时间序列模型讲义
- 格式:pptx
- 大小:1.22 MB
- 文档页数:46
时间序列模型的特征讲义时间序列模型特征讲义1. 数据的趋势性特征:时间序列模型通常需要分析数据的趋势性,即数据是否存在明显的上升或下降趋势。
有三种常见的数据趋势性特征:a. 上升趋势:数据随时间逐渐增加。
b. 下降趋势:数据随时间逐渐减少。
c. 平稳趋势:数据在长期内保持相对稳定,没有明显的上升或下降趋势。
2. 数据的季节性特征:某些数据在特定的时间段内会有重复的模式出现,这种特征被称为季节性特征。
常见的季节性特征包括:a. 季节性上升:数据在特定时间段内逐渐增加。
b. 季节性下降:数据在特定时间段内逐渐减少。
c. 季节性波动:数据在特定时间段内上升和下降交替出现。
3. 数据的周期性特征:周期性特征是指数据在一定时间间隔内出现循环模式的情况。
与季节性特征不同,周期性特征在更长的时间尺度上存在。
常见的周期性特征包括:a. 周期性上升:数据在一定时间间隔内逐渐增加。
b. 周期性下降:数据在一定时间间隔内逐渐减少。
c. 周期性波动:数据在一定时间间隔内上升和下降交替出现。
4. 数据的随机性特征:除了趋势性、季节性和周期性特征外,数据可能还包含随机性特征。
随机性特征表示数据在某一时间点的取值不受前一时间点的取值影响,具有随机性。
随机性特征使得时间序列模型无法准确预测未来的取值,需要通过其他方法进行处理。
5. 数据的自相关性特征:自相关性特征描述了数据点与其过去时间点的相关性。
自相关性越高,当前数据点与其过去时间点的关系越密切,可以通过自相关函数(ACF)进行衡量。
自相关性特征在时间序列模型中通常用于选择合适的滞后阶数(lag order)。
6. 数据的季节性相关性特征:季节性相关性特征描述了数据点与其过去季节性时间点的相关性。
季节性相关性越高,当前数据点与其过去季节性时间点的关系越密切,可以通过季节性自相关函数(SACF)进行衡量。
季节性相关性特征在时间序列模型中也用于选择合适的滞后阶数。
7. 数据的外部因素特征:在时间序列模型中,还需要考虑可能影响数据变动的外部因素。
时间序列模型讲义时间序列模型讲义一、概念介绍时间序列模型是一种用于分析和预测时间上变化的数据模型。
它是一种建立在时间序列数据上的数学模型,旨在揭示时间序列中的隐藏规律和趋势,并利用这些规律和趋势进行预测和决策。
二、时间序列的特征时间序列数据具有以下几个主要特征:1. 时间相关性:时间序列数据中的观测值在时间上是相关的,前一个时刻的观测值往往会影响后续时刻的观测值。
2. 趋势性:时间序列数据往往具有明显的趋势性,即观测值随时间呈现出递增或递减的趋势。
3. 季节性:时间序列数据中可以存在固定的周期性变化,比如月份、季节、一周等周期性变化。
4. 周期性:时间序列数据中可能存在非固定的周期性变化,比如经济周期、股票市场周期等。
三、时间序列模型的构建过程时间序列模型的构建过程主要包括以下几个步骤:1. 数据探索和预处理:对时间序列数据进行可视化和探索,查看数据的分布、趋势和周期性等特征,并进行缺失值处理、异常值处理等预处理操作。
2. 模型选择:选择适合数据特征的时间序列模型,常用的模型包括移动平均模型(MA模型)、自回归模型(AR模型)和自回归移动平均模型(ARMA模型)等。
3. 参数估计:利用已选定的时间序列模型,对模型中的参数进行估计,通常采用极大似然估计或最小二乘估计等方法。
4. 模型诊断:对估计得到的时间序列模型进行诊断,检验模型是否满足统计假设,例如模型的残差序列是否具有零均值和白噪声等特征。
5. 模型评价和预测:通过对模型在历史数据上的拟合程度进行评价,选择最优的模型,并利用该模型对未来的数据进行预测和决策。
四、常见的时间序列模型1. 移动平均模型(MA模型):该模型假设当前观测值是过去几个时刻的观测值的加权平均,其中权重是模型的参数。
该模型适用于没有明显趋势和季节性的时间序列。
2. 自回归模型(AR模型):该模型假设当前观测值是过去几个时刻的观测值的线性组合,其中系数是模型的参数。
该模型适用于具有明显的趋势性的时间序列。
第2章时间序列模型时间序列分析方法由Box-Jenkins (1976) 年提出。
它适用于各种领域的时间序列分析。
时间序列模型不同于经济计量模型的两个特点是:⑴这种建模方法不以经济理论为依据,而是依据变量自身的变化规律,利用外推机制描述时间序列的变化。
⑵明确考虑时间序列的非平稳性。
如果时间序列非平稳,建立模型之前应先通过差分把它变换成平稳的时间序列,再考虑建模问题。
研究的主要内容1.随机过程、时间序列定义2.时间序列模型的分类3.自相关函数与偏自相关函数4.建模步骤(识别、参数估计、诊断检验)5.案例分析2.1随机过程、时间序列(1)为什么在研究时间序列之前先要介绍随机过程?就是要把时间序列的研究提高到理论高度来认识。
时间序列不是无源之水。
它是由相应随机过程产生的。
只有从随机过程的高度认识了它的一般规律。
对时间序列的研究才会有指导意义。
对时间序列的认识才会更深刻。
(2)过程的类型自然界中事物变化的过程可以分成两类。
一类是确定型过程。
确定型过程即可以用关于时间t的函数描述的过程。
例如,真空中的自由落体运动过程,电容器通过电阻的放电过程,行星的运动过程等。
一类是非确定型过程。
非确定型过程即不能用一个(或几个)关于时间t的确定性函数描述的过程。
换句话说,对同一事物的变化过程独立、重复地进行多次观测而得到的结果是不相同的。
例如,对河流水位的测量。
其中每一时刻的水位值都是一个随机变量。
如果以一年的水位纪录作为实验结果,便得到一个水位关于时间的函数x t。
这个水位函数是预先不可确知的。
只有通过测量才能得到。
而在每年中同一时刻的水位纪录是不相同的。
(3)随机过程:由随机变量组成的一个有序序列称为随机过程,随机过程简记为{x t} 或x t。
随机过程也常简称为过程。
(4)随机过程一般分为两类。
连续型。
如果一个随机过程{x t}对任意的t∈T 都是一个连续型随机变量,则称此随机过程为连续型随机过程。
离散型。
如果一个随机过程{x t}对任意的t∈T 都是一个离散型随机变量,则称此随机过程为离散型随机过程。