(5,4)=6.26
失拟性检验
本例零水平试验次数m0=2,可进行失拟性检验
5.45.521220521225)509512(2
1)259081262144()(12201020101=-=+-+=-=∑∑==m i i m i i
e y m y SS
SSLf=SSe-SSe1=49.9-4.5=45.4 dfe1=m0-1=2-1=1 dfLf=dfe-dfe1=4-1=3
59
.53)1,3(37.31/5.43/5.45/1/1,01====F df SSe df SS FLf e Lf
Lf
检验结果表明,失拟不显著,回归模型与实际情况拟合很好。
最终的回归方程
y=-1544.0+4539.8x1+227.0x2-78.0x1x2-2678.7x12-48.3x22。