四年级数学上册长方体和正方体表面积和体积练习题冀教版
- 格式:doc
- 大小:82.00 KB
- 文档页数:2
立体图形练习题一长方体与正方体例1 有一个长方体,它的底面是一个正方形,它的表面积是190平方厘米,如果用一个平行于底面的平面将它截成两个长方体,则两个长方体表面积的和为240平方厘米,求原来长方体的体积.解:设原来长方体的底面边长为a厘米,高为h厘米,则它被截成两个长方体后,两个截面的面积和为2a2平方厘米,而这也就是原长方体被截成两个长方体的表面积的和比原长方体的表面积所增加的数值,因此,根据题意有:190+2a2=240,可知,a2=25,故a=5(厘米).又因为2a2+4ah=190,所以,原来长方体的体积为:V=a2h=25×7=175(立方厘米).例2如下图,一个边长为3a厘米的正方体,分别在它的前后、左右、上下各面的中心位置挖去一个截口是边长为a厘米的正方形的长方体(都和对面打通).如果这个镂空的物体的表面积为2592平方厘米,试求正方形截口的边长.解:原来正方体的表面积为:6×3a×3a=6×9a2(平方厘米).六个边长为a的小正方形的面积为:6×a×a=6a2(平方厘米);挖成的每个长方体空洞的侧面积为:3a×a×4=12a2(平方厘米);三个长方体空洞重叠部分的校长为a的小正方体空洞的表面积为:a×a×4=4a2(平方厘米).根据题意:6×9a2-6a2+3(12a2-4a2)=2592,化简得:54a2-6a2+24a2=2592,解得a2=36(平方厘米),故a=6厘米.即正方形截口的边长为6厘米.例3有一些相同尺寸的正方体积木,准备在积木的各面上粘贴游戏所需的字母和数目字.但全部积木的表面总面积不够用,还需增加一倍,请你想办法,在不另添积木的情况下,把积木的各面面积的总和增加一倍.解:把每一块积木锯三次,锯成8块小立方体(如下图).这样,每锯(倍),因此全部小积木的表面总面积就比原积木表面总面积增加了一倍.例4 有大、中、小三个正方形水池,它们的内边长分别为4米、3米、2米,把两堆碎石分别沉没在中、小水池的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉没在大水池中,大水池水面将升高多少厘米?解:水池中水面升高部分水的体积就是投入水中的碎石体积.沉入中、小水池中的碎石的体积分别是:3×3×0.04=0.36立方米,2×2×0.11=0.44立方米.它们的和是:0.36+0.44=0.8立方米.把它们都沉入大池里,大池水面升高部分水的体积也应当是0.8立方米,而大池的底面面积是4×4=16平方米,所以,大水池的水面升高:例5 下图是正方体的展开图之一,当用它组成立方体时,图中的哪一边与带★记号的边相接触呢?解:对于这个问题,考虑将各面拼凑成正方体是一种方法,但如只考虑边的连接会更简洁:首先☆和G连接,其次H和I连接,且X、Y、Z 三点重合为正方体的一个顶点,因此与★连接的是K边.例6 下图是正方体的11种展开图和2种伪装图(即它们不是正方体的展开图).请你指出伪装图是哪两个?解:无论哪一个图中都有六个小正方形,都好像有道理,但当我们把相邻两边逐一拼合后,不能变成正方体的是(10)和(12),这两个图形,都是有五面在拼合时不成问题,但是最后一面总是挤在外面而成不了正方体.例7 如下面的各图中均有若干个六面体,每小题图中的几个六面体上A、B、C、D、E、F六个字母的排列顺序完全相同(即每个小题中六面体上刻字母的方式是完全一样的)试判断各小题的图中A、B、C三个字母的对面依次是哪几个字母?解:(1)由图中可知,A与B、C、E、F都相邻,故A的对面是D.E、F的位置可按右手关系得出,伸出右手,伸直大拇指按(1)中右图所示,让四指方向从A转动而指向F,此时大拇指正好指向E(向上).如果,判断为F在C对面,由(1)中左图所示,让四指的方向从A向F,此时大拇指指向B,与(1)中右图矛盾,故F在B的对面,E在C的对面.(2)~(6)按A、B、C顺序给出对面的字母:(2)E、D、F;(3)F、E、D;(4)D、F、E;(5)E、D、F;(6)F、E、D.例8有一块正方体的蛋糕.用刀子将它一刀切成两半,为了使切口成正六边形,应该怎样切呢?解:一般地,按照平常习惯的切法切下去,得到的切口成为上图中(1)的正方形或者像(2)、(3)那样的长方形.如果斜切下去时样子就不一样了,比如像(4)那样,以打算切的顶点作一方,将不相邻的某一边的中点作另一方,沿它的连接线来切,切口变成菱形.如果再进一步,连接相邻边的中点,沿着它的连线来切,如上图中(5)所示,因为切口的各边都是连接边和边的中点的直线,所以长度都相等,相邻边夹角也相等,边数是六,故是正六边形.模拟训练一、填空题:1.一块矩形纸板,长8厘米,宽6厘米,把它折成底面为正方形的长方体的侧面,则这个长方体的底面面积为______平方厘米.2.有一个棱长为6厘米的正方体木块,如果把它锯成棱长是2厘米的正方体若干块,表面积增加了______平方厘米.3.把一根2米长的方木锯成两段,表面积增加 288平方厘米,原来这根方木的体积是______立方厘米.4.把棱长为a厘米的两个正方体拼成一个长方体,长方体的表面积是5.把棱长1厘米的正方体2100个,堆成一个实心的长方体,它的高是10厘米,长和宽都大于高,这个长方体的长与宽的和是______厘米.二、选择题:1.