第8章 织构与织构定量ODF分析
- 格式:pdf
- 大小:3.84 MB
- 文档页数:73
第八章非织造材料的概念、成型方法及应用第一节非织造材料的概念及加工原理一、非织造材料的定义非织造材料也称非织造布、无纺布、不织布或非织布,属产业用纺织品新材料领域。
非织造材料是通过物理或化学的方法对高分子聚合物、纤维集合体进行固结而形成的新型柔性材料。
由于采用的原料、工艺和设备的多样性,非织造材料可以是片状、块状和网状等形态,所以这里的“布”只是表明其属于一种新型纤维制品。
非织造材料生产具有工艺流程短、产品原料来源广、成本低、产量高、产品品种多、应用范围广、技术含量高等优点,融合了纺织、造纸、塑料、化工、皮革等工业技术,充分利用了现代物理、化学等学科的有关知识和成果,是一门新型的交叉学科,也正因为上述特点,非织造布工业虽然在二十世纪的四十年代才开始商业化生产,但却以惊人的速度发展,并被喻为纺织工业中的“朝阳产业”。
二、非织造材料的加工原理非织造材料种类很多,且不同的非织造工艺技术都具有其相应的工艺原理,但从广义角度讲,非织造技术的基本原理是一致的,可用其工艺过程来描述,一般可分为四个过程:①纤维/原料的选择;②成网;③纤网加固;④后整理。
下面分步介绍。
(一)纤维/原料的选择:纤维/原料的选择基于以下几个方面:成本、可加工性和纤网的最终性能要求。
纤维是所有非织造材料的基础,大多数天然纤维和化学纤维都可用于非织造材料。
原料包括粘合剂和后整理化学助剂,粘合剂主要用于使纤网中的纤维间相互粘合以得到具有一定强度和完整结构的纤网。
但是,一些粘合剂不仅可作为粘合用,很多情况下,它们同时可以作为后整理助剂,比如用于涂层整理、层合工艺等。
(二)成网:将单根纤维形成松散的纤维网结构称为成网,此时所成的纤网强度很低,纤网中纤维可以是短纤也可以是连续长丝,主要取决于成网的工艺方法。
(三)纤网加固:纤网形成后,通过相关的工艺方法对处于松散状态的纤维网加固称为纤网加固,它赋予纤网—定的物理机械性能和外观。
(四)后整理与成形:后整理在纤网加固后进行。
摘要织构在传统的基础上,经过多年的发展已成为一门新兴发展的科学而受到了人们广泛的关注。
广义的说,某种具有择优取向的结构称为织构。
其特点之一是晶粒的微观取向可以在宏观某方向上得到表现,故显示了微观取向和宏观某方向的统一,可以体现出各种宏观性能的各向异性。
大多数的金属材料都存在这种现象,这就使得织构的研究加倍重要。
大量的实验和理论的创新丰富了这门科学的内容,并进一步推动了与之相关联的其他学科的发展,从而使这门学科所涵盖的知识面更加广博,因此随着织构这一科学的不断完善发展,也就出现了不同的分支。
定向凝固织构就是其中的一种很具代表意义的分支。
它主要是通过定向凝固的手段,使金属或合金生长出某一特定织构,从而满足性能在某个方向的择优的要求。
国内外许多研究人员已经做了许多相关实验,通过改变实验条件而改变织构的方向,并且发现了不同结构的金属或合金能产生的不同织构。
但是,到底是什么因素影响织构的生长呢?织构生长的机理是什么呢?在这方面至今还没什么进展,因而机理的提出对于定向凝固织构方面的工作就显得尤为重要。
本人在硕士阶段通过对面心立方,体心立方,密排六方和菱方结构四种具有不同结构和对称性的织构的研究,并做出了面心立方,密排六方和菱方结构的金属或合金的定向凝固样品,对他们进行了极图,反极图和ODF 定量分析,得出了它们的织构,然后从结晶学的角度考虑晶体生长习性,提出了不同晶体结构的定向凝固织构的生长机理。
这一机理可以很好解释并预测单一温度场条件下的各种结构的定向凝固织构。
虽然这一机理还不够完善,但是,相信在以后的研究中,如果考虑到更多的影响因素,有更多的不同条件下的实验数据的支持,一定可以提出更加完善的机理。
关键词:定向凝固织构极图反极图ODF提要第一节 织构的发展背景自从1937年戈斯发现硅钢片中导磁性能的各向异性以来,织构就被作为一门学科被广大科研工作者进行研究。
大量的研究情况表明织构在金属材料与合金中的存在具有普遍性。
织构的测定方法1 织构定义单晶体在不同的晶体学方向上,其力学、电磁、光学、耐腐蚀、磁学甚至核物理等方面的性能会表现出显著差异,这种现象称为各向异性。
