小学奥数应用题讲义 2-还原问题-精品
- 格式:doc
- 大小:52.00 KB
- 文档页数:3
还原问题还原问题是逆解应用题,还原问题先提出一个未知量,经过一系列的运算,最后给出另一个已知量,要求求出原来的未知数量。
解题时,从最后一个已知量出发,逐步进行逆推性运算,即原来是加的,运算时就减;原来是减的,运算时就加;原来是乘的,运算时就除;原来是除的,运算时就乘。
列综合算式时,要特别注意运算顺序,为此要正确使用括号。
如小莉要把一个包装精美的盒子打开。
她先拆开最外层的彩纸;接着打开纸盒,纸盒里有一个绒布盒;再打开绒布盒一看,里面是两支“派克”金笔。
妈妈说,这礼物是送给大学老师的,要小莉把它重新包装起来。
小莉是按这样的顺序做的:先把两支笔放入绒布盒→盖上绒布盒,并把它放进纸盒→盖上纸盒,并用彩纸封好。
小莉重新包装的步骤(顺序)恰好与她打开这盒礼物的顺序相反。
这是生活中常会遇到的“还原问题”。
在数学中,还原问题也很多。
【例1】★小刚的奶奶今年年龄减去7后,缩小9倍,再加上2之后,扩大10倍,恰好是100岁。
小刚的奶奶今年多少岁?【解析】从最后一个条件恰好是100岁向前推算,扩大10倍后是100岁,没有扩大10倍之前应是100÷10=10岁;加上2之后是10岁,没有加2之前应是10-2=8岁;没有缩小9倍之前应是8×9=72岁;减去7之后是72岁,没有减去7前应是72+7=79岁。
所以,小刚的奶奶今年是79岁。
【小试牛刀】某商场出售洗衣机,上午售出总数的一半多10台,下午售出剩下的一半多20台,还剩95台。
这个商场原来有洗衣机多少台?【解析】从“下午售出剩下的一半还多20台”和“还剩95台”向前倒推,从图中可以看出,剩下的95台和下午多卖的20台合起来,即95+20=115台正好是上午售后剩下的一半,那么115×2=230台就是上午售出后剩下的台数。
而230台和10台合起来,即230+10=240台又正好是总数的一半。
那么,240×2=480台就是原有洗衣机的台数。
小学奥数趣味学习《还原问题》典型例题及解答还原问题是典型应用题之一,指已知某数经过四则运算的结果,要求出某数的应用题。
解题思路和方法:解这类问题应按题目所述顺序的逆序,施行所述运算的逆运算,就可列出算式。
简言之就是反其道而行之就能算出结果。
例题1:将一个数先加上6,然后乘6,再减去6,最后除以6,结果还是6,那么这个数是多少?解:1、本题考查的是一个量多次变换还原,关键是从最后的结果出发,根据加减乘除的逆运算进行解答。
2、由最后的结果出发,除以6商是6,那么之前就是6×6=36;减去6是36,那么之前是36+6=42;乘6是42,那么之前是42÷6=7;加上6是7,那么之前数7-6=1。
例题2:修路队修一条路,第一天修了全长的一半多20米,第二天修了余下的一半少15米,第三天修了50米,还剩30米没有修,这条路全长多少米?解:1、本题考查的是一半与整体关系还原,关键是抓住最后的数量,从后往前推理。
2、根据题意,如果第二天正好修了余下的一半,则剩下(30+50-15)=65(米),用65×2=130(米)就是第一天修完余下的长度;又因为第一天修了全长的一半多20米,如果第一天正好修了全长的一半时,则剩下的是130+20=150(米),这样得出剩下的长度的2倍就是全长,即150×2=300(米)。
例题3:甲、乙、丙三人各有连环画若干本,如果甲给乙、丙各5本,乙给甲、丙各10本,丙给甲、乙各15本后,那么三人所拥有的连环画一样多,都是35本,原来甲、乙、丙各有连环画多少本?解:1、本题考查的是多个量之间的还原关系,我们通常采用列表的方式倒推解决此类问题。
2、根据题意我们可以列表如下:3、最后每人都有35本,因为丙给甲、乙各15本,所以丙给甲、乙前,丙有35+15×2=65(本),甲、乙各有35-15=20(本)。
