岩石强度破裂准则讲解
- 格式:ppt
- 大小:8.69 MB
- 文档页数:77
2.1岩石破坏强度准则岩石的破坏主要与外荷载的作用方式、温度及湿度有关。
一般在低温、低围压及高应变率的条件下,岩石表现为脆性破坏,而在高温、高围压、低应变率作用下,岩石则表现为塑性或者塑性流动。
对于较完整的岩石来说,其破坏形式可以分为:1)脆性破坏;3)延性破坏。
图2-1给出了不同应力状态下岩石破裂前应变值、破坏形态示意图和典型的应力-应变曲线示意图。
图2-1岩石破坏形态示意图从图2-1中可以看出岩石破裂种类繁多、岩石破坏过程中的应力、变形、裂纹产生和扩展极为复杂,很难用一种模型进行描述,很多学者针对不同岩石破坏特征提出多种不同岩石的强度破坏准则。
本节主要对已有的岩石强度破坏准则进行总结,找出它们各自的优缺点。
2.1.1最大正应力强度理论最大正应力强度理论也称朗肯理论,该理论是1857年提出的。
它假定挡土墙背垂直、光滑,其后土体表面水平并无限延伸,这时土体内的任意水平面和墙的背面均为主平面(在这两个平面上的剪应力为零),作用在该平面上的法向应力即为主应力。
朗肯根据墙后主体处于极限平衡状态,应用极限平衡条件,推导出了主动土压力和被动土压力计算公式。
考察挡土墙后主体表面下深度z 处的微小单元体的应力状态变化过程。
当挡土墙在土压力的作用下向远离土体的方向位移时,作用在微分土体上的竖向应力sz 保持不变,而水平向应力sx 逐渐减小,直至达到土体处于极限平衡状态。
土体处于极限平衡状态时的最大主应力为s1=gz ,而最小主应力s3即为主动土压力强度pa 。
根据,当主体中某点处于极限平衡状态时,大主应力1σ和小主应力3σ之间应满足以下关系式:粘性土:213...2tan tan 454522c ϕϕσσ⎛⎫⎛⎫︒︒=-++ ⎪ ⎪⎝⎭⎝⎭(1)无粘性土231.tan 452ϕσσ⎛⎫︒=- ⎪⎝⎭(2)该理论认为材料破坏取决于绝对值最大的正应力。
因此,作用于岩石的三个正应力中,只要有一个主应力达到岩石的单轴抗压强度或岩石的单轴抗拉强度,岩石便被破坏。
五、岩石的破坏准则对岩石试样的室内及现场试验,可获得岩石试样的强度指标,但对复杂应力状态下的天然岩体,又是如何判断其破坏呢?因此,就必须建立判断岩石破坏的准则(或称强度理论).岩石的应力、应变增长到一定程度,岩石将发生破坏.用来表征岩石破坏条件的函数称为岩石的破坏准则.岩石在外力作用下常常处于复杂的应力状态,许多试验指出,岩石的强度及其在荷载作用下的性状与岩石的应力状态有着很大的关系.在单向应力状态下表现出脆性的岩石,在三向应力状态下具有延性性质,同时它的强度极限也大大提高了.许多部门和学者从不同角度提出不同的破坏准则,目前岩石破坏准则主要有:最大正应力理论最大正应变理论最大剪应力理论(H.Tresca)八面体应力理论莫尔理论及库伦准则格里菲思理论(Griffith)伦特堡理论(Lundborg)经验破坏准则1、最大正应力理论这是较早的一种理论,该理论认为岩石的破坏只取决于绝对值最大的正应力.即岩石内的三个主应力中只要有一个达到单轴抗压或抗拉强度时,材料就破坏.适用条件: 单向应力状态.对复杂应力状态不适用.写成解析式:破坏2、最大正应变理论该理论认为岩石的破坏取决于最大正应变,即岩石内任一方向的正应变达到单向压缩或拉伸时的破坏数值时,岩石就发生破坏.则破坏准则为式中ε——岩石内发生的最大应变值;m axε——单向拉、压时极限应变值;u这一破坏准则的解析式为(由广义虎克定律)R —R t或R c推出:实验指出,该理论与脆性材料实验值大致符合,对塑性材料不适用.3、最大剪应力理论(H.Tresca)该理论认为岩石材料的破坏取决于最大剪应力,即当最大剪应力达到单向压缩或拉伸时的危险值时,材料达到破坏极限状态.