多晶体是许多单晶体的集合,如果晶粒数目大且各晶粒的排列是完全无规则的统计均匀分布,即在不同方向上取向几率相同,则这多晶集合体在不同方向上就会宏观地表现出各种性能相同的现象,这叫各向同性。
然而多晶体在其形成过程中,由于受到外界的力、热、电、磁等各种不同条件的影响,或在形成后受到不同的加工工艺的影响,多晶集合体中的各晶粒就会沿着某些方向排列,呈现出或多或少的统计不均匀分布,即出现在某些方向上聚集排列,因而在这些方向上取向几率增大的现象,这种现象叫做择优取向。
这种组织结构及规则聚集排列状态类似于天然纤维或织物的结构和纹理,故称之为织构。
织构测定在材料研究中有重要作用。
2 织构类型为了具体描述织构 (即多晶体的取向分布规律),常把择优取向的晶体学方向 (晶向) 和晶体学平面 (晶面) 跟多晶体宏观参考系相关连起来。
这种宏观参考系一般与多晶体外观相关连,譬如丝状材料一般采用轴向;板状材料多采用轧面及轧向。
多晶体在不同受力情况下,会出现不同类型的织构。
轴向拉拔或压缩的金属或多晶体中,往往以一个或几个结晶学方向平行或近似平行于轴向,这种织构称为丝织构或纤维织构。
理想的丝织构往往沿材料流变方向对称排列。
其织构常用与其平行的晶向指数<UVW>表示。
某些锻压、压缩多晶材料中,晶体往往以某一晶面法线平行于压缩力轴向,此类择优取向称为面织构,常以{HKL}表示。
轧制板材的晶体,既受拉力又受压力,因此除以某些晶体学方向平行轧向外,还以某些晶面平行于轧面,此类织构称为板织构,常以{HKL}<UVW>表示。
3 织构的表示方法择优取向是多晶体在空间中集聚的现象,肉眼难于准确判定其取向,为了直观地表示,必须把这种微观的空间集聚取向的位置、角度、密度分布与材料的宏观外观坐标系 (拉丝及纤维的轴向,轧板的轧向、横向、板面法向) 联系起来。
什么叫织构织构的测定摘自:《X射线衍射技术及设备》(鞍钢钢铁研究所,丘利、胡玉和编著,冶金工业出版社1999年出版)1 织构定义单晶体在不同的晶体学方向上,其力学、电磁、光学、耐腐蚀、磁学甚至核物理等方面的性能会表现出显著差异,这种现象称为各向异性。
多晶体是许多单晶体的集合,如果晶粒数目大且各晶粒的排列是完全无规则的统计均匀分布,即在不同方向上取向几率相同,则这多晶集合体在不同方向上就会宏观地表现出各种性能相同的现象,这叫各向同性。
然而多晶体在其形成过程中,由于受到外界的力、热、电、磁等各种不同条件的影响,或在形成后受到不同的加工工艺的影响,多晶集合体中的各晶粒就会沿着某些方向排列,呈现出或多或少的统计不均匀分布,即出现在某些方向上聚集排列,因而在这些方向上取向几率增大的现象,这种现象叫做择优取向。
这种组织结构及规则聚集排列状态类似于天然纤维或织物的结构和纹理,故称之为织构。
织构测定在材料研究中有重要作用。
2 织构类型为了具体描述织构 (即多晶体的取向分布规律,常把择优取向的晶体学方向 (晶向和晶体学平面 (晶面跟多晶体宏观参考系相关连起来。
这种宏观参考系一般与多晶体外观相关连,譬如丝状材料一般采用轴向;板状材料多采用轧面及轧向。
多晶体在不同受力情况下,会出现不同类型的织构。
轴向拉拔或压缩的金属或多晶体中,往往以一个或几个结晶学方向平行或近似平行于轴向,这种织构称为丝织构或纤维织构。
理想的丝织构往往沿材料流变方向对称排列。
其织构常用与其平行的晶向指数表示。
某些锻压、压缩多晶材料中,晶体往往以某一晶面法线平行于压缩力轴向,此类择优取向称为面织构,常以{HKL}表示。
轧制板材的晶体,既受拉力又受压力,因此除以某些晶体学方向平行轧向外,还以某些晶面平行于轧面,此类织构称为板织构,常以{HKL} 表示。
3 织构的表示方法择优取向是多晶体在空间中集聚的现象,肉眼难于准确判定其取向,为了直观地表示,必须把这种微观的空间集聚取向的位置、角度、密度分布与材料的宏观外观坐标系 (拉丝及纤维的轴向,轧板的轧向、横向、板面法向联系起来。
织构概述第一节钢板的常见织构类型1.1织构的表达方法织构是多晶体取向分布状态明显偏离随机分布的取向分布结构,通常用晶体的某晶面晶向在参考坐标系中的排布方式来表达晶体的取向。