一个正方体的体积是343立方厘米,它的全面积是__平方厘米.(A)42 (B)196 (C)294 (D)3922.把棱长为3分米的正方体锯成两个长方体,这两个长方体表面积的和是______平方分米.(A)54 (B)72 (C)108 (D)以上都不对3.如下图,一个木制的正方体的棱长为2分米,每个面的正中有一个正方形的孔通到对边,边长为1分米,孔的各棱平行于正方体相对的棱,那么这个镂空几何体的总表面积的平方分米数是____.(A)24 (B)30 (C)36 (D)424.如下页图立方体的每个角都被切下去(图中仅画了两个).问所得到的几何体有__条棱?(A)24(B)30 (C)36 (D)425.立方体各面上的数字是连续的整数(如图).如果每对对面上的两个数的和相等,那么,这三对数的和是__.(A)75 (B)76 (C)78 (D)81三、解答题:1.一个木盒从外面量长10厘米,宽8厘米,高5厘米,木板厚1厘米.问①做这个木盒最少需要1厘米厚的木板多少平方厘米?②这个木盒的容积是多少立方厘米?2.将一个长9厘米,宽8厘米,高3厘米的长方体木块锯成若干个小正方体(锯痕宽度忽略不计),然后再拼成一个大正方体,求这个大正方体的表面积.3.一个边长为6厘米的正方体铁盒装满了水,将水倒入一个长9厘米,宽8厘米的长方形水槽内,若铁皮厚度不计,求水深.4.把19个边长为2厘米的正方体重叠起来,作成如下图那样的组合形体,求这个组合形体的表面积.5.将表面积为54平方厘米、96平方厘米、150平方厘米的三个铁质正方体熔铸成一个大正方体(不计损耗).求这个大正方体的体积和表面积.6.用字母标出一个正方体的各面,下图中是三个不同方位的这一个正方体,问字母A、B、C的对面是什么字母?7.下图是一个正方体及其两个展开图.这个正方体还有九种不同的展开图(下图),请把这九个展开图填上相应的数字(注意数字的方向).8.下左图中的立方体,被两个平面所截,你能在这个正方体的展开图中画出相应的截线吗?(下右图)9.在下页图所示的12个展开图中,哪些可以做成没有顶盖的五个面的小方盒?10.下页图是一张3×5的方格纸,在保持每个方格完整的条件下,将它剪成三部分,使每部分都可以折成一个棱长为1的没有顶盖的小方盒,怎样剪?答案:一、填空题:2.432平方厘米.3.28800立方厘米.5.2100÷10=210,把210分解质因数,因为棱长为1厘米,所以符合条件(大于10厘米)的长和宽只能是15厘米和14厘米,故长与宽的和是29厘米.二、1.①256平方厘米;②144立方厘米.2.216平方厘米.3.3厘米.4.(4×9+4×10+4×8)×2=216平方厘米.5.216立方厘米,216平方厘米.6.A对面是E,B对面是F,C对面是D.7.8.9.第2,3,5,6,7,8,11,12共8个.10.如图:二、立体图形计算例1 下图是由18个边长为1厘米的小正方体拼成的,求它的表面积.分析与解答求这个长方体的表面积,如果一面一面地去数,把结果累计相加可以得到答案,但方法太繁.如果仔细观察,会发现这个立体的上下、左右、前后面的面积分别相等.因此列式为:(9+8+7)×2=48(平方厘米).答:它的表面积是48平方厘米.例2 一个圆柱体底面周长和高相等.如果高缩短了2厘米,表面积就减少12.56平方厘米.求这个圆柱体的表面积.分析一个圆柱体底面周长和高相等,说明圆柱体侧面展开是一个正方形.解题的关键在于求出底周长.根据条件:高缩短2厘米,表面积就减少12.56平方厘米,用右图表示,从图中不难看出阴影部分就是圆柱体表面积减少部分,值是12.56平方厘米,所以底面周长C=12.56÷2=6.28(厘米).这个问题解决了,其它问题也就迎刃而解了.解:底面周长(也是圆柱体的高):12.56÷2=6.28(厘米).侧面积:6.28×6.28=39.4384(平方厘米)两个底面积(取π=3.14):表面积:39.4384+6.28=45.7184(平方厘米)答:这个圆柱体的表面积是45.7184平方厘米.例3 一个正方体形状的木块,棱长为1米.若沿正方体的三个方向分别锯成3份、4份和5份,如下图,共得到大大小小的长方体60块,这60块长方体的表面积的和是多少平方米?分析如果将60个长方体逐个计算表面积是个很复杂的问题,更何况锯成的小木块长、宽、高都未知使得计算小长方体的表面积成为不可能的事.如果换一个角度考虑问题:每锯一次就得到两个新的切面,这两个面的面积都等于原正方体一个面的面积,也就是,每锯一次表面积增加1+1=2平方米,这样只要计算一下锯的总次数就可使问题得到解决.解:原正方体表面积:1×1×6=6(平方米),一共锯了多少次:(次数比分的段数少1)(3-1)+(4-1)+(5-1)=9(次),表面积:6+2×9=24(平方米).答:60块长方体表面积的和是24平方米.例4一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如下图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米.瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米?合多少升?分析由题意,液体的体积是不变的,瓶内空余部分的体积也是不变的,因此可知液体体积是空余部分体积的3倍(6÷2).62.172立方厘米=62.172毫升=0.062172升.