其破坏准则为:在复杂应力状态下,最大剪应力231 max σστ-=单位拉伸或压缩时,最大剪应力的危险值则有 R ≥-31σσ或写成 {}{}{}0)][)][)][221222232231=------R R R σσσσσσ这个理论适用于塑性岩石,不适用于脆性岩石. 该理论未考虑中间主应力的影响.4、八面体剪应力理论(Von.米ises)该理论认为岩石达到危险状态取决于八面体剪应力.其破坏准则为已知单元体1σ,2σ,3σ ,作一等倾面(其法线夹角相同).为研究等倾面上的应力,取一由等倾面与三个主应力面围成的四面体来研究.N 与x 、y 、z 的夹角分别为γβα、、,且 γβα==. 设:l =αcos ,m =βcos ,n =γcos设等倾面ABC 面积为S,则三个主应力面(1σ,2σ,3σ面)的面积分别为根据力的平衡条件∑=0X , ∑=0Y , ∑=0Z推出:⎪⎩⎪⎨⎧⋅⋅=⋅=⋅⋅=⋅=⋅⋅=⋅=∑∑∑γσβσασcos 0cos 0cos 0321S S p Z S S p Y S S p X z y x , 而 等倾面S 上合力:222z y x p p p p ++=所以另,等倾面S 上的法向应力为各分力p x 、p y 、p z 在N 上的投影之和,即S oct ττ≥,推出适用条件:塑性,5、莫尔理论及莫尔库伦准则该理论是目前应用最多的一种强度理论.该理论假设,岩石内某一点的破坏主要取决于它的大主应力和小主应力,即σ1和σ3,而与中间主应力无关.也就是说,当岩石中某一平面上的剪应力超过该面上的极限剪应力值时,岩石破坏.而这一极限剪应力值,又是作用在该面上法向压应力的函数,即)(στf = .这样,我们就可以根据不同的σ1、σ3绘制莫尔应力图. 每个莫尔圆都表示达到破坏极限时应力状态.一系列莫尔圆的包线即为强度曲线一方面与材料内的剪应力有关,同时也与正应力有关关于包络线:抛物线:软弱岩石双曲线或摆线:坚硬岩石直线:当σ<10米Pa 时为简化计算,岩石力学中大多采用直线形式:c ——凝聚力(米Pa) ϕ——内摩擦角.该方程称为库伦定律,所以上述方法合称为:莫尔库伦准则. 当岩石中任一平面上f ττ≥ 时,即发生破坏.即: ϕσττtg c f ⋅+=≥下面介绍用主应力来表示莫尔库仑准则. 任一平面上的应力状态可按下式计算①②α(σ1)力圆,可建力之间关系1)c和ϕ值与σ1、σ3和α角关系在σ1~σ3的应力圆上,找出2α的应力点T(T米为半径为231σσ-) 则,与直径T米垂直且与圆相切的直线即为ϕστtgc⋅+=根据几何关系,902)2180(90-=--=ααϕ,得出代入ϕστtg c ⋅+=中,得到另由公式推导:将σ1、σ3表示的 σ 和 τ 代入ϕστtg c ⋅+=中,导出对α求导,01=ασd d 推出:245ϕα+= 破坏面与最大主应力面的夹角而与最大主应力方向的夹角2).用主应力σ1、σ3表达的强度准则 将 σ 和 τ 的表达式代入 ϕστtg c ⋅+=中,ϕασσσσασσtg c ⎥⎦⎤⎢⎣⎡-+++=-2cos 222sin 2313131利用关系:ααϕ2sin )902cos(cos =-= ααϕ2cos )902sin(sin -=-= 化简得:当σ3=0时(单轴压缩):ϕϕσsin 1cos 21-==c R c ,令ϕϕϕsin 1sin 1-+=N ,则,σ1当σ1=0时(单轴抗拉该值为 )(στf =但与实测的R t 线段进行修正.