第四章 岩石的强度
- 格式:ppt
- 大小:504.50 KB
- 文档页数:28
岩石的强度特性
岩石的强度是指岩体抵抗破坏的能力;岩体是由岩块和结构面组成的地质体。
多结构面岩体强度
取三组结构面岩石试件,首先绘出三组结构面及岩石的强度包络线和受力状态莫尔圆,若第一组结构面的受力状态点落在第一组结构面的强度包络线τ=Cω1+σtanυω1上或其之上,即第一组结构面与σ1的夹角β满足2β1'≤2β2'≦2β3',则岩体将沿第一组结构面破坏。
β'满足2β2'≦2β'2β1',则岩体将不沿第一结构面破;而若此时,第二组结构面与σ1的夹角β''满足2β1''≦2β''≦2β2'',则岩体将沿第二组结构面破坏。
以此类推,若第三组节理的受力状态点均落在其相应的强度包络线之下,即2β'2<2β'<2β1',2β<2''<2β''<2β1'',2β2'''<2β'''<2β1'''则此时,岩体将不沿三组结构面破坏,而将沿β0=π/4+υ0/2的岩石截面破坏。
岩体和岩块破坏时主应力之间的关系为σ1=σ3+√(mσcσ3+S(σc)^2) ,令σ3=0,可得单轴抗压强度σmc=(√S)σc
将σ1=0代入并对σ3求解得岩体单轴抗压强度σmc=½σc(m-√(m^2+4s))。
第一章 绪论1、岩石力学定义:岩石力学是研究岩石的力学性质的一门理论与应用科学;它是力学的一个分支;它探讨岩石对其周围物理环境中力场的反应。
2、岩石力学研究的目的:科学、合理、安全地维护井巷的稳定性,降低维护成本,减少支护事故。
3、岩石力学的发展历史与概况: (1)初始阶段(19世纪末—20世纪初)1912年,海姆(A.Hmeim )提出了静水压力理论:金尼克(A.H.ΠHHHHK )的侧压理论: 朗金(W.J.M.Rankine )的侧压理论: (2)经验理论阶段( 20世纪初—20世纪30年代)普罗托吉雅克诺夫—普氏理论:顶板围岩冒落的自然平衡拱理论; 太沙基:塌落拱理论。
4、地下工程的特点:(1)岩石在组构和力学性质上与其他材料不同,如岩石具有节理和塑性段的扩容(剪胀)现象等; (2)地下工程是先受力(原岩应力),后挖洞(开巷); (3)深埋巷道属于无限域问题,影响圈内自重可以忽略; (4)大部分较长巷道可作为平面应变问题处理;(5)围岩与支护相互作用,共同决定着围岩的变形及支护所受的荷载与位移; (6)地下工程结构容许超负荷时具有可缩性; (7)地下工程结构在一定条件下出现围岩抗力; (8)几何不稳定结构在地下可以是稳定的; 5、影响岩石力学性质和物理性质的三个重要因素矿物:地壳中具有一定化学成分和物理性质的自然元素和化合物; 结构:组成岩石的物质成分、颗粒大小和形状以及相互结合的情况; 构造:组成成分的空间分布及其相互间排列关系;第二章 岩石力学的地质学基础 1、岩石硬度通常采用摩氏硬度,选十种矿物为标准,最软是一度,最硬十度。
这十种矿物由软到硬依次为:l-滑石; 2-石膏;3-方解石;Hγ1νλν=-H λγH λγ4-萤石;5-磷灰石;6-正长石;7-石英;8-黄玉; 9-刚玉;10-金刚石;2、解理:是指矿物受打击后,能沿一定方向裂开成光滑平面的性质,裂开的光滑平面称为解理面。
第四章岩石的强度岩石强度是岩石的一种重要的力学特性。
是指岩石抵抗载荷(外力)而不受屈服或破裂的能力,是岩石承受外力的极限应力值。
岩石受力后会发生变形,一旦应力达到岩石的极限应力值,岩石就会发生破坏。
在岩石强度应力值之前,存在屈服点(应变明显增大,而应力不再需要明显增大时的应力),超过屈服点和达到极限强度(岩石破裂要达到的最大应力值)前,一般仍有一些抵抗应变而恢复原形的能力,但达到极限强度后岩石破裂,就完全失去恢复能力。
通常所讲的岩石强度,一般是指岩石样件的测量强度,它仅代表岩体内岩块的强度,不能代表整个岩体的强度。
但在涉及岩石强度的工程问题中,一般是针对岩体的强度,而岩体往往包含一些软弱的结构面。
几组软弱结构面可以将岩体分割成各种形状和大小不同的岩块。
因此,岩体的强度取决于这些岩块强度和结构面的强度,岩块内微结构面的作用将直接反映到岩石的力学性质上。
岩石受力方式的不同,表现出的强度特性不尽相同。
如在张力、压力和剪切力的作用下,同种岩石会呈现出不同的强度特性。
因此岩石具有抗张、抗压和抗剪切强度等之分。
岩石受力条件的不同,可表现出变形、破裂、蠕变等现象,这些现象有着一定的规律性。
岩石的强度是衡量岩石基本力学性质的重要指标,是建立岩石破坏判据的重要指标,还可估计其他力学参数。
岩石的这些力学特性广泛用于建筑行业、水利水电工程、地质灾害研究与预防、断裂构造研究等方面。
4.1影响岩石强度的主要因素1)岩石成分和结构组成岩石的矿物种类及含量、矿物颗粒大小、固结程度、胶结物种类、矿物形态与分布等均影响到岩石的各种强度。
固结程度高、硅质胶结、细粒、交错结构的强度大。