答:酒精的体积是62.172立方厘米,合0.062172升.例5一个稻谷囤,上面是圆锥体,下面是圆柱体(如下图).圆柱的底面周长是9.42米,高2米,圆锥的高是0.6米.求这个粮囤的体积是多少立方米?分析按一般的计算方法,先分别求出锥、柱的体积再把它们合并在一起求出总体积.但我们仔细想一想,如果把圆锥形的稻谷铺平,把它变成圆圆柱体,高是(2+0.2)米.这样求出变化后直圆柱的体积就可以了.解:圆锥体化为圆柱体的高:底面积:体积:7.065×(2+0.2)=15.543(立方米).答:粮囤的体积是15.543立方米.例6 皮球掉在一个盛有水的圆柱形水桶中.皮球的直径为12厘米,水桶底面直径为60厘米.皮球有2/3的体积浸在水中(下图).问皮球掉进水中后,水桶的水面升高多少厘米?分析皮球掉进水中后排挤出一部分水,使水面升高.这部分水的体积的大小等于皮球浸在水中部分的体积,再用这个体积除以圆柱形水桶底面积,就得到水面升高的高度.解:球的体积:=288π(立方厘米).水桶的底面积:π×302=900π(平方厘米).例7 下图所示为一个棱长6厘米的正方体,从正方体的底面向内挖去一个最大的圆锥体,求剩下的体积是原正方体的百分之几?(保留一位小数).分析直圆锥底面直径是正方体的棱长,高与棱长相等.剩下体积等于原正方体体积减去直圆锥体积.解:正方体体积:63=216(立方厘米).=56.52(立方厘米).剩下体积占正方体的百分之几.(216-56.52)÷216≈0.738≈73.8%.答:剩下体积占正方体体积的73.8%.例8 有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的直孔,如下图.圆孔的直径是4厘米,孔深5厘米.如果将这个零件接触空气部分涂上防锈漆,一共需涂多少平方厘米?分析解题时,既要注意圆柱体的外表面积,又要注意圆孔内的表面,同时还要注意到零件的底面是圆环.由于打孔的深度与柱体的长度不相同,所以在孔内还要有一个小圆的底面需要涂油漆,这一点不能忽略.但是,我们可以把小圆的底面与圆环拼成一个圆,即原圆柱体的底面.解:涂漆面积:=3.14×(18+60+20)=3.14×98=307.72(平方厘米).答:涂油漆面积是307.72平方厘米.模拟训练1.一根圆柱形钢材,沿底面直径割开成两个相等的半圆柱体,如下图.已知一个剖面的面积是960平方厘米,半圆柱的体积是3014.4立方厘米.求原来钢材的体积和侧面积.2.在一只底面直径是40厘米的圆柱形盛水缸里,有一个直径是10厘米的圆锥形铸件完全浸于水中.取出铸件后,缸里的水下降0.5厘米,求铸件的高.3.在边长为4厘米的正方体木块的每个面中心打一个边与正方体的边平行的洞.洞口是边长为1厘米的正方形,洞深1厘米(如下图).求挖洞后木块的表面积和体积.4.如下图所示的一个零件,中间一段是高为10厘米,底面半径为2厘米圆柱体,上端是一个半球体,下端是一个圆锥,它的高是2厘米.求这个零件的体积.5.塑料制的三棱柱形的筒里装着水(如下页图(1)是这个筒的展开图,图中数字单位为厘米).把这个筒的A面作为底面,放在水平桌面上,水面的高度是2厘米(如下页图(2)).问①若把B面作为底面,放在水平的桌面上,水面的高度是多少厘米?②若把C面作为底面,放在水平桌面上,水面高度是多少厘米?为4分米、3分米、2分米.把两堆碎石分别沉浸在中、小水缸的水中,两个水池的水面分别升高了4厘米和11厘米.如果将这两堆碎石都沉浸在大水缸中,大水缸中水面将升高多少厘米?7.如下图是一个正方体,H、G、F分别为棱AB、AD、AE的中点.现沿三角形GFH的面锯掉一个角,问锯掉这块的体积是整个立方体体积的几分之几?(提示:V棱柱=S·h,S为底面积,h为高.可见棱锥的体积是等底等高的棱柱体积的三分之一.)答案1.3014.4×2=6028.8(立方厘米),960×π=3014.4(平方厘米).答:原钢材体积是6028.8立方厘米,侧面积是3014.4平方厘米.2.下降部分水的体积:铸件的高:答:铸件的高是24厘米.3.提示:大正方体的边长为4厘米,挖去的小正方体边长为1厘米,说明大正方体木块没被挖通,因此,每挖去一个小正方体木块,大正方体的表面积增加“小洞内”的4个侧面积.解:6个小洞内新增加面积的总和:1×1×4×6=24(平方厘米),原正方体表面积:42×6=96(平方厘米),挖洞后木块表面积:96+24=120(平方厘米),体积:43-13×6=58(立方厘米).答:挖洞后的表面积是120平方厘米,体积是58立方厘米.=150.72(立方厘米).答:这个零件的体积是48π立方厘米,即约150.72立方厘米.5.解:以A为底面时,水的体积为:①以B面为底面时:由于以A为底面时,有水的部分占其纵截面(底边角形高度的一半,即为1.5厘米.②以C面为底面时,水的高度为:6.解:两堆碎石的体积之和:3分米=30厘米,2分米=20厘米,302×4+202×11=8000(立方厘米).沉浸在大水缸中水面应升高高度:4分米=40厘米,8000÷402=5(厘米).答:如果沉浸在大水缸中,水面升高5厘米.7.解:将正方体沿各棱中点,依水平和垂直方向切开,可得8个相同的小正方体,每个小正方体又可切成2个小三棱柱体,每个小三棱柱体的体积是等底等高三棱锥(即锯掉的一角)体积的三倍.因此锯掉的这块体积是三.