04第四章 土壤物理性质
- 格式:pdf
- 大小:1.17 MB
- 文档页数:28
土壤物理性质(四)(五)土壤力学性质与耕性土壤受外力作用(如耕作)时,显示出一系列动力学特性.统称土壤力学性质(又称物理机械性)。
主要包括黏结性、黏着性和塑性等。
耕性是上壤在耕作时所表现的综合性状,如耕作的难易,耕作质量的好坏,宜耕期的长短等。
土壤耕性是土壤力学性质的综合反映。
1.土壤黏结性和黏着性 (1)概念土壤黏结性是土粒与土粒之间因为分子引力而互相黏结在一起的性质。
这种性质使土壤具有反抗外力破裂的能力,是耕作阻力产生的主要缘由。
干燥土壤中,黏结性主要由土粒本身的分子引力引起。
而在潮湿时,因为土壤中含有水分,土粒与土粒的黏结经常是通过水膜为媒介的,所以事实上它是土粒-水膜-土粒之间的黏结作用。
同时,粗土粒可以通过细土粒(黏粒和胶粒)为媒介而黏结在一起,甚至通过各种化学胶结剂为媒介而黏结。
土壤黏结性的强弱,可用单位面积上的黏结力(g/cm2)来表示。
土壤的黏结力,包括不同来源和土粒本身的内在力。
有范德华力、库仑力以及水膜的表面张力等物理引力,有氢键的作用,还往往有如化学胶结剂(腐殖质、多糖胶和等)的胶结作用等化学键能的参加。
土壤黏着性是土壤在一定含水量范围内,土粒黏附在外物(农具)上的性质,即土粒-水-外物互相吸引的性能。
上壤黏着力大小仍以g/cm2等表示。
土壤开头展现豁着性时的最小含水量称为黏着点;上壤丧失黏着性时的最大含水量,称为脱黏点。
(2)结性与瓤着性的影响因素土壤赫结性和载着性均发生于土粒表面,同属表面现象,其影响因素相同,主要有土壤比表面大小和含水量凹凸两个方面。
1)土壤比表面及其影响因素土壤质地、黍占粒矿物种类和交换性阳离子组成,以及土壤团圆化程度等。
都是影响土壤黏结性和黏着性离子大小的因素。
土壤质地愈黏重,黏粒含量愈高,尤其是2:1型黏粒矿物含量高,交换性钠在交换性阳离子中占的比例大,而使土粒高度簇拥等,则黏结性与黏着性增加;反之,土粒团圆化降低了彼此间的接触面,所以有团粒结构的土壤就整体来说黏结力与黏着性削弱。
土的物理性质及计算说明土是一种自然界广泛存在的物质,具有许多独特的物理性质。
本文将介绍土的物理性质及其计算说明。
1.颜色:土的颜色是由其中的有机物、氧化物和矿物质组成决定的。
常见的土壤颜色有黑色、褐色、红色、黄色等。
颜色反映了土壤的有机质含量、氧化还原状态、矿物质成分等。
2.质地:土壤的质地是指土壤中各种粒子的相对含量和颗粒大小。
根据国际土壤分类系统,土壤的颗粒大小可分为粉砂、细砂、中砂、粗砂、细砾石、粗砾石和卵石等七个级别。
质地直接影响土壤的通透性、持水能力和肥力等。
3.密度:土壤的密度是指土壤体积单位质量,也可理解为空气和水以外的土壤物质所占的体积。
计算土壤密度需要先称量一定体积的土样,然后根据质量和体积计算得出密度。
4.孔隙度:土壤中颗粒间的空隙被称为孔隙。
孔隙度是指土壤中孔隙容积与总体积之比。
孔隙度反映了土壤的通气性、水分保持能力等。
常见的孔隙度有总孔隙度、实际体积和饱和孔隙度等。
5.含水量:土壤中含水量是指土壤含有的水分与土壤质量的比值。
常见的表示方式有体积含水量和重量含水量。
体积含水量是指一定体积土壤中所含水分的体积占比,重量含水量是指一定质量土壤中所含水分的质量占比。
6.存水量:土壤的存水量是指土壤在一定条件下能储存的水分量。
计算土壤存水量需要考虑土壤的质地、孔隙度等因素。
常见的计算方法包括黏性土法、重测土法和定容法等。
7.渗透性:土壤的渗透性是指水分在土壤中传导的能力。
计算土壤的渗透性可以使用定浸方法,即在一定条件下,测定在单位时间内通过一定土壤层的水分量。
8.多孔介质传热:土壤是典型的多孔介质,能够通过孔隙传导、对流和辐射等方式进行热传导。
计算土壤的传热性质需要考虑土壤的热导率、比热容等参数。
9.弹性模量:土壤的弹性模量是指土壤在受到外力作用下对形变进行恢复的能力。
计算土壤的弹性模量需要进行应力-应变试验,并通过斯托克斯公式进行计算。
10.力学性质:土壤的力学性质是指土壤的抗剪强度、压缩性和承载力等。
土壤的物理化学性质壤是发育于地球陆地表面具有生物活性和孔隙结构的介质,是地球陆地表面的脆弱薄层土壤是各种陆地地形条件下的岩石风化物经过生物、气候诸自然要素的综合作用以及人类生产活动的影响而发生发展起来的。