4、因为乙给甲、丙各10本,所以乙给甲、丙前,乙有20+10×2=40(本),甲有20-10=10(本),丙有65-10=55(本)。
四年级奥数:还原问题还原问题是指题目给出的是一个数经过某些变化后的结果,要求原来的数的问题.解答这一类的问题时,要根据题意,从所给的结果出发,抓住逆运算关系,由后向前一步步逆推(倒推法、还原法),做相反的运算,逐步靠拢已知条件,直到问题得到解决.在解答还原问题时,如果列综合算式,要注意括号的正确使用.典型例题例【1】三(1)班小图书箱第一天借出了存书的一半,第2天又借出43本,还剩32本.小图书箱原有图书多少本?分析经过两天借出图书,小图书最后还剩32本书.由此可以往前推算:第2天没借出43本前(也就是第1天借出图书后),应有(32+43)本书,再根据“第1天借出了存书的一半”,可推算出这75本书也就是第1天借出后的另一半,即相当于第1天借出的本数.这样,小图书箱原有的图书本数可求得.解第1天借书后还剩的本数:32+43=75(本)原有图书的本数:75×2=150(本)综合算式:(32+43)×2=150(本)答:小图书箱原有图书150本.例【2】某数加上5,乘以5,减去5,除以5,其结果等于5.求这个数.分析从后往前推,原来是加法,推回去是减法;原来是减法,推回去是加法;原来是乘法,推回去是除法;原来是除法,推回去是乘法.从最后一步推起,“除以5,其结果等于5”可以求出被除数:5×5=30;再看倒数第2步,“减去5”得25,可以求出被减数:25+5=30;然后看倒数第3步,“乘以5”得30,可以求出被乘数:30÷5=6;最后看第1步,“某数加上5”得6,某数为6-5=1.解 5×5=2525+5=3030÷5=66-5=1答:所求的数为1.例【3】小明在做一道加法算式题,由于粗心,将个位上的5看作9,把十位上的8看作3,结果所得的和是123.正确的结果应是多少?分析要求正确的和,就要知道两个正确的加数.看错的加数是39,因此得到错误的和是123.根据逆运算可得到一个没看错的加数是123-89=84,题中已知一个正确的加数是85,所以正确的和是85+84=169把个位上的5看作9,相当于把正确的和多算了4,求正确的和应把4减去;把视为上的8看作3,相当于把正确的和少算了50,求正确的和应把50加上去.这样,正确的答案123+50-4=169.解一 123-39+85=84+85=169解二 9-5=480-30=50123+50-4=169答:正确的答案是169.例【4】仓库里有一批大米.第一天售出的重量比总数的一半少12吨.第二天售出的重量比剩下的一半少12吨,结果还剩下19吨.这个仓库原有大米多少吨?分析如果第二天刚好售出剩下的一半,就应是(19+12)吨.第一天售出以后剩下的吨数是(19+12)×2吨.以下类推.解(19+12)×2=62(吨)(62-12)×2=100(吨)答:这个仓库原有大米100吨.小结还原问题是逆解应用题.一般根据加减法或乘除法的互逆运算关系,由题目所叙述的顺序倒过来思考,从最后一个已知条件出发,逆推而上,求得结果.。
还原问题(二)6-1-2.教学目标本讲主要学习还原问题.通过本节课的学习,可以使学生掌握倒推法的解题思路以及方法,并会运用倒推法解决问题.1. 掌握用倒推法解单个变量的还原问题.2. 了解用倒推法解多个变量的还原问题.的思想.3. 培养学生“倒推”知识点拨一、还原问题已知一个数,经过某些运算之后,得到了一个新数,求原来的数是多少的应用问题,它的解法常常是以新数为基础,按运算顺序倒推回去,解出原数,这种方法叫做逆推法或还原法,这种问题就是还原问题.还原问题又叫做逆推运算问题.解这类问题利用加减互为逆运算和乘除互为逆运算的道理,根据题意的叙述顺序由后向前逆推计算.在计算过程中采用相反的运算,逐步逆推.二、解还原问题的方法在解题过程中注意两个相反:一是运算次序与原来相反;二是运算方法与原来相反.方法:倒推法。