旋转体例1 甲、乙两个圆柱形水桶,容积一样大,甲桶底圆半径是乙桶的1.5倍,乙桶比甲桶高25厘米,求甲、乙两桶的高度.分析与解答如下图.由题意,设乙桶半径为r,则甲桶半径为1.5r;甲桶高度为h,则乙桶高度为h+25,则π(1.5r)2h=πr2(h+25),2.25r2h=r2(h+25),2.25h=h+25,∴h=20(厘米),h+25=45(厘米).答:甲桶高度为20厘米,乙桶高度为45厘米.例2 一块正方形薄铁板的边长是22厘米,以它的一个顶点为圆心,边长为半径画弧,沿弧剪下一个扇形,用这块扇形铁板围成一个圆锥筒,求它的容积(结果取整数部分).筒底的周长=2πr=11π,解得r=5.5厘米.因为母线长是22厘米,所以圆锥的高答:所求圆锥筒的容积约为674立方厘米.为2米,圆锥的高为1米,这堆谷重约多少公斤(谷的比重是每立方米重720公斤,结果取整数部分)?答:这堆谷子重约306公斤.例4 有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,再把石子全部拿出来,求此时容器内水面的高度.解:如上页图,设石子取出后,容器内水面高度为x厘米,则倒圆锥容器的容积等于水的体积加上石子的体积.根据体积公式有x3=(52×10-196)×4=54×4=27×8=33×23,∴x=6.答:石子取出后,容器内水面的高为6厘米.例5 有一草垛,如下图,上部是圆锥形,下部是圆台形,圆锥的高为0.7米,底面圆周长为6.28米,圆台的高为1.5米,下底面周长为4.71米.如果每立方米草约重150公斤,求这垛草的重量(结果取整数部分).分析与解答圆锥的体积:圆台上底半径:r上=r=1米,∴草垛体积为:V圆锥+V圆台=0.73+3.63=4.36(立方米),故草垛的重量为:150×4.36=654(公斤).答:草垛约重654公斤.例6 如下右图,在长为35厘米的圆筒形管子的横截面上,最长直线段为20厘米,求这个管子的体积.分析如上左图,AB是截面圆环的最长直线段,O是截面圆环的圆心.过O作AB的垂线,垂足是C,以O为圆心,以OC为半径作圆,即管截面的内圆周.连结AO,根据勾股定理有:AO2=AC2+CO2,∴AO2-OC2=AC2,同理AO2-OC2=BC2,∴S圆环=π·AO2-π·OC2=π·(AO2-OC2)解:先求出管子横截面的圆环面积为则管子的体积为:π·r2外径·h-πr2内径h=圆环面积×h=100π×35=3500π(立方厘米)答:这个管子的体积为3500π立方厘米.模拟训练一、填空题:1.一个圆柱体的侧面积是m平方厘米,底面半径是2厘米,它的体积是___立方厘米.2.一个圆锥的母线长为8厘米,底面直径为12厘米,那么这个圆锥的侧面积等于____平方厘米.3.圆台的上、下底面半径分别为2厘米和5厘米,母线长为4厘米,那么这个圆台的表面积等于____.4.用半径为2厘米的半圆形铁皮卷成的圆锥形容器,则它的底面半径为____厘米,容积是____立方厘米.5.一个圆锥的高是10厘米,侧面展开图是半圆,那么圆锥的侧面积等于____.二、选择题:1.一个圆柱体高80厘米,侧面积为1.5平方米,它的全面积是____(精确到0.01平方米).(A)1.78平方米(B)2.06平方米(C)3.74平方米(D)5.25平方米2.圆锥的侧面积为427.2平方厘米,母线长为17厘米,那么圆锥的高是___(精确到0.01厘米).(A) 5.75厘米(B)15厘米(C)16.52厘米(D)5.25厘米3.圆柱的一个底面积是S,侧面展开图是一个正方形,那么这个圆柱的侧面积是___.(A)4πS(B)2πS4.母线和底面直径相等的圆锥叫做等边圆锥,一个等边圆锥的底面半径是5厘米,那么它的侧面积是_______.(A)25平方厘米(B)50π平方厘米(C)100π平方厘米(D)250π平方厘米5.把一个底面半径是1厘米的圆柱体侧面展开,得到一个正方形,这个圆柱体的体积是立方厘米(取r=3.14).(A) 1 (B) 3.14(C)3.14×3.14 (D) 3.14×6.286.长、宽分别为6寸、4寸的长方形铁片,把它围成一个圆桶,另加一个底,形成圆柱形的杯子,这个杯子的最大容积是____.三、解答题:1.一个底面直径是20厘米的圆柱形容器中装着水,水中放置一个底面半径是9厘米,高20厘米的铁质圆锥体,当圆锥从桶中取出后,桶内的水将下降多少厘米?2.在一只底面半径为20厘米的圆柱形小桶里,有一半径为10厘米的圆柱形钢材浸在水中.当钢材从桶里取出后,桶里的水下降了3厘米.求这段钢材的长.3.有A、B两个容器,如下页图,先将A容器注满水,然后倒入B 容器,求B容器的水深.(单位:厘米)4.从一个底面半径为3厘米,高为4厘米的圆柱中,挖去一个以圆柱上底面为底,下底面中心为顶点的圆锥,得到一个如下图的几何体.求这个几何体的表面积和体积.5.圆锥形烟囱帽的底的半径是40厘米,高是30厘米,计算它的侧面面积.若烟囱表面要涂油漆,已知每平方米需要油漆150克,问需油漆多少克?6.一个圆台的母线长为25厘米,而两个底面半径之比为1:3,已知圆台的侧面积等于1000π平方厘米,求这个圆台的全面积.7.把一条导线以螺旋状绕在圆柱管上,绕成十圈,圆柱管的外圆周长4厘米,导线的两端点位于圆柱的同一条母线上,每线长(两端点之间的距离)为9厘米.试求导线的长度.8.