时间序列分析讲义第资料章资料差分方程
- 格式:docx
- 大小:218.17 KB
- 文档页数:7
第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
时间序列分析---汉密尔顿(1994)第一章 差分方程1.1一阶差分方程-1t =+w t t y y φ (1.1.1)例子:戈德费尔德(1973)估计的美国货币需求函数:t ct :I ::r :t m bt 公众持有真实货币的对数总真实收入的对数银行账户利率的对数商业票据利率的对数r-1t bt ct =0.27+0.72+0.19I -0.045r -0.019r t t m m (1.1.2) 这相当于:t =,=0.72,=0.27+0.19-0.045-0.019t t t bt ct y m w I r r φ且有在第1和第2章的讨论中,输入变量{}12,,......w w 将简单的视为一个确定性数值的序列。
递归替代法解差分方程0 0-10=+w y y φ (1.1.3) 1 101=+w y y φ (1.1.4) 2 212=+w y y φ (1.1.5) 。
t t-1t =+w t y y φ (1.1.6)因此有:2101-101-101=+w =(+w )+w =+w +w y y y y φφφφφ232212-1012-1012=+w =(+w +w )+w =+w +w +w y y y y φφφφφφφ。
+1t t-1t-2-1012t-1t =+w +w +w +......+w +w t t y y φφφφφ (1.1.7)另一个解的形式为:t-1t-2t-30123t-1t =+w +w +w +......+w +w tt y y φφφφφ这个过程被称作用递归替代法解差分方程动态乘子0/=t t y w φ∂∂ (1.1.8)如果动态模拟从t 期开始,则有:+1j j-1j-2+t-1t t+1t+2t+j-1t+j =+w +w +w +......+w +w j t j y y φφφφφ (1.1.9) 因此有: /=j t j t y w φ+∂∂在戈德费尔德(1973)估计的美国货币需求函数的例子中:2222/=(/)(/)(/)(0.72)(0.19)0.098t t t t t t t t m I m w w I w I φ++∂∂∂∂∂∂=⨯∂∂== 总结:(1)如果01φ<<,方程稳定(2)如果1φ>,方程不稳定(3)如果1φ=,则有+t-1t t+1t+2t+j-1t+j =+w +w +w +......+w +w t j y y (1.1.11)在金融和财务中的一个应用:我们可能对于w 对未来y 的值流的现值感兴趣。
一.时间序列分析的相关概念♦随机过程:若对于每一个特定的t ∈T ,X(t)是一个随机变量,则称这一族无穷多个随机变量{X(t),t ∈T}是一个随机过程。
♦纯随机过程:随机过程X(t)(t=1,2,…),如果是由一个不相关的随机变量序列构成的,即对于所有s ≠t ,随机变量X t 和X s 的协方差均为零,则称其为纯随机过程。
♦♦♦♦独立增量随机过程:任意两相邻时刻上的随机变量之差是相互独立的,则称其为独立增量随机过程。
二阶矩过程:若随机过程{X(t),t ∈T},对每个t ∈T ,X(t)的均值和方差存在,则称其为二阶矩过程。
正态过程:若{X(t)}的有限维分布都是正态分布,则称{X(t)}为正态随机过程。
平稳过程(严平稳):如果对于时间t 的任意n 个值t 1,t 2,…,t n 和任意实数 ,随机过程X(t)的n 维分布函数满足关系式F n (x 1,x 2,…,x n ; t 1,t 2,…,t n ) = F n (x 1,x 2,…,x n ; t 1+ε,t 2+ε,…,t n+ε),则称X(t)为平稳过程。
即是统计特性不随时间的平移而变化的过程。
♦宽平稳:若随机过程{X(t),t ∈T}的均值和协方差存在,且满足①EX t ∈a,∀t ∈T ;②E[X t+τ-a][X t -a]=R(τ),∀t,t+τ∈T ,则称{X(t),t ∈T}为宽平稳随机过程,R(τ)为X(t)的协方差函数。
♦非平稳随机过程:不具有平稳性的过程就是非平稳过程。
即序列均值或协方差与时间有关时,就可以认为是非平稳的。
♦♦自相关:指时间序列观察资料互相之间的依存关系。
动态性(记忆性):指系统现在的行为与其历史行为的相关性。
如果某输入对系统后继n 个时刻的行为都有影响,就说该系统具有n 阶动态性。
二.刻画时间序列统计特性的各种数字特征的定义、性质等♦均值函数其中,F t (x)为随机序列X t 的分布密度函数。
