时间序列分析讲义 下
- 格式:ppt
- 大小:2.75 MB
- 文档页数:152
第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
(3) 最大似然估计法(MLE )首先大家打开教材第43页看,我们纠正教材中的错误。
它说: “对于一组相互独立的随机变量),,2,1(,T t tx =,当得到一个样本),,,(21T x x x 时,似然函数可表示为∏===T t t x f x f x f x f T x x x L 1)()2()2()1(),,2,1(γγγγγ 式中),,,(21k γγγγ =是一组未知参数”。
我们知道时间序列一般不是独立的,而是相依的离散时间随机过程。
因此,得到的样本),,,(21T x x x 不可能是相互独立的,似然函数绝不是以上概率密度乘积的形式。
所以,教材中这一段是错误的。
似然函数在估计理论中有着根本的重要性的一个原因是因为“似然原理”。
这个原理说:已知假定的模型是正确的,数据非得告诉我们的关于参数的全部包含在似然函数中,数据的所有其他方面是不切题的。
实际上,一般的ARMA 过程(含AR 、MA 过程)参数的最大似 然估计计算过程很复杂。
至少有三种方法写出精确的似然函数:向后预报法、递推预报法、状态空间与卡尔曼(Kalman )滤波法。
我们讲只对递推预报法最简要介绍,从而为引出模型选择的AIC 、BIC 信息准则铺平道路。
我们先以最简单的因果的AR(1)过程的MLE 为例,说明MLE 的主要思想。
考虑因果的AR(1)过程,满足模型tu t X t X +-+=110φφ, ),0(~2σN IID t u , 且11<φ。
则均值为 )(110t X E =-=φφμ。
我们以),1,(2σφμ为三个未知参数,而)11(0φμφ-=不作独立的未知参数。
模型中心化为 tu t X t X +--=-)1(1μφμ。
设已得到了样本值),,,(21T x x x 。
则关于参数),1,(2σφμ的似然函数为 )2,1,;1()2,1,;12()2,1,;2,,2,11()2,1,;1,,1(),,2,1;2,1,(σφμσφμσφμσφμσφμx f x x f T x x x T x f T x x T x f Tx x x L ⨯---= 联合概率密度在样本值),,,(21T x x x 处的值写为条件概率密度和最后一个无条件概率密度的乘积。