在长为1米的圆筒形管子的横截面上,最长直线段为12厘米,求此管子的体积.9.如下页图,长方形纸片ABCD中,AB=3厘米,BC=4厘米,①如果以BC为底边,折成一个底面为正方形的长方体,加盖后其体积为V1;如果以AB为底边,同样折成一个长方体,其体积为V2,求V1∶V2.②如果以BC为底边,把纸卷成一个圆柱,其体积为V3;如果以AB为底边,把纸片卷成一个圆柱,其体积为V4,求V3∶V4(取π=3.14).③这四个不同形状的形体,加盖后其表面积之比又分别是多少(即求S1∶S2和S3∶S4)?10.一个几何体如下图,求它的表面积.答案一、1.m立方厘米;2.48π(平方厘米);3.57π(平方厘米).5.设圆锥母线为l厘米,底面半径为r厘米,根据题意有πl=2πr.故二、三、∴x=5.4(厘米).2.设这段钢材长为x厘米,则π×202×3=π×102×x,∴x=12厘米.∴h=4.8厘米.4.因为底面半径为3厘米,高为4厘米,所以挖掉圆锥的母线长等于=3.14×2000=6280(平方厘米)=0.628(平方米),0.628×150=94.2(克).6.设圆台上底半径为x厘米,则π×(x+3x)×25=1000π.解得x=10(厘米),故3x=30(厘米).圆台的全面积等于:1000π+π×102+π×302≈0.628(平方米).7.把圆柱表面和导线一起展开在一个平面上,母线(9厘米),10个重复的圆周(10×4厘米)和导线(l厘米)构成一个直角三角形,因此,管子的体积为36π×100=3600π(立方厘米).∴V1∶V2=4∶3.∴S1∶S2=112∶105.∴V3∶V4=4∶3,=145∶134.10.几何体的表面积:=108π+360π+240+400+160=468π+800.。
正方体和长方体的体积练习题目正方体和长方体的体积练习题目篇一:长方体和正方体的体积练习题填空:(1)表面积和体积的意义不同,表面积是物体的()大小,体积是物体所占的()大小。
(2)、表面积和体积所用的计量单位不同,计量表面积常用的单位有()()()相邻的两个面积单位间的进率是()。
计量物体体积常用的单位有()()();相邻的体积单位间的进率是()。
(3)、表面积和体积的计算方法不同。
计算正方体的体积公式是()或()。
计算长方体的表面公式是();计算长方体的体积公式是()或()。
(4)、一个正方体,棱长是8分米,这个正方体的棱长之和是;表面积是();体积()。
(5)、一个长方体,长2米,宽5分米,高0.4分米。
这个长方体的表面积是();体积是()。
(6)、一根长方体材料,宽3分米,厚2厘米,体积是0.12立方米。
这根木材的长是,放在地上占地面积最大是()。
1.填空。
(2)用字母表示长方体的体积公式是( )。
(3)棱长2分米的正方体,一个面的面积是( ),表面积是( ),体积是( )。
(4)一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是( ),体积是( )。
(5)5立方米=( )立方分米2.8立方分米=( )立方厘米720立方分米=( )立方米32立方厘米=( )立方分米2.7立方米=( )升 1200毫升=( )立方厘米4.25立方米=( )立方分米=( )升 1.2立方米=( )升=( )毫升1、长方体有()个面,()条棱,()个顶点。
2、物体所占()的大小,叫做物体的体积。
3、一个正方体的表面积是54平方米,它的每个面的面积是()平方米,它的棱长是()米。
5、把棱长3cm的正方体切成棱长1cm的小正方体,可以切成( )块。
6、填上合适的单位名称。
一个文具盒的体积大小约有140();货车的油箱的容积是50()数学书的封面的面积大约是300();一个热水瓶的容积约是2()7、3.08 m2=()dm2 870cm3=( )dm36.47L=( )ml=( ) dm3 489ml=( )cm3=( ) dm38、一个正方体的棱长扩大到它的4倍,面积扩大到它的()倍,体积扩大到它的()倍。
冀教版四年级数学上册第一单元测试卷时间:50分钟A卷.练习卷一、单选JL 一种汽油桶,最多可装200升汽油.我们说这个汽油桶的()是200升.A.高B.表而积C.体积D.容积2.把1升水倒入容积为220毫升的纸杯中,最多可以倒满()杯。
A. 3B. 4C. 5D. 63.一个棱长3cm的正方体的表而积和体积()A.体积大B.表面积大C.不能比较4.一小瓶矿泉水的净含量是()oA. 330LB. 330mLC. 330dm3二、判断题1.1升水和1升汽油的质量相等。
6.一个粉笔盒的体积有180立方分米.7.用滴管滴100滴水大约是100毫升。
8.一个保温杯的体积是2立方分米,瓶里一定能装2升水.三、填空题9.8000毫升=升。
10.瓶装牛奶一般用作单位,桶装花生油一般用作单位.11.一个游泳池长50米,宽25米,高3米,如果往游泳池中放2. 5米深的水,一共放水立方米,合立方分米,合升.12.-5 小时=时分lm°50dm°=dm"13.750mL=L 9. 46cm3= mL四、解答题14. 小明用几个1立方厘米的正方体木块摆了一个物体。
下面是从不同方向看到的图形。
这个物体的体积是多少?15. 据统计,一个坏了的水龙头,如果不断地往外滴水,每分钟约滴水50毫升。