口诀:加减互逆,乘除互逆,要求原数,逆推新数.从最后结果出发,逐步向前一步一步推理,每一步运算都是原来运算的逆运算,即变加为减,变关键:.减为加,变乘为除,变除为乘.列式时还要注意运算顺序,正确使用括号例题精讲模块一、单个变量的还原问题他第一口就喝了整瓶水的一半,第二刚打完篮球,冬冬觉得非常渴,就拿起一大瓶矿泉水狂喝.【例1】1111此时,第五口喝了剩下的.口又喝了剩下的,第三口则喝了剩下的,第四口再喝剩下的6453 升矿泉水,那么最开始瓶子里有几升矿泉水?瓶子里还剩0.5 【难度】4星【题型】解答【考点】单个变量的还原问题【关键词】可逆思想方法??11111??????????开始瓶子里有矿泉水:(升).【解析】最3?1?1?1?????10.5??1?????????????23456????????????【答案】升3)斗酒。
李白提壶去买洒,遇店加一倍,见花喝一斗。
三遇店和花,喝光壶中酒。
壶中原有(】2 【例【考点】单个变量的还原问题【难度】4星【题型】填空【关键词】可逆思想方法,走美杯,六年级【解析】设李白壶中原有斗酒,则三次经过店和花之后变为0x2?[2?(2x?1)?1]?1?08x?7?07x? 87即壶中原有斗酒.87【答案】斗8【例3】有60名学生,男生、女生各30名,他们手拉手围成一个圆圈.如果让原本牵着手的男生和女生放开手,可以分成18个小组.那么,如果原本牵着手的男生和男生放开手时,分成了_ _个小组.【考点】单个变量的还原问题【难度】4星【题型】填空【关键词】迎春杯,四年级,初赛,3题【解析】方法一:男生和女生放手分成个组,说明有男生被计算次,男生与男生放开手后分成的组数和1818男生数相同,但是因为是围成了一圈,所以刚刚计算人数会被算成了两次,所以按照逆推的原则,??(次)分成了,所以组。
有一类问题,告诉我们最后的结果,让我们从结果出发,根据已知条件和现有的知识,一步步倒着分析推理,直到退还到原来的出发点。
这类问题叫做还原问题;这样逆向推理,解决问题的方法叫做还原法(也叫倒推法)。
解决还原问题的基本思路是:一步一步退回去。
也就是说,原来加的,退回去用减;原来减的,退回去用加;原来乘的,退回去用除;原来除的,退回去用乘。
还原法的精髓就是先找原运算的逆运算。
原问题,所以根据我们的基本思路:一步步往回退,从结果5出发,做除的逆运算乘,接着做减的逆运算加,然后做乘的逆运算除,最后做加的逆运算减,即可得最初的数。
解答(1)如果没有除以5,这个数是:5×5=25(2)如果没有减去5,这个数是:25+5=30(3)如果没有乘以5,这个数是:30÷5=6(4)如果没有加上5,这个数是:6-5=1综合算式:(5×5+5)÷5-5=(25+5)÷5-5=30÷5-5=6-5=1答:这个数为1。
[例3] 小东在做整数加法运算时,把一个加数个位上的7看成了1,把另一个加数十位上的3看成了8,结果所得的和是342,请问这道题的正确答案应该是多少?思路剖析把个位上的7看成了l,那么和就减少了(7-1)=6,把十位上的3看成了8,那么和就增加了(8-3)×10=50,再根据加和减的互逆关系,把错误的和加上减少的,减去增加的,就可得出正确的答案。
解答要求这道题的正确答案是多少,可以先求出当把个位上7看成1时,和减少了多少,还需要求出当把十位上的3看成8时,和增加了多少?(1)把个位上的7看成1时,和减少了:7-l=6(2)把十位上的3看成8时,和增加了:【例‘1】李老师在黑板上写了若干个从l开始的连续正整数l,2,3,…然后擦掉其中一个,剩下的数的平均数是10.8。
那么,被擦掉的那个正整数是多少?分析与解答以上分数的分子表示去掉一个正数的和,分母表示个数。
应用题专题能力进阶二级
还原问题
还原问题
一、核心思想→逆推
二、学校内容
线框图→一个数进过加减乘除等变成另外一个数,求原数?
