混沌系统理论 ppt课件
- 格式:ppt
- 大小:5.75 MB
- 文档页数:7
混沌理论混沌理论是当今世界最伟大的理论之一。
它是社会科学与自然科学最完美结合的理论.它研究如何把复杂的非稳定事件控制到稳定状态的方法,它研究世界如何在不稳定的环境中稳定发展的问题。
.混沌方法对于处理复杂多变、动荡不定的重大事件有特殊功效混沌世界是纷繁复杂多变的世界。
“相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。
”一点就是未来无法确定。
如果你某一天确定了,那是你撞上了。
第二事物的发展是通过自我相似的秩序来实现的。
看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。
这是混沌理论两个基本的概念。
混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最小的方向运动。
第二个原则当事物改变方向的时候,他存在一些结构。
一混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。
二混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。
在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。
这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。
三近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。
如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。
一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。
专业学术讲座报告班级:信计12-2学号:************ 姓名:**二零一五年六月二十二日目录1.混沌系统概念2.典型混沌系统介绍3.混沌金融系统的线性与非线性反馈同步4.混沌研究的发展方向及意义一、混沌系统概念混沌(chaos )是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。
又称浑沌。
英语词Chaos 源于希腊语,原始 含义是宇宙初开之前的景象,基本含义主要指混乱、无序的状态。
作为科学术语,混沌一词特指一种运动形态。
动力学系统的确定性是一个数学概念,指系统在任一时刻的状态被初始状态所决定。
虽然根据运动的初始状态数据和运动规律能推算出任一未来时刻的运动状态,但由于初始数据的测定不可能完全精确,预测的结果必然出现误差,甚至不可预测。
运动的可预测性是一个物理概念。
一个运动即使是确定性的,也仍可为不可预测的,二者并不矛盾。
牛顿力学的成功,特别是它在预言海王星上的成功,在一定程度上产生误解,把确定性和可预测性等同起来,以为确定性运动一定是可预测的。
20世纪70年代后的研究表明,大量非线性系统中尽管系统是确定性的,却普遍存在着对运动状态初始值极为敏感、貌似随机的不可预测的运动状态——混沌运动。
混沌是指现实世界中存在的一种貌似无规律的复杂运动形态。
共同特征是原来遵循简单物理规律的有序运动形态,在某种条件下突然偏离预期的规律性而变成了无序的形态。
混沌可在相当广泛的一些确定性动力学系统中发生。
混沌在统计特性上类似于随机过程,被认为是确定性系统中的一种内禀随机性。
二、典型混沌系统介绍Lorenz 系统混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。
他提出了著名的Lorenz 方程组:。
这是一个三阶常微分方程组。
它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。
式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统(2-1)的主要控制参数。
混沌理论简介混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。
混沌理论是一种兼具质性思考与量化分析的方法。
混沌理论的主导思想是,宇宙本身处于混沌状态,在其中某一部分中似乎并无关联的事件间的冲突,会给宇宙的另一部分造成不可预测的后果。
这意味着,系统具有放大作用。
一个微小的运动经过系统的放大,最终影响会远远超过该运动的本身。
所以,当有人说,因为英国的一只蝴蝶扇了一下翅膀,中国可能会遭受一场台风时,他的观点里就包含着混沌理论的思想。
两个基本的概念:第一,未来无法确定。
如果你某一天确定了,那是你撞上了。
第二,事物的发展是通过自我相似的规律来实现的。
看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。
有三个原则:1、能量永远会遵循阻力最小的途径。
2、始终存在着通常不可见的根本结构,这个结构决定阻力最小的途径。
3、这种始终存在而通常不可见的根本结构,不仅可以被发现,而且可以被改变。
起因混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。
所谓「差之毫厘,失之千里」正是此一现象的最佳批注。
具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。
但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。
混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。
如股票市场的起伏、人生的平坦曲折、教育的复杂过程。
混沌理论的特性混沌理论有以下几个特性:1,随机性.2,敏感性. 3,分维性. 4,普适性.5,标度律.运用混沌理论在教育行政、课程与教学、教育研究、教育测验等方面已经有些许应用的例子。
混沌系统的理论及其应用混沌系统是在确定性条件下表现出无规律有序行为的非线性动力学系统。
其最初的研究起源于20世纪60年代的美国洛斯阿拉莫斯国家实验室。