照这 样计算,一小时会浪费多少升水? 一天会浪费多少升水?五、应用题16. 一个长方体容器,底面长60厘米,宽38厘米,高35厘米,里面沉入一个长方体 钢块,当钢块取出时,容器中的水面下降5厘米,如果长方体钢块的底面积是570平 方厘米,钢块高多少厘米?B 卷.测试卷时间:60分钟一、在()里填上合适的单位。
3.一桶饮用水有15( )o4.一瓶洗发水有400( )o 1 .一瓶牛奶有250( )0 2 .一瓶醋有500( )。
5.一桶食用油有4. 5()。
6.爸爸今天开车消耗了汽油8()07. 丫丫家的鱼缸里有10()水。
长方体正方体体积练习题1.填空(1)()叫做物体的体积。
(2)用字母表示长方体的体积公式是()(3)棱长2分米的正方体,一个面的面积是(),表面积是(),体积是() (40一个长方体长是0.4米、宽0.2米、高0.2米,它的表面积是()体积是()(5)a、5立方米=()立方分米2.8立方分米=()立方厘米0.8升=()毫升720立方分米=()立方米32立方厘米=()立方分米8000毫升=( )升2.7立方米=()升1200毫升=()立方厘米4.25立方米=()立方分米=()升1.2立方米=()升=()毫升2.一块砖长24厘米,宽1.2分米,厚6厘米,它的体积是多少立方分米?3.一个正方体的玻璃鱼缸,从里面量棱长是0.4米,这个鱼缸能装水多少升?4.一个长方体的沙坑装满沙子,这个沙坑长3米,宽1.5米,深2米,每立方米沙子重1400千克。
这个沙坑里共装沙子多少吨?5.有一根长0.5米的方木料,横截面的边长为2厘米,这根方木,放时占地面积有多大?体积是多少?一、填空1、40立方米=()立方分米4立方分米5立方厘米=()立方分米30立方分米=()立方米0.85升=()毫升2100毫升=()立方厘米=()立方分米0.3升=()毫升=()立方厘米2、一个正方体的棱长和是12分米,它的体积是()立方分米.3、一个长方体的体积是30立方厘米,长是5厘米,高是3厘米,宽是()厘米.4、一个长方体的底面积是0.2平方米,高是8分米,它的体积是()立方分米.5、表面积是54平方厘米的正方体,它的体积是()立方厘米.6、正方体的棱长缩小3倍,它的体积就缩小()倍.7、一个长方体框架长8厘米,宽6厘米,高4厘米,做这个框架共要()厘米铁丝,是求长方体(),在表面贴上塑料板,共要()塑料板是求(),在里面能盛()升水是求(),这个盒子有()立方米是求().8、长方体的长是6厘米,宽是4厘米,高是2厘米,它的棱长总和是()厘米,六个面种最大的面积是()平方厘米,表面积是()平方厘米,体积是()立方厘米.二、判断1、体积单位比面积单位大,面积单位比长度单位大.()2、正方体和长方体的体积都可以用底面积乘高来进行计算.()3、表面积相等的两个长方体,它们的体积一定相等.()4、长方体的体积就是长方体的容积.()5、如果一个长方体能锯成四个完全一样的正方体,那么长方体前面的面积是底面积的4倍.()三、选择1、正方体的棱长扩大2倍,则体积扩大()倍.①2②4③6④82、一根长方体木料,长1.5米,宽和厚都是2分米,把它锯成4段,表面积最少增加()平方分米.①8②16③24④323、一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍.①2②4③6④84、表面积相等的长方体和正方体的体积相比,().①正方体体积大②长方体体积大③相等5、将一个正方体钢坯锻造成长方体,正方体和长方体().①体积相等,表面积不相等②体积和表面积都不相等.③表面积相等,体积不相等.6、一个菜窖能容纳6立方米白菜,这个菜窖的()是6立方米.①体积②容积③表面积1、一块砖长24厘米,宽1.2分米,厚6厘米,它的体积是多少立方分米?2、一个长方体的沙坑装满沙子,这个沙坑长3米,宽1.5米,深2米,每立方米沙子重1400千克。
四年级上册数学单元测试-1.升和毫升一、单选题1.相邻的两个体积单位之间的进率是()A. 10B. 100C. 10002.一桶纯净水大约是()A. 20升B. 20毫升C. 200毫升3.把大、小石子分别放入装满水的两个同样大的杯里,()杯溢出的水多?A. B.4.下面的物体都是用1立方厘米的正方体摆成的,()的体积最大。
A. B. C.二、判断题5.判断对错.5升比5000立方厘米小.6.一个盒子的容积等于它的体积。
7.判断。
(1)计量液体的体积,常用的单位是毫升和升。
(2)一个木箱的体积和它的容积相等。
三、填空题8.780毫升=________升=________立方分米9.78.06m3=________dm3;________dm3=4050cm310.6升=________毫升7000毫升=________升1升50毫升=________毫升6500毫升=________升________毫升.11.在横线上填上适当的带分数3457mL=________ L1911 =________2411 =________四、解答题12.填上合适的单位名称。
五、综合题13.填空。
(1)棱长是1m的正方体,体积是________m3,它也可以看作棱长是10d的正方体,体积是________dm3,所以1m3=________dm3。
(2)棱长是1dm的正方体,体积是________dm3,它也可以看作棱长是10cm的正方体,体积是________cm3,所以1dm3=________cm3。