第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ1=t :10101w y y ++=φφt t =:tt t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i i t w y y ∑∑=-=++=0111010φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
第一章 差分方程 差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§ 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将表示为多个方程:0=t :01100w y y ++=-φφ1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:i ti i t t i i t w y y ∑∑=-=++=0111010φφφφ上述表达式便是差分方程的解,可以通过代入方程进行验证。
上述通过叠代将t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化过程。
1.1.2. 差分方程的动态分析:动态乘子(dynamic multiplier)在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。
假设初始值1-y 和t w w ,,1Λ不受到影响,则有:t t w y 10φ=∂∂ 类似地,可以在解的表达式中进行计算,得到:j t jt w y 1φ=∂∂+上述乘子仅仅依赖参数1φ和时间间隔j ,并不依赖观测值的具体时间阶段,这一点在任何差分方程中都是适用的。
例 货币需求的收入乘子 在我们获得的货币需求函数当中,可以计算当期收入一个单位的变化,对两个阶段以后货币需求的影响,即:利用差分方程解的具体系数,可以得到:19.0=∂∂tt I w ,72.01=φ 从而可以得到二阶乘子为:注意到上述变量均是对数形式,因此实际上货币需求相对于两个阶段以前收入的弹性系数,这意味着收入增长1%,将会导致两个阶段以后货币需求增加%,其弹性是比较微弱的。
定义 在一阶线性差分方程中,下述乘子系列称为t y 相对于外生扰动t w 的反应函数:j t jt j w y L 1φ=∂∂=+,Λ,1,0=j显然上述反应函数是一个几何级数,其收敛性依赖于参数1φ的取值。
(1) 当101<<φ时,反应函数是单调收敛的;(2) 当011<<-φ时,反应函数是震荡收敛的;(3) 当11>φ时,反应函数是单调扩张的;(4) 当11-<φ时,反应函数是震荡扩张的;可以归纳描述反应函数对于参数的依赖性:当1||1<φ时,反应函数是收敛的;当1||1>φ时,反应函数是发散的。
一个特殊情形是11=φ的情形,这时扰动将形成持续的单一影响,即t w 的一个单位变化将导致其后任何时间j t y +的一个单位变化:1≡∂∂=+t jt j w y L ,Λ,1,0=j为了分析乘子的持久作用,假设时间序列t y 的现值贴现系数为β,则未来所有时间的t y 流贴现到现在的总值为:∑∞=+0j j t j y β如果t w 发生一个单位的变化,而t s w s >,不变,那么所产生的对于上述贴现量的影响为边际导数: ∑∑∑∞=∞=+∞=+-==∂∂=∂∂00011/)(j j j j t jt j j t j t jw y w y φβφβββ,1||<φβ上述分析的是外生变量的暂时扰动,如果t w 发生一个单位的变化,而且其后的t s w s >,也都发生一个单位的变化,这意味着变化是持久的。
这时持久扰动对于)(j t +时刻的j t y +的影响乘数是:0111111φφφ+++=∂∂++∂∂+∂∂-+++++ΛΛj j jt j t t t t jt w y w y w y 当1||1<φ时,对上式取极限,并将其识为扰动所产生的持久影响: 11111)(lim φ-=∂∂++∂∂+∂∂+++++∞→j t j t t t t j t j w y w y w y Λ 例 货币需求的长期收入弹性 在例中我们已经获得了货币的短期需求函数,从中可以求出货币需求的长期收入弹性为:这说明收入增加1%最终将导致货币需求增加%,这是收入对于货币需求反馈的持久影响效果。
如果换一个角度考察扰动的影响,那么我们需要分析一个单位的外生扰动对于t y 以后路径的累积影响,这时可以将这种累积影响表示为:φ-=∂∂∑∞=+110j t j t w y 由此可见,如果能够估计出差分方程中的系数,并且了解差分方程解的结构,则可以对经济变量进行稳定性的动态分析。
另外,我们也发现,内生变量对外生变量反应函数的性质比较敏感地依赖差分方程中的系数。
