时间序列分析讲义 下
- 格式:ppt
- 大小:2.75 MB
- 文档页数:152
第一章 差分方程差分方程是连续时间情形下微分方程的特例。
差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。
经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。
§1.1 一阶差分方程假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。
假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程:t t t w y y ++=-110φφ (1.1)在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。
如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。
在下面的分析中,我们假设t w 是确定性变量。
例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为:ct bt t t t r r I m m 019.0045.019.072.027.01--++=-上述方程便是关于t m 的一阶线性差分方程。
可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。
1.1.1 差分方程求解:递归替代法差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。
由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程:0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφt t =:t t t w y y ++=-110φφ依次进行叠代可以得到:1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ0111122113121102)1(w w w y y φφφφφφφ++++++=-i ti i t t i it w y y ∑∑=-=++=011110φφφφ (1.2)上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。
(3) 最大似然估计法(MLE )首先大家打开教材第43页看,我们纠正教材中的错误。
它说: “对于一组相互独立的随机变量),,2,1(,T t tx =,当得到一个样本),,,(21T x x x 时,似然函数可表示为∏===T t t x f x f x f x f T x x x L 1)()2()2()1(),,2,1(γγγγγ 式中),,,(21k γγγγ =是一组未知参数”。
我们知道时间序列一般不是独立的,而是相依的离散时间随机过程。
因此,得到的样本),,,(21T x x x 不可能是相互独立的,似然函数绝不是以上概率密度乘积的形式。
所以,教材中这一段是错误的。
似然函数在估计理论中有着根本的重要性的一个原因是因为“似然原理”。
这个原理说:已知假定的模型是正确的,数据非得告诉我们的关于参数的全部包含在似然函数中,数据的所有其他方面是不切题的。
实际上,一般的ARMA 过程(含AR 、MA 过程)参数的最大似 然估计计算过程很复杂。
至少有三种方法写出精确的似然函数:向后预报法、递推预报法、状态空间与卡尔曼(Kalman )滤波法。
我们讲只对递推预报法最简要介绍,从而为引出模型选择的AIC 、BIC 信息准则铺平道路。
我们先以最简单的因果的AR(1)过程的MLE 为例,说明MLE 的主要思想。
考虑因果的AR(1)过程,满足模型tu t X t X +-+=110φφ, ),0(~2σN IID t u , 且11<φ。
则均值为 )(110t X E =-=φφμ。
我们以),1,(2σφμ为三个未知参数,而)11(0φμφ-=不作独立的未知参数。
模型中心化为 tu t X t X +--=-)1(1μφμ。
设已得到了样本值),,,(21T x x x 。
则关于参数),1,(2σφμ的似然函数为 )2,1,;1()2,1,;12()2,1,;2,,2,11()2,1,;1,,1(),,2,1;2,1,(σφμσφμσφμσφμσφμx f x x f T x x x T x f T x x T x f Tx x x L ⨯---= 联合概率密度在样本值),,,(21T x x x 处的值写为条件概率密度和最后一个无条件概率密度的乘积。
第二章 滞后算子及其性质滞后算子是对时间序列进行动态线性运算的主要工具,利用滞后算子可以使得一些非线性运算非常简洁。
§2.1 基本概念时间序列是以观测值发生的时期作为标记的数据集合。
一般情况下,我们是从某个特定的时间开始采集数据,直到另一个固定的时间为止,我们可以将获得的数据表示为:),,,(21T y y y如果能够从更早的时间开始观测,或者观测到更晚的时期,那么上面的数据区间可以进一步扩充。
相对而言,上述数据只是一个数据的片段,整个数据序列可以表示为:+∞=-∞==t t t T y y y y }{),,,,,,(21例2.1 几种代表性的时间序列(1) 时间趋势本身也可以构成一个时间序列,此时:t y t =;(2) 另一种特殊的时间序列是常数时间序列,即:c y t =,c 是常数,这种时间的取值不受时间的影响;(3) 在随机分析中常用的一种时间序列是高斯白噪声过程,表示为:t t y ε=,+∞=-∞=t t t }{ε是一个独立随机变量序列,每个随机变量都服从),0(2σN 分布。
时间序列之间也可以进行转换,类似于使用函数关系进行转换。
它是将输入时间序列转换为输出时间序列。
例2.2 几种代表性的时间序列转换(1) 假设t x 是一个时间序列,假设转换关系为:t t x y β=,这种算子是将一个时间序列的每一个时期的值乘以常数转换为一个新的时间序列。
(2) 假设t x 和t w 是两个时间序列,算子转换方式为:t t t w x y +=,此算子是将两个时间序列求和。
定义2.1 如果算子运算是将一个时间序列的前一期值转化为当期值,则称此算子为滞后算子,记做L 。
即对任意时间序列t x ,滞后算子满足:1)(-≡t t x x L (1)类似地,可以定义高阶滞后算子,例如二阶滞后算子记为2L ,对任意时间序列t x ,二阶滞后算子满足:22)]([)(-=≡t t t x x L L x L (2)一般地,对于任意正整数k ,有:k t t k x x L -=)( (3)命题2.1 滞后算子运算满足线性性质: (1) )()(t t x L x L ββ= (2) )()()(t t t t w L x L w x L +=+证明:(1) 利用滞后算子性质,可以得到:)()(1t t t x L x x L βββ==-(2) )()()(11t t t t t t w L x L w x w x L +=+=+-- End 由于滞后算子具有上述运算性质和乘法的交换性质,因此可以定义滞后算子多项式,它的作用是通过它对时间序列的作用获得一个新的时间序列,并且揭示这两个时间序列之间的关系。
时间序列分析基本知识讲解时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。
它是统计学中的一个重要分支,在许多领域中都有广泛的应用,例如经济学、金融学、气象学等。
在时间序列分析中,我们通常假设观察到的数据是由内部的趋势、季节性和随机性构成的。
首先要介绍的概念是时间序列。
时间序列是按时间顺序记录的一组数据点,其中每个数据点代表某个变量在特定时间点的观测值。
每个数据点可以是连续的时间单位,如小时、天、月或年,也可以是离散的时间单位,如季度或年度。
时间序列数据通常包含趋势、季节性和随机成分。
趋势是时间序列长期上升或下降的的总体倾向,它可以是线性的,也可以是非线性的。
季节性是周期性出现在时间序列中的模式,它在一年中的特定时间段内循环出现,如一年中的季节、月份或周几。
随机成分是不可预测的随机波动,可能是由于外部因素或不可预见的事件引起的。
时间序列分析的目标通常有三个:描述、检验和预测。
描述的目标是对时间序列的特征进行统计分析,通过计算均值、方差、自相关系数等指标来揭示数据的规律和模式。
检验的目标是验证时间序列数据是否满足一定的假设条件,例如平稳性、白噪声等。
预测的目标是基于已有的时间序列数据来预测未来的值。
预测方法可以是单变量的,只使用时间序列自身的历史数据来进行预测;也可以是多变量的,将其他相关变量的信息纳入预测模型。
在时间序列分析中,有一些重要的概念和方法需要掌握。
首先是平稳性。
平稳性是指时间序列的均值、方差和自相关结构在时间上的不变性。
平稳性是许多时间序列模型的基本假设,它能够简化模型的建立和推断。
其次是自相关性。
自相关性是指时间序列中的观测值之间的相关性。
自相关结构可以通过自相关函数(ACF)和偏自相关函数(PACF)来描述,其中ACF表示不同时滞的自相关系数,PACF表示在剔除之前的滞后时其他滞后效应后,特定滞后的自相关系数。
另外,还有移动平均、自回归过程和ARMA模型等重要的方法和模型。