岩石破坏的判断条件:ϕ>, 破坏sin极限ϕ<,稳定sin6、格里菲思(Griffith)理论以上各理论都是把材料看作为连续的均匀介质,格里菲思则认为:当岩石中存在许多细微裂隙,在力的作用下,在缝端产生应力集中,岩石的破坏往往从缝端开始,裂缝扩展,最后导致破坏.方向成β角.且形状接近于椭圆,的局部抗拉强度,的边壁就开始破裂.1).任一裂隙的应力.假定:①椭圆可作为半元限弹性介质中的单个孔洞处理, ②二维问题处理,取0=z σ椭圆参数方程:αcos a x =,αsin b y = 椭圆的轴比为:ab m =椭圆裂隙周壁上偏心角的α的任意点的切向应力 可用弹性力学中英格里斯(Inglis)公式表示:由于裂缝很窄,轴比很小,形状扁平,所以最大应力显然发生在靠近椭圆裂隙的端部,即α很小的部位,当0→α时,αα→sin ,1cos →α又由于米,α很小,略去高次项,则有米为定值,当1σ,2σ,3σ确定时,y σ、xy τ也为定值,则b σ仅随α而变.这是任一条裂隙沿其周边的切向应力.显然在椭圆周边上,随α不同b σ有不同的值,对α求导.2mτxy则,2).岩块中的最大切向应力所在的裂隙上面导出了 某一条裂隙上的最大切向应力,但在多条裂隙中,哪一条裂隙的b σ 最大?y σ,xy τ与1σ,3σ的关系为:βσσσσσ2cos 223131--+=y , βσστ2sin 231--=xy代入 m ax ,b σ中,显然m ax ,b σ与β有关,对其求导,便可求得b σ为最大的那条裂隙,即确定出β角. 即取 0m ax ,=⋅βσd d m b则①02sin =β,有β=0或 90代入m ax ,b σ中,β=0时, mb 3max ,2σσ= 或 0 β= 90时,mb 1max ,2σσ=或0. 共四个可能极值,与σ1平行或垂直的裂隙.②将)(22cos 3131σσσσβ+-=代入 m ax ,b σ中,共有两个极值,即与σ1斜交裂隙中有两个方向裂隙的切向应力达极值.因为β=0或 90时,12cos =β或-1.因此,与σ1斜交时,必须β≠0或 90, 即 12cos <β 时 才是与σ1斜交,则要求或 0331>+σσ此时,裂隙的最大拉应力为(*)如果0331<+σσ, 则1)(23131>+-σσσσ,则3σ必为负值(拉应力)此时由12cos ≥β推出12cos =β,即β为0或90°,表明裂隙与σ1平行或正交.因为03<σ,考查β=0, 90的极值,则3max ,2σσ=b m (**) 为最大拉应力.式(*)(**)即为岩石中的m ax ,b m σ达到某一临界值时就会产生破坏. 为了 确定米值,做单轴抗拉试验,使σ3垂直裂隙面(椭圆长轴),则这时的t R -=3σ 推出 t b R m 2max ,-=σ 这说明裂隙边壁最大应力m ax ,b m σ与米乘积必须满足的关系.此时,格菲思强度理论的破坏准则为:I. 由(**)式,,t b R m 2max ,-=σ, 则 322σ=-t RII. 由(*)式,代入 t b R m 2max ,-=σ, 则有:等于0,处于极限状态; 大于0, 破坏; 小于0, 稳定.上面的准则是用σ1、σ3表示的,也可用y σ,xy τ表示 将t b R m 2max ,-=σ 代入 )(122max ,xy y y b mτσσσ+±=中, 222xyy y t R τσσ+±=- 推出:t y xy y R 222+=+±στσ,22224)2(t y t y xy y R R +=+=+σστσ 在0<σ时的包线更接近实际.7、修正的格里菲思理论格里菲思理论是以张开裂隙为前提的,如果压应力占优势时裂隙会发生闭合,压力会从裂隙一边壁传递到另一边,从而缝面间将产生摩擦,这种情况下,裂隙的发展就与张开裂隙的情况不同.