线段图→一堆物品拿走一半多5,再拿走一半少3等,已知结果,求原数?
图表法→多个人,总数一定,你给我,我给他等,已知结果,求原来每个人有多少?
一、线框图
【例1】小新在做一道加法题,由于粗心,将个位上的5看作9,把十位上的8看做3,结果所得的和是123,正确答案是多少呢?
【例2】学学和思思在游玩时,遇到一位小神仙,他们问这位神仙:“你一定不到100岁吧!”谁知这位神仙摇摇头说:“你们算算吧!把我的年龄加上75,再除以5,然后减去15,再乘以10,恰好是2000岁。
”小朋友,你知道这位神仙现在有多少岁吗?
【例3】科学课上,老师说:“土星直径为地球直径的9倍多4800千米,土星直径除以24等于水星直径,水星直径加上2000千米是火星直径,火星直径除以2减去500千米等于月亮的直径,月亮的直径是3000千米。
”请你算一算,地球的直径是多少?
【例4】(第五届走美杯)电脑按照指示进行运算:如果数据是偶数,就将它除以2;如果数据是奇数,就将它加3。
这样继续进行了三次得出结果为27。
原来的数据可能是(填出所有可能):_________________________。
二、线段图
【例5】一群蚂蚁搬家,原存一堆食物,第一天运出总数的一半少12克,第二天运出剩下的一半少12克,结果窝里还剩下43克。
问蚂蚁家原有食物多少克?
【例6】电工组买来一捆电线,工人们第一天用去全长的一半多5米,第二天用去余下的一半少8米,第三天用去14米,最后还剩10米。
这捆电线原来有多少米?
【例7】修路队修一条路,第一天修了350米,第二天修了余下的一半多20米,第三天修了余下的一半多20米,还剩下360米没有修,问:这条路全长多少米?
三、图表法
【例8】有18块砖,哥哥和弟弟争着去搬,弟弟抢在前面,刚摆好砖,哥哥赶到了,哥哥看弟弟搬得太多,就抢过一半,弟弟不肯,又从哥哥那儿抢走一半,这时爸爸走过来,他从哥哥那拿走一半少2块,从弟弟那儿拿走一半多2块,结果是爸爸比哥哥多搬了3块,哥哥比弟弟多搬了3块。
问最初弟弟搬多少块?
【例9】甲、乙、丙三人各有铜板若干枚,开始甲把自己的铜板拿出一部分给乙、丙,使乙、丙的铜板各增加了1倍;乙把自己的铜板拿出一部分给甲、丙,使甲、丙的铜板数各增加了1倍;
丙把自己的铜板拿出一部分给乙、甲,使乙、甲的铜板数各增加了1倍,这时三人铜板数都是8枚,原来每人各有几枚?
【例10】有三个和尚,最初,老和尚的水最多,且有一个没水喝。
老和尚把自己的水全部平均分给了大、小两个和尚;接着,大和尚又把自己的水全部平均分给了老、小两个和尚;然后小和尚又把自己的水全部平均分给了另外两个和尚。
就这样,三人轮流谦让了一阵子。
结果老和尚有10升水,小和尚有20升水,请问:最初大和尚有多少水?。