接下来店铺为你整理了土壤的物理化学性质,一起来看看吧。
土壤的物理性质(1)土壤质地和结构土壤是由固体、液体和气体组成的三相系统,其中固体颗粒是组成土壤的物质基础,约占土壤总重量的85%以上。
根据固体颗粒的大小,可以把土粒分为以下几级:粗砂(直径2.0~0.2mm)、细砂(0.2~0.02mm)、粉砂(0.02~0.002mm)和粘粒(0.002mm以下)。
这些大小不同的固体颗粒的组合百分比称为土壤质地。
土壤质地可分为砂土、壤土和粘土三大类。
砂土类土壤以粗砂和细砂为主、粉砂和粘粒比重小,土壤粘性小、孔隙多,通气透水性强,蓄水和保肥性能差,易干旱。
粘土类土壤以粉砂和粘粒为主,质地粘重,结构致密,保水保肥能力强,但孔隙小,通气透水性能差,湿时粘、干时硬。
壤土类土壤质地比较均匀,其中砂粒、粉砂和粘粒所占比重大致相等,既不松又不粘,通气透水性能好,并具一定的保水保肥能力,是比较理想的农作土壤。
土壤结构是指固体颗粒的排列方式、孔隙和团聚体的数量、大小及其稳定度。
它可分为微团粒结构(直径小于0.25mm)、团粒结构(0.25~10mm)和比团粒结构更大的各种结构。
团粒结构是土壤中的腐殖质把矿质土粒粘结成0.25~10mm直径的小团块,具有泡水不散的水稳性特点。
具有团粒结构的土壤是结构良好的土壤,它能协调土壤中水分、空气和营养物质之间的关系,统一保肥和供肥的矛盾,有利于根系活动及吸取水分和养分,为植物的生长发育提供良好的条件。
无结构或结构不良的土壤,土体坚实,通气透水性差,土壤中微生物和动物的活动受抑制,土壤肥力差,不利于植物根系扎根和生长。
土壤质地和结构与土壤的水分、空气和温度状况有密切的关系。
(2)土壤水分土壤水分能直接被植物根系所吸收。
土壤的物理性质1、 土壤的温度:土壤的温度在土壤中的分布于变化时是土壤热量状况的反映。
土壤温度状况也是土壤系统分类中的重要诊断特性。
2、 土壤的孔隙(1) 土壤孔隙度: 土壤的孔隙状况取决于土壤的质地和土壤的结构,土壤的孔隙度在不同类型的土壤和同一类型土壤不同发生层中都是不相同的。
土壤孔隙度通常不直接测定,而是通过土壤相对密度和容量的数据来计算获取的。
%100-1⨯⎪⎭⎫ ⎝⎛=土壤相对密度土壤容量土壤孔隙度 (2) 影响土壤孔隙的因素土壤孔隙度、孔径大小和大小孔隙的比例,决定与土粒的粗细以及土粒排列和团聚的形式。
影响土壤孔隙状况的因素主要有以下几种。
a. 土壤质地b. 土粒排列松紧与土壤结构c. 有机物质(3) 土壤相对密度和容重以动态观点及非线性动力学理论和方法来探索地质环境演化在自然因素与人为因素双重的作用下环境产生变化, 而这些因素的变化在许多情况下是无序的,是一个非线性问题。
非线性动力学理论和方法研究,在国际上已成为热点问题。
要了解和掌握这些因素变化, 就要通过长期的连续的对环境各要素进行监测, 取得必要的资料,从而来认识它。
因此, 国际上非常重视建立不同级别的(即全球性的、国家级的、地区性的) 长期的环境监测网站。
收集环境变化记录资料, 作为全球环境变化研究的科学依据,也是地球系统科学的重要组成部分。
这种以研究环境和生态系统为目的的不同级别的长期监测网站的建立已成为国际性趋势。
例如美国的长期生态研究网络、亚洲—太平洋地区的全球变化网络、中国生态系统研究网络、欧洲全球变化研究网络等等(方精云等, 2000) [10 ] 。
以各类环境监测数据为基础, 采用动态观点及非线性动力学理论和方法, 综合性地来探索地质环境演化的特点和地质环境灾变预报的可能性。
212 从不同空间尺度研究地球环境演化着眼于地球是个复杂系统, 是个多层次结构,以及通过各圈层相互作用的演化过程, 来研究全球性环境变化。
既研究现代的, 也研究过去地质历史时期(如晚更新世以来, 尤其是全新世时期的古环境变迁) , 同时对21 世纪内全球变化趋势进行预测。
土壤的物理特性
土壤的物理性质主要指土壤固、液、气三相体系中所产生的各种物理现象和过程。
主要包括土壤的颜色、质地、孔隙、结构、水分、热量(热性质)和空气状况,以及土壤的机械物理性质和电磁性质等方面。
土壤颜色:
土壤颜色在物理性质中最为直观,在一定程度上反映了土壤的主要化学组分和土壤的水热状况,可作为鉴别土壤肥沃程度的指标,如菜农朋友熟悉的深色土壤常较浅色土壤肥沃、腐殖质含量高的土壤往往呈暗黑色等等;
土壤质地;
指土壤中不同大小、直径的矿物颗粒的组合状况,与土壤通气、保肥、保水状况及耕作的难易有密切关系,菜农比较熟悉的土壤质地有砂土、壤土、粘土、沙壤土等等;
土壤孔隙:
土壤固体颗粒间的空隙,是容纳水分和空气的场所。
土壤中孔隙的大小、形状及其稳定程度与土壤结构有关,通常适合植株生长的土壤孔隙状况为“上松下紧”的孔隙构形;
土壤结构;
指土壤颗粒(包括团聚体)的排列形式,如团粒和粒状结构、块状和核状结构、柱状和棱柱状结构、片状结构等,其中团粒结构是蔬菜获得高产高效的最佳结构体;
土壤水分:
指固液气三相存在于土壤颗粒表面和颗粒间孔隙中的水分,来源于降水、灌溉水以及随毛细管上升的地下水和凝结水;
土壤热性质:
指影响热量在土壤剖面中的保持、传导和分布状况,是决定土壤热状况的内在因素,也是设施蔬菜上控制土壤热状况,使其有利于植株生长发育的重要物理因素;
土壤空气;
指存在于土壤颗粒表面、未被水分占据的孔隙中和溶于土壤水中(溶液中)的空气,主要来源于近地表的大气,也有部分是土壤呼吸过程和有机质分解过程的产物。
土壤是矿物质、有机物、水和空气的复杂混合物。
它由多种颗粒组成,包括沙子、淤泥和粘土,按大小分类。
土壤的物理特性很重要,因为它们会影响植物的生长方式以及水和空气穿过土壤的方式。
土壤的一些物理性质包括:
质地:这是指土壤中沙子、淤泥和粘土的相对含量。
沙子含量高的土壤往往排水良好且松散,而粘土含量高的土壤往往排水不良且重。
结构:这是指土壤中颗粒的排列方式。
结构良好的土壤团聚良好,外观呈易碎或颗粒状,而结构较差的土壤则容易侵蚀和压实。
孔隙率:这是指土壤中充满空气和水的空间量。
孔隙率高的土壤排水良好,持水能力好,而孔隙率低的土壤排水不良,持水能力低。
密度:这是指每单位体积土壤的重量。
密度高的土壤致密,根系不易穿透,而密度低的土壤多孔,更容易根系生长。
pH值:这是指土壤的酸度或碱度。
pH值低于7的土壤是酸性的,而pH值高于7的土壤是碱性的。
不同的植物有不同的pH 值偏好,土壤的pH 值会影响植物养分的可用性。
土的物理性质指标土壤是地球表层的一种天然资源,具有多种物理性质指标。
这些指标描述了土壤的物理特性和其在环境中的行为。
本文将探讨土壤的一些重要物理性质指标,包括颗粒组成、密度、孔隙度、质地、渗透性和持水能力等。
首先是土壤的颗粒组成。
土壤颗粒主要分为砂、粉砂、黏土和有机质四种类型。
砂粒直径大于0.05毫米,多呈规则形状,与土壤质地的稳定性和透气性有关。
粉砂粒直径介于0.05-0.002毫米之间,属于细粒土壤,对保水性能和养分保存有重要影响。
黏土颗粒直径小于0.002毫米,常常层叠在一起形成胶体,对土壤的保水性和养分保存具有重要作用。
有机质是由植物和动物的遗物形成的,含有丰富的养分,能增加土壤肥力和改善土壤结构。
其次是土壤的密度。
土壤的密度是指单位体积土壤的质量。
固体颗粒、土壤充满的孔隙和水之间的相互作用使得土壤的密度产生差异。
土壤的容重则是指单位体积下的固体部分质量。
密度和容重显示了土壤的紧实程度和土壤重力状态,对植物生长和根系发育具有重要影响。
孔隙度是土壤中微观孔隙空间占据的百分比。
孔隙度直接影响土壤的透水性、渗透性和保水性能。
孔隙可以分为毛管孔隙和非毛管孔隙,前者由水的毛细力支撑,后者则可以根据气相和土壤颗粒之间的接触来阻止水的流动。
孔隙度高的土壤透水能力较好,植物根系得到更多的氧气和水分供给。
土壤质地是指土壤颗粒组成和相对含量的结合。
根据美国农业部所使用的土壤质地分类系统,土壤可分为黏土、壤土和砂土三大类。
黏土质地的土壤颗粒组成主要是黏土,具有较高的含水保持能力和较低的透气性。
砂质土壤则由大量砂粒组成,透水能力强,但保水能力较差。
壤土是颗粒组成均衡的土壤类型,适合农业生产。
渗透性是描述土壤水分移动能力的指标。
主要考虑土壤的渗透速度和渗透系数。
渗透速度是指水分通过单位面积土壤的时间,渗透系数是描述渗透速度的常数。
土壤渗透性受土壤颗粒组成、孔隙度、土壤结构、土壤水分含量和土壤温度等多种因素的影响。