麦克林托克(米eclintock)考虑了这一影响,对格里菲思理论进行了修正.麦克林托克认为,在压缩应力场中,当裂缝在压应力作用下闭合时,闭合后的裂缝在全长上均匀接触,并能传递正应力和剪应力.由于均匀闭合,正应力在裂纹端部不产生应力集中,只有剪应力才能引起缝端的应力集中.这样,可假定裂纹面在二向应力条件下,裂纹面呈纯剪破坏.其强度曲线如图.由图可知 OC =c τBD=)(2131σσ-(半径)OD=)(2131σσ+(圆心)EB=τ, OE=σ,ED=OD-OE=)(2131σσ+-σAB=EB ϕcos ⋅=ϕτcos ⋅ϕsin ⋅=ED DA =ϕσϕσσsin sin )(2131⋅-+由 AB=BD-AD,可推出式中,摩擦系数ϕtg f =另外,推出tyt xy R R στ+=12取y σ为c σ,裂隙面上的压应力,则有②当c σ很小时,取c σ=0时(勃雷斯Brace)=t R 4当时c σ<0时(拉应力),上两式不适用.低应力时,格里菲思与修正的格里菲思理论较为接近,高应力时差别大(当σ3>0时).8、伦特堡(Lundborg)理论定限度,于晶体破坏,大抗剪强度.的破坏状态:σ,τ——研究点的正应力和剪应力(米Pa)τ——当没有正应力时(σ=0)岩石的抗切强度(米Pa)i τ——岩石晶体的极限抗切强度(米Pa)A ——系数,与岩石种类有关.当岩石内的剪应力τ和正应力σ达到上述关系时,岩石就发生破坏.式中的τ实际上是代表最大的剪应力,因而是强度.上式中的0τ,i τ,A 由试验确定,见P55表3-5.9、经验破坏准则现行的破坏理论并不能全面的解释岩石的破坏性态,只能对某一方面的岩石性态做出合理的解释,但对其它方面就解释不通.因此,许多研究者在探求经验准则,目前应用较多的经验破坏准则为霍克(Hoke)和布朗(Brown)经验破坏准则.①Hoke和Brown发现,大多数岩石材料(完整岩块)的三轴压缩试验破坏时的主应力之间可用下列方程式描述:R c—完整岩石单轴抗压强度(米Pa); 米—与岩石类型有关的系数米值是根据岩石的完整程度,结晶及胶结情况,通过大量试验结果及经验而确定的.岩石完整、结晶或胶结好,米值就越大,最大的为25.②对于岩体,Hoke和Brown建议:米和S——常数,取决于岩石的性质以及在承受破坏应力σ1和σ3以前岩石扰动或损伤的程度.完整岩块S=1,岩石极差时S=0.当取σ3=0时,可得到岩体的单轴抗压强度:由于s =0~1,则c cm R R ≤ 如果令σ1=0,则得到岩体的单轴抗拉强度.从R厘米和R t 米中可看出,当S=1时,R 厘米=R c 为完整岩块,当S=0时,R t 米=R 厘米=0为完全破损的岩石.因此,处于完整岩石和完全破损岩石之间的岩体,其S 值在1~0之间.。
断裂力学部分岩石的断裂准则及其应用传统的力学方法通常假定材料是连续的,不存在任何缺陷或裂纹。
一般的做法是,根据结构的实际受力情况,计算出其中最危险区域的应力,乘以安全系数,若其小于屈服强度或极限强度,这认为该结构是安全的,反之则是不安全的。
但是在实际结构中许多脆性材料,包括岩石,混凝土、陶瓷、玻璃等,其构件在远低于屈服应力的条件下发生断裂,即所谓的“低应力脆断”。