混沌系统具有高度复杂性和敏感性,进而极大的扩展了物理学理论和应用领域。
本文将着重讨论混沌系统的理论及其应用。
一、混沌系统的理论混沌系统是因为开普勒行星运动时,根据质心运动定律来进行计算结果与实际测量结果出入极大,引起科学家们的共同关注,并最终发现这是由于天文学的实验误差所导致的不可预测性。
后来,经过系统的分析,混沌理论得到了进一步的发展。
混沌系统的本质特征是敏感依赖条件。
敏感依赖条件是指初始条件的微小改变在时间积累下将会被放大到显著改变系统行为的程度。
换而言之,小变化是会引起大的效应的。
混沌系统常是由三个特征所描述。
一是系统的非线性,超过线性阈值的物理系统具有多个平衡点或受周期性力的影响。
二是系统的灵敏性,包括在一定范围内的系统初值对后续轨迹产生巨大影响。
三是系统的混沌性,敏感依赖条件和确定性同时存在,系统的状态表现出随时间变化而无规律的行为。
二、混沌系统的应用混沌系统的应用十分广泛,主要分为两个方面:基础科学和工程领域的应用。
下面将分别进行阐述。
1.基础科学的应用混沌系统在基础科学研究中的应用范围非常广泛。
例如混沌系统可以解释非线性物理系统的行为模式,如热力学系统、流体力学系统、光学系统等。
另外,混沌系统也可以解释生态系统、社会系统等不稳定和复杂的系统行为。
此外,混沌系统还具有对天文学、气象学、地球物理学等领域的研究支持。
2.工程领域的应用混沌系统的确切行为表现也离不开应用相关工程技术,其应用较为常见的即挖掘和利用混沌信号。
混沌信号是混沌系统输出的信号,其难以预测和分析依靠特殊技术进行处理。
混沌信号应用于信息传输加密,使用混沌信号可以更好的保证信息的安全性。
此外,混沌系统的灵敏性也使得其成为应用于前沿科学领域的动力学模型,例如混沌变换器、混沌涡旋、混沌雷达等等都有很好的应用前景。
专业学术讲座报告班级:信计12-2学号:************ 姓名:**二零一五年六月二十二日目录1.混沌系统概念2.典型混沌系统介绍3.混沌金融系统的线性与非线性反馈同步4.混沌研究的发展方向及意义一、混沌系统概念混沌(chaos )是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。
又称浑沌。
英语词Chaos 源于希腊语,原始 含义是宇宙初开之前的景象,基本含义主要指混乱、无序的状态。
作为科学术语,混沌一词特指一种运动形态。
动力学系统的确定性是一个数学概念,指系统在任一时刻的状态被初始状态所决定。
虽然根据运动的初始状态数据和运动规律能推算出任一未来时刻的运动状态,但由于初始数据的测定不可能完全精确,预测的结果必然出现误差,甚至不可预测。
运动的可预测性是一个物理概念。
一个运动即使是确定性的,也仍可为不可预测的,二者并不矛盾。
牛顿力学的成功,特别是它在预言海王星上的成功,在一定程度上产生误解,把确定性和可预测性等同起来,以为确定性运动一定是可预测的。
20世纪70年代后的研究表明,大量非线性系统中尽管系统是确定性的,却普遍存在着对运动状态初始值极为敏感、貌似随机的不可预测的运动状态——混沌运动。
混沌是指现实世界中存在的一种貌似无规律的复杂运动形态。
共同特征是原来遵循简单物理规律的有序运动形态,在某种条件下突然偏离预期的规律性而变成了无序的形态。
混沌可在相当广泛的一些确定性动力学系统中发生。
混沌在统计特性上类似于随机过程,被认为是确定性系统中的一种内禀随机性。
二、典型混沌系统介绍Lorenz 系统混沌的最早实例是由美国麻省理工学院的气象学家洛伦兹在1963年研究大气运动时描述的。
他提出了著名的Lorenz 方程组:。
这是一个三阶常微分方程组。
它以无限平板间流体热对流运动的简化模型为基础,由于它的变量不显含时间t ,一般称作自治方程。
式中x 表示对流强度,y 表示向上流和向下流在单位元之间的温度差,z 表示垂直方向温度分布的非线性强度,-xz 和xy 为非线性项,b 是瑞利数,它表示引起对流和湍流的驱动因素 (如贝纳对流上下板的温度差△T)和抑制对流因素 (如(Prandtl)数粘性)之比,是系统(2-1)的主要控制参数。
系统自相似性与全息、分形、混沌的概念众所周知,人体系统是宇宙间最复杂的系统之一,复杂性问题是现代科学的一个核心问题。
在研究复杂系统的科学进程中,出现了多种学科,如系统理论、自组织理论、耗散结构理论、混沌理论等等。
在研究过程中,复杂系统的一个本质特性逐渐被深刻地揭示出来,这就是系统的自相似性(Self-Similarity)。
大量事实表明,自相似性不只是存在于生物界,它是一种广泛存在于物质世界、自然界和人类社会文化的普遍法则。
自相似性(Self-Similarity)定义:简单地说,就是局部的结构或功能与整体相似(这种相似是一种统计意义上的相似),自相似性是宇宙间的一种普遍现象。
与自相似性研究重要相关的学科包括:源于西方哲学背景的分形理论(Fractal Theory)、混沌理论(Chaos Theory),源于东方哲学背景的全息理论(Holographics)、相似理论(Similology)。
分形理论(Fractal Theory)的核心概念分形(Fractal)首先是由IBM公司的法国数学家曼德布罗特(Benoit B.Mandelbrot)提出的。
他1975年的专著《分形:形,机遇与维数》的问世标志着分形理论的诞生。
从此分形理论的研究引起了各领域广大学者的关注。
在数学、物理、化学、地球科学等各个领域内得到了广泛的应用。
分形理论已经成为当今非线性科学的主要内容之一。
它的研究对象的共同特点之一,就是具有一种自相似性,无限自相似性就是分形的精髓。
分形理论经过二十多年的发展,已逐步形成了自己的研究方法,以用于揭示无规则现象的内部所隐藏的规律性、层次性和确定性。
分形与混沌构成了当今非线性科学的主要内容。
分形理论的自相似性概念,最初是指形态或结构的相似性。
也就是说,在形态或结构上具有自相似性的几何对象称为分形。
而后随着研究工作的深入发展和研究领域的拓宽,又由于系统论、信息论、控制论、耗散结构理论和协同论等一批新学科相继涌现的影响,自相似性概念得到充实与扩充,人们把形态结构、功能和时间上的相似性都包含在自相似性概念之中,即所谓的广义分形概念。