2)岩石中不连续面和间断面岩石中微裂缝、微小断裂、节理层理等的发育程度和分布情况直接影响到岩石的强度,这些不连续或间断面会降低岩石在不同方向上的强度。
3)岩石孔隙度及流体性状岩石的孔隙度以及其中所含流体种类、饱和度、渗透率等因素以较复杂的关系影响着岩石强度。
、单轴抗拉强度任1、定义单向拉伸条件下,岩块能承受的最大拉应力 ,简称抗拉强度2、研究意义(1 )衡量岩体力学性质的重要指标当前位置:课程学习/第四章岩块的变形与强度性质/第三节岩块的强度性质第三节岩块的强度性质岩块的强度 是指岩块抵抗外力破坏的能力。
根据受力状态不同,岩块的强度可分为单轴抗压强度、单轴抗拉强度、剪切强度、三轴压缩强度等。
一、单轴抗压强度CC1、 定义在单向压缩条件下,岩块能承受的最大压应力,简称抗压强度(MPa )。
2、 研究意义(1 )衡量岩块基本力学性质的重要指标。
(2) 岩体工程分类、建立岩体破坏判据的重要指标。
(3) 用来估算其他强度参数。
3、 测定方法抗压强度试验 点荷载试验4、 常见岩石的抗压强度常见岩石的抗压强度(2 )用来建立岩石强度判据,确定强度包络线(3 )选择建筑石材不可缺少的参数3、测定方法直接拉伸法间接法(劈裂法、点荷载法)4、常见岩石的抗拉强度常见岩石的抗拉强度5、抗拉强度与抗压强度的比较岩石中包含有大量的微裂隙和孔隙,岩块抗拉强度受其影响很大,直接削弱了岩块的抗拉强度。
相对而言,空隙对岩块抗压强度的影响就小得多,因此,岩块的抗拉强度一般远小于其抗压强度。
通常把抗压强度与抗拉强度的比值称为脆性度,用以表征岩石的脆性程度。
岩块的几种强度与抗压强度比值三、剪切强度1定义在剪切荷载作用下,岩块抵抗剪切破坏的最大剪应力,称为剪切强度。
2、类型(1)抗剪断强度:指试件在一定的法向应力作用下,沿预定剪切面剪断时的最大剪应力。
r = C(2)抗切强度:指试件上的法向应力为零时,沿预定剪切面剪断时的最大剪应力。
(3)摩擦强度:指试件在一定的法向应力作用下,沿已有破裂面(层面、节理等)再次剪切破坏时的最大剪应力。
3、研究意义反映岩块的力学性质的重要指标。
用来估算岩体力学参数及建立强度判据。
4、抗剪断强度的测试方法直剪试验变角板剪切试验三轴试验5、常见岩石的剪切强度常见岩石的剪切强度四、三轴压缩强度1定义试件在三向压应力作用下能抵抗的最大的轴向应力。
《岩石力学教案》PPT课件第一章:岩石力学概述1.1 岩石力学的定义岩石力学的定义和研究对象岩石力学的应用领域1.2 岩石的物理和力学性质岩石的物理性质岩石的力学性质1.3 岩石力学的研究方法实验研究理论分析和数值模拟第二章:岩石的力学行为2.1 岩石的弹性行为弹性模量和泊松比弹性应变和应力2.2 岩石的塑性行为塑性应变和应力岩石的屈服和破坏2.3 岩石的断裂行为断裂韧性和断裂强度断裂准则第三章:岩石的变形和强度3.1 岩石的变形线应变和切应变弹性变形和塑性变形3.2 岩石的强度压缩强度和拉伸强度剪切强度和抗弯强度3.3 岩石的流变行为粘弹性理论和流变模型岩石的长期强度和蠕变特性第四章:岩石力学实验4.1 岩石力学实验方法实验设备和原理实验步骤和数据采集4.2 岩石力学实验案例压缩实验剪切实验弯曲实验4.3 实验结果分析和讨论实验数据的处理和分析实验结果的可靠性和精度第五章:岩石力学在工程中的应用5.1 岩石工程中的岩石力学问题岩体支护和加固设计5.2 岩土工程中的岩石力学应用岩土工程的稳定性分析岩土工程的支护和加固技术5.3 采矿工程中的岩石力学应用矿山压力和岩层控制矿山支护和通风技术第六章:岩石力学数值模拟6.1 数值模拟方法概述有限元方法离散元方法有限差分方法6.2 岩石力学数值模型连续介质模型离散介质模型6.3 数值模拟案例分析岩体稳定性分析岩石破裂过程模拟第七章:岩石力学在地质工程中的应用7.1 地质工程中的岩石力学问题地质灾害防治7.2 地质工程中的岩石力学应用隧道工程基坑工程7.3 地球物理勘探中的岩石力学地震勘探地球物理测井第八章:岩石力学在土木工程中的应用8.1 土木工程中的岩石力学问题大坝和水库岩体稳定性道路和桥梁基础稳定性8.2 土木工程中的岩石力学应用岩体支护和加固岩体锚固技术8.3 地质灾害防治中的岩石力学滑坡防治岩体崩塌防治第九章:岩石力学在采矿工程中的应用9.1 采矿工程中的岩石力学问题矿山压力和岩层控制矿山支护和通风技术9.2 采矿工程中的岩石力学应用地下开采技术露天开采技术9.3 矿山安全与环境保护矿山安全评价矿山环境保护措施第十章:岩石力学的未来发展趋势10.1 岩石力学研究的新理论连续介质力学的发展非连续介质力学的研究10.2 岩石力学研究的新技术先进的测试技术数字图像分析技术10.3 岩石力学在可持续发展中的作用绿色岩石力学可持续岩石工程设计重点和难点解析重点环节1:岩石的物理和力学性质岩石的物理性质包括密度、孔隙度、渗透率等,这些性质对岩石的力学行为有重要影响。