六、应用题14.一块长方体钢材,长1米,宽4厘米,厚3厘米,它的体积是多少立方厘米?每立方厘米的钢重7.8克,这块钢材的质量是多少千克?参考答案一、单选题1.【答案】C【解析】【解答】解:1立方米=1000立方分米;1立方分米=1000立方厘米;故选:C.【分析】根据常用的体积单位,立方米、立方分米、立方厘米;以及相邻单位之间的进率解答即可.2.【答案】A【解析】【解答】解:由分析可知:一桶纯净水大约是20升;故选:A.【分析】根据生活经验、对体积单位大小的认识,可知计量一桶纯净水的体积,应用体积单位,结合实际,应为:20升;由此解答即可.3.【答案】B【解析】【解答】把大、小石子分别放入装满水的两个同样大的杯里,放大石子的杯里溢出的水多,故选B。
章节测试题1.【答题】观察下图,被羽毛球拍盖住的面上有()个点.A. 1B. 5C. 6D. 4【答案】A【分析】此题考查的是正方体的展开图.【解答】题中正方体展开图属于1-4-1结构,把它折成正方体后,1点与5点相对,2点和6点相对,3点和4点相对.右图中3点的对面是4点,2点的对面是6点,盖住的是1点或5点,由于3点居左,2点居右,此时1点在上,5点在下,所以被羽毛球拍盖住的面上有1个点.选A.2.【题文】求长方体的表面积.【答案】112平方米【分析】长方体的表面积=(长×宽+长×高+宽×高)×2,代入数据解答即可.【解答】答:长方体的表面积是112平方米.3.【题文】求正方体的表面积.【答案】37.5平方米【分析】正方体的表面积=棱长×棱长×6,代入数据解答即可.【解答】2.5×2.5×6=37.5(平方米)答:正方体的表面积是37.5平方米.4.【题文】求下面立体图形的表面积.(单位:厘米)【答案】238平方厘米【分析】图中立体图形的表面积=长方体的表面积+正方体的侧面积,代入数据解答即可.【解答】答:立体图形的表面积是238平方厘米.5.【题文】一块长方形的铝板,在四个角各剪去一个小正方形,制作无盖的水槽.(如图)(1)制作水槽需要多少平方分米的铝板?(2)原来长方形铝板的面积是多少平方分米?【答案】(1)27.8dm2;(2)30.36dm2【分析】(1)求制作水槽需要多少平方分米的铝板,就是求长方体的表面积,水槽无盖,利用长×宽+(长×高+宽×高)×2计算即可;(2)利用长方形的面积=长×宽计算即可.【解答】(1)8cm=0.8dm答:制作水槽需要27.8dm2的铝板.(2)0.8×2+5=6.6(dm)0.8×2+3=4.6(dm)6.6×4.6=30.36(dm2)答:原来长方形铝板的面积是30.36dm2.6.【题文】一个正方体油箱的棱长为14分米,如果制造20个这样的油箱,至少需要铁皮多少平方分米?【答案】23520平方分米【分析】先根据正方体的表面积=棱长×棱长×6计算出一个正方体油箱的表面积,再乘20即可.【解答】14×14×6×20=23520(平方分米)答:至少需要铁皮23520平方分米。
长方体正方体的表面积和体积练习题长方体正方体的表面积和体积练卷1.长方体表面积的求法:长方体的表面积=。
如果用字母a、b、h分别表示长方体的长、宽、高。
S表示它的表面积,则S=。
长方体的体积=。
字母表示。
2.正方体表面积的求法:正方体的表面积=。
如果用字母a表示正方体的棱长,S表示正方体的表面积,则正方体的表面积计算公式是:S=。
正方体的体积=。
字母表示。
1、一个长方体有()个面,他们一般都是()形,也有可能是()个面是正方形.2、把长方体放在桌面上,最多可以看到()个面。
3、一个长方体,长12厘米,宽和高都是8厘米,这个长方体的表面积是()。
4、一个长方体,长8厘米,宽是5厘米,高是4厘米,这个长方体的表面积是(),棱长之和是()。
5、一个正方体的棱长之和是84厘米,它的棱长是(),一个面的面积是(),表面积是()。
6、把三个棱长是1厘米的正方体拼成一个长方体,这个长方体的表面积是(),比原来3个正方体表面积之和减少了()。
7、把三个棱长是2分米的正方体拼成一个长方体,表面积是(),体积是()。
8、用棱长为1厘米的小正方体木块拼成一个较大的正方体,至少要()个这样的小木块才能拼成一个正方体。
9、一个正方体的棱长假如扩大2倍,那末表面积扩大()倍,体积扩大()倍。
10、一个无盖正方体铁桶内外进行涂漆,涂漆的是()个面.11、有一根长52厘米的铁丝,恰好可以焊接成一个长6厘米,宽4厘米,高()厘米的长方体。
12、一个长方体的长宽高分别是a。
b。
h,假如高增高3米,那末表面积比原先增加()平方米,体积增加()立方米。
13、用4个棱长2分米的正方体拼成一个长方体,这个长方体的表面积是()14、用27个别积是1立方厘米的小正方体粘合成一个大正方体,粘合后的大正方体的表面积是()15、一个长15厘米,宽6厘米,高4厘米的正方体的木块,可以截成()块棱长2厘米的正方体木块。
16、有一个长方体的木料长3厘米、宽3厘米,高2厘米。
长方体和正方体的表面积在数学竞赛中,有许多问题涉及到长方体和正方体表面积的计算。
这些知识不仅有趣而且具有一定的实用性和思考价值。
解答长方体和正方体表面积的问题时,需要同学们具备较强的观察能力、作图能力以及空间想像能力,另外还要掌握一些解题的思路和技巧。