研究表明,这种脆性破坏是由于宏观缺陷或裂纹的失稳扩展而引起的,由对这些内容的研究形成断裂力学。
目前研究裂纹的扩展有两种不同的观点:一种是从能量分析出发,认为物体在裂纹扩展中所能够释放出来的弹性能,必须与产生新的断裂面所消耗的能量相等。
另一种是应力强度的观点,认为裂纹扩展的临界状态,是由裂纹前缘的应力场的强度达到临界值来表征的。
这两种观点有着密切的联系,但并不总是等效的。
1基于能量分析的断裂理论1.1格里菲斯(Griffith )断裂理论脆性材料的实际断裂强度要比理论计算的断裂强度低得多,为了解释产生这种现象的原因,早在19世纪20年代Griffith 就运用能量平衡原理对吹响材料作断裂强度分析,认为固体的破坏是裂纹扩展的结果。
固体材料内部存在大量形状、大小、方向各不相同的裂纹,当收到外力作用时在裂纹的边缘部位会产生应力集中现象,当其中任何一点的应力达到材料的临界值,裂纹就开始扩展。
裂纹扩展的临界条件是裂纹扩展时所需要的表面力正好等于由裂纹扩展时系统释放的弹性应变能,即得著名的Griffith 裂纹失稳的临界条件:aEr c πσ2= (1) 其中a 为裂纹半长,c σ裂纹扩展的临界应力,r 为单位面积的表面能。
对于三维裂纹,如以a 为半径的钱币型裂纹,亦可用同样的方法求的断裂强度c σ与a 的关系式:()212νπσ-=s c r E a (2)利用公式(2),Griffith 很好的解释了材料的实际断裂迁都远低于其理论强度的原因,定量说明了裂纹尺寸对断裂强度的影响。
3.5.岩石的强度准则3.5.1概述岩石中任一点的应力、应变增长到某一极限时,该点就要发生破坏。
用以表征岩石破坏条件的应力状态与岩石强度参数间的函数关系,称为岩石的强度准则(又称强度条件、破坏判据、强度判据)。
由于岩石的成因不同和矿物成分的不同,使岩石的破坏特性会存在着许多差别。
此外,不同的受力状态也将影响其强度特性。
人们根据岩石的不同破坏机理,在大量的试验基础上,加以归纳、分析描述,建立了多种强度准则。
本节将着重介绍在岩石力学中最常用的强度准则。
3.5.2库仑准则3.5.2.1基本思想库仑准则是一个最简单、最重要的准则,属于压剪准则。
库仑(C.A.Couloumb )于1773年提出最大剪应力强度理论,纳维尔()在库仑理论的基础上,对包括岩石在内的脆性材料进行了大量的试验研究后,于1883年完善了该准则,所以又被称为库仑—纳维尔准则。
该准则认为,固体内任一点发生剪切破坏时,破坏面上的剪应力(τ)等于或大于材料本身的抗切强度(C)和作用于该面上由法向应力引起的摩擦阻力(ϕσtan )之和,即:tan C f C τσσϕ=+=+ (3.29)这就是库仑准则的基本表达式。
3.4.2.2库仑准则参数的几何与物理意义在στ-平面上式(3.29)的几何图,如图3.36所示,库仑准则是一条直线。
由图可见:图3.36库仑准则的几何图(1)当0σ=时,C τ=,C 为纵轴(σ轴)截距;物理意义为:岩石试件无正压力时的抗剪强度,通常称为岩石的内粘聚力。
(2)当0C =时,ϕσσtan =,通常称ϕ为岩石的内摩擦角,ϕtan 为岩石的内摩擦系数。
C ,ϕ是表征岩石抗剪强度的两个重要参数。
3.5.2.3库仑准则的确定方法岩石强度准则反映岩石固有的属性,因此一定要求来源于试验。
常用于确定库仑准则的试验有两种,角模压剪试验和三轴压缩试验。
(1)角模压剪试验 如图3.10所示,作一系列不同倾角α的压剪试验,并由式(3.7)计算出不同倾角的破坏面上的正应力σ和剪应力τ;再在στ-平面描点作出强度准则曲线,或用数理统计方法确定其方程。