§ p 阶差分方程如果在方程当中允许t y 依赖它的p 阶前期值和输入变量,则可以得到下述p 阶线性差分方程(将常数项归纳到外生变量当中):t p t p t t t w y y y y ++++=---φφφΛ2211为了方便起见,将上述差分方程表示成为矩阵形式:t t t v F +=-1ξξ其中:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=+---121p t t t t t y y y y M ξ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=-0001000000100011321M MΛM ΛΛΛM M M p p F φφφφφ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=000M t t w v 其实在方程所表示的方程系统当中,只有第一个方程是差分方程,而其余方程均是定义方程: j t j t y y --=,p j ,,2,1Λ=将p 阶差分方程表示成为矩阵形式的好处在于,它可以进行比较方便的叠代处理,同时可以更方便地进行稳定性分析。
另外,差分方程的系数都体现在矩阵F 的第一行上。
进行向前叠代,可以得到差分方程的矩阵解为:t t t t t t v v F v F v F F +++++=---+1111011Λξξ利用)(t j i f 表示矩阵t F 中第i 行、第j 列元素,则方程系统中的第一个方程可以表示为:需要注意,在p 阶差分方程的解中需要知道p 个初值:),,,(21p y y y ---Λ,以及从时刻0开始时的所有外生变量的当前和历史数据:),,,(10t w w w Λ。
由于差分方程的解具有时间上的平移性,因此可以将上述方程表示为:j t j t t j t j t j j t v v F v F v F F +-++--+++++++=11111Λξξ类似地,表示成为单方程形式:j t j t t j t j pt j p t j t j j t w w f w f w f y f y f y f y +-++--+-+-++++++++++=1)1(111)1(11)(11)1(12)1(121)1(11ΛΛ利用上述表达式,可以得到p 阶差分方程的动态反应乘子为:)(11j t jt j f w y L =∂∂=+,Λ,1,0=j由此可见,动态反应乘子主要由矩阵j F 的首个元素确定。
例 在p 阶差分方程中,可以得到一次乘子为:二次乘子为:虽然可以进一步通过叠代的方法求出更高阶的反应乘子,但是利用矩阵特征根表示则更为方便,主要能够更为方便地求出矩阵j F 的首个位置的元素。
根据定义,矩阵F 的特征根是满足下述的λ值:0||=-p I F λ一般情况下,可以根据行列式的性质,将行列式方程转换为代数方程。
例 在二阶差分方程当中,特征方程为:具体可以求解出两个特征根为:()22111421φφφλ++=,()22112421φφφλ+-= 上述特征根的表达式在讨论二阶线性差分方程解的稳定性时,我们还要反复用到。
距阵F 的特征根与p 阶差分方程表达式之间的联系可以由下述命题给出:命题 距阵F 的特征根满足下述方程,此方程也称为p 阶线性差分方程的特征方程:证明:根据特征根的定义,可知特征根满足:对上述行列式进行初等变化,将第p 列乘以)/1(λ加到第1-p 列,然后将第1-p 列乘以)/1(λ加到第2-p 列,依次类推,可以将上述行列式方程变化为对角方程,并求出行列式值为:这便是所求的p 阶线性差分方程的特征方程。
END如果知道p 阶线性差分方程的特征方程及其特征根,不仅可以分析差分方程的动态反应乘子,而且可以求解出差分方程解析解的动态形式。
1.2.1 具有相异特征根的p 阶线性差分方程的通解根据线性代数的有关定理,如果一个方阵具有相异特征根,则存在非奇异矩阵T 将其化为对角矩阵,且对角线元素便是特征根:1-Λ=T T F ,),,(1p diag λλΛ=Λ这时矩阵F 的乘级或者幂方矩阵可以简单地表示为:11)(--Λ=Λ=T T T T F j j j ,),,(1j p j j diag λλΛ=Λ假设变量ij t 和ij t 分别表示矩阵T 和1-T 的第i 行、第j 列元素,则可以将上述方程利用矩阵形式表示为:从中可以获得:j p p j j j pp p j j j c c c t t t t t t F λλλλλλ+++=+++=ΛΛ2211112211211111)(11)()()(其中:11j j j t t c =,Λ,1,0=j ,如此定义的序列具有下述约束条件(自行证明):121=+++p c c c Λ具有上述表达式以后,在差分方程的解:j t j t t j t j pt j p t j t j j t w w f w f w f y f y f y f y +-++--+-+-++++++++++=1)1(111)1(11)(11)1(12)1(121)1(11ΛΛ中可以得到动态乘子为:j p p j j j t jt j c c c f w y L λλλ+++==∂∂=+Λ2211)(11,Λ,1,0=j究竟系数序列j c 取值如何,下述命题给出了它的具体表达式。