例题选讲例1:一个长方体,前面和上面的面积之和是88平方厘米,这个长方体的长、宽、高是以厘米为单位的数,且都是质数,求这个长方体的表面积。
【分析与解答】要求长方体的表面积,就要求长方体的长、宽、高。
根据题意,前面与上面的面积之和是88平方厘米,也就是长×高+长x宽=88,即长×(高+宽)=88因为长、宽、高都是质数,我们把88分解质因数得88=1l×2×2×2,依题意,11不能分成两个质数和,经试验,有两种情况符合条件,(1)ll×(3+5):88 (2)2×(41+3)一88,因此长方体的表面积可以有两种情况。
解:88—11×2X2×2,2×2×2:3+5,11×2×2—41+3。
长方体的表面积:(1)(11×3+1l×5+5×3)×2=206(平方厘米)(2)(2×3+2x4l+41×3)×2—422(平方厘米)例2:如图,将3个表面积都是24平方米的正方体木块粘成一个长方体,求这个长方体的表面积。
【分析与解答】仔细观察图形,不难看出3个正方体块粘成1个长方体,共有2个粘接处,每一处都有2个面粘在一起,两处共粘去4个面,因此粘成的长方体的表面积等于(6×3—4)个面的面积,即24÷6×(6 x3—4)=56(平方厘米)。
例3:如图所示的是用19个棱长为1厘米的正方体堆起来的立体图形,其中有一些正方体看不见,那么这个立体图形的表面积是多少?【分析与解答】仔细观察图形,虽然这个立体图形是不规则的,但是从前面看到的面与从后面看到的面个数是相等,同理从左、右看到的面个数是相等的,从上、下看到的面是一致的,所以这个立体图形的表面积等于(前面十上面+左面)×2,即(10+9+8)×2=54(平方厘米)。
长方体正方体的表面积和体积专项练习50题(有答案)1、加工一个长方体铁皮烟囱,长2.5dm,宽1.6dm,高2m,至少要用多少平方分米铁皮?2、学校要挖一个长方形状沙坑,长4m,宽2m,深0.4m,需要多少立方米的黄沙才能填满沙坑?3、把一块棱长8cm的正方体钢坯,锻造成长16cm,宽5cm的长方体钢板,这钢板有多厚?(损耗不计)4、一个长方体机油桶,长8dm,宽2dm,高6dm.如果每升机油重0.72千克,可装机油多少千克?5、一个长12cm,宽4cm,高5cm的长方体纸盒,最多能容纳几个棱长2cm的小立方体?6、一个正方体的水箱,每边长4dm,把一箱水倒入另一只长8dm,宽2.5dm的长方体水箱中,水深是多少?7、一个底面是正方形的长方体,底面周长是24cm,高是10cm,求它的体积。
8、把240立方米的土铺在长60m,宽40m的平地上,可以铺多厚?9、一个长方体玻璃鱼缸,长12dm,宽5dm,高6dm。
①制作这个玻璃鱼缸至少需要多少平方分米的玻璃?②在里面放水,使水面离鱼缸口1dm,需放水多少千克?(1立方分米的重1千克)10、一个正方体纸盒的表面积是5.4平方分米,它的占地面积是多少平方分米?11、一个正方体的棱长和48cm,求正方体的表面积和体积。
12、做一个长和宽都是3dm,高是4dm的纸箱,至少需要纸板多少平方分米?13、做一个长12dm,宽5dm,高8dm的金鱼缸(无盖),需要多少平方分米的玻璃?如果每平方分米的玻璃0.8元,做一个金鱼缸需要多少元钱?14、有一种长方体铁皮盒包装的饼干,长和宽都是20cm,高40cm。
在外包装盒的四周贴上商标纸,商标纸的面积是多少平方厘米?15、有一种长方体形状的落水管,长10cm,宽8cm,高2m,做一节这样的落水管至少需要多少平方厘米的铁皮?做20节呢?16、有一间房屋(平顶),长6m,宽3m,高3m,门窗面积是8平方米,要粉刷它的四壁和顶面,粉刷的面积有多少平方米?如果每平方米需要水泥5千克,需要水泥多少千克?17、一个长方体的游泳池,从里面量长50m,宽25m,平均水深1. 5m。
长方体和正方体表面积和体积
一、看图计算.
长方体:棱长总和:
表面积:
体积:
正方体棱长总和:
表面积:
体积:
冀教版四年级数学上册长方体和正方体表面积和
体积练习题
53= a·a·a= b+b+b= 7x·x =
3、用一根96厘米长的铁丝正好制成一个长12厘米、宽8厘米、高()厘米的长方体框架.
4、一个正方体的棱长总和是60厘米,他的棱长是(),体积是(),表面积是().
5、一根方木长20分米,把它锯成两段后,表面积增加了5平方分米,这根方木的体积是()立方分米.
三、判断(对的打“√”,错的打“×”).
1、一个正方体的棱长是6厘米,它的体积和表面积相等. ()
2、有两个相对面是正方形的长方体,它的其余四个面完全相同. ()
3、体积是1立方分米的正方体,可以分成1000个体积是1立方厘米的小正方体. ()
4、把一块正方体的橡皮泥捏成一个长方体,体积不变. ()
5、至少用4个体积是1立方厘米的正方体,才能拼成一个大正方体.()
四、解决问题
1、一段方钢长4米,横截面是边长5分米的正方形,这段方钢的体积是多少?
2、在一个底面长为20cm,宽15cm的水箱中,水面高度为10cm,放入一块铁块,水面上升到17cm,则这块铁块的体积是多少?
3.杂货店售米用的木箱(上面没有盖),长1.2米、宽0.5米、高1米. (1).制作这样一个木箱至少要用木板多少平方米?
(2.)如果把木箱放在地上,占地多少平方米?
(3.)如果木箱外面四周都刷上油漆(底面不刷),刷油漆的面积一共有多少平方米?
4、把一个棱长6分米的正方体钢坯,锻造成一个底面积是5平方分米的长方体钢块,能锻造多厚?。