在立方晶体轧制样品坐标系中,常用(HKL)[UVW]来表达某一晶粒的取向。
这种晶粒的取向特征为(HKL)晶面平行于轧面,[UVW]晶向平行于轧向。
另外也可以用[RST]=[HKL]×[UVW]表示平行于轧板横向的晶向。
1.2织构的分析方法关于织构的分析方法渊源已久,早在1924年Wever就提出了极图法,1948年以后,Deker和Schulz发展了用衍射仪测定极图的方法,使极图法趋于完善。
1952年Harris为测定轧制铀棒的织构提出了反极图法,后经Mueller等发展而完善。
1965年,Roe和Bunge分别采用级数展开方法,从几张极图中推导出晶体的三维取向分布函数(ODF),使材料织构的细致、定量分析成为可能。
ODF分析法把晶体取向与试样外观的关系用三维取向空间表达出来,这一取向空间就是欧拉空间(Eulerianspace),欧拉空间的坐标用欧拉角表示,它与归一化后的晶体取向(hkl)[uvw]有着一一对应的换算关系。
ODF法己成为目前定量分析深冲钢板织构的最有力的工具。
钢板的构往往聚集在取向空间的某些取向线上,图1所示为钢板中常见的织构取向线在邦厄(Bunge)系统欧拉空间中的位置。
图1钢板中的织构取向线a取向线和γ取向线是深冲钢板中存在的两种主要织构取向线。
其中a取向线在ODF图中的位置为φ1=00,φ=0-900,φ2=450主要织构类型为{001}〈110,{112}110,{111}110。
γ取向线在ODF图中的位置为φ1=0-900,中=54.70,φ2=450,主要织构类型为{111}110和{111}112,对于IF钢还往往出现{554}225织构(φ1=0-900,φ=610,φ2=450,与{111}112非常接近)。
第八章织构的测定第一节织构的定义各向异性:单晶体在不同晶体学方向上的力学、电磁、光学、耐腐蚀、磁学甚至核物理等方面的性能表现出显著差异的现象各向同性:多晶集合体在宏观不同方向上表现出各种性能相同的现象一般情况下,多晶材料中数目众多的晶粒是无序均匀分布的,即在不同方向上取向几率相同,多晶集合体的各种性能在不同宏观方向上相同择优取向、织构:在一般多晶体中,每个晶粒有不同于相邻晶粒的结晶学取向,从整体看,所有晶粒的取向是任意分布的;某些情况下,晶体的晶粒在不同程度上围绕某些特殊的取向排列,就称为择优取向或简称织构。
第二节织构类型2.1.形变织构:经金属塑性加工的材料,如经拉拔﹑挤压的线材或经轧制的金属板材,在塑性变形过程中常沿原子最密集的晶面发生滑移。
滑移过程中,晶体连同其滑移面将发生转动,从而引起多晶体中晶粒方位出现一定程度的有序化。
这种由于冷变形而在变形金属中直接产生的晶粒择优取向称为形变织构。
形变织构常有纤维织构、板织构等几种类型。
1)纤维织构金属材料中的晶粒以某一结晶学方向平行于(或接近平行于)线轴方向的择优取向。
具有纤维织构的材料围绕线轴有旋转对称性,即晶粒围绕纤维轴的所有取向的几率是相等的。
例如冷拉铝线,其中多数晶粒的[111]方向平行于线轴方向,其余则对线轴有不同程度的偏离,呈漫散分布。
这种线材的织构称[111]纤维织构。
纤维织构是最简单的择优取向,因其只牵涉一个线轴方向,需要解决的结晶学问题仅为确定纤维轴的指数<uvw>。
纤维织构的类型和完整度(即取向分布的漫散程度)主要和材料的组成、晶体结构类型和变形工艺有关。
除冷拉和挤压工艺外,有时由热浸﹑电沉积或蒸发形成的材料的涂覆层以及材料经氧化和腐蚀后表层所生成的产物都可能产生纤维织构。
在实际材料中经常存在不止一种的纤维织构,如铜线中<111>和<100>织构同时出现。
2)板织构在轧制过程中,随着板材的厚度逐步减小,长度不断延伸,多数晶粒不仅倾向于以某一晶向<uvw>平行于材料的某一特定外观方向,同时还以某一晶面(hkl)平行于材料的特定外观平面(板材表面),这种类型的择优取向称为板织构,一般以(hkl)[hkl]表示,晶粒取向的漫散程度也按两个特征来描述。
织构的测定摘自:《X射线衍射技术及设备》(鞍钢钢铁研究所,丘利、胡玉和编著,冶金工业出版社1999年出版)1 织构定义单晶体在不同的晶体学方向上,其力学、电磁、光学、耐腐蚀、磁学甚至核物理等方面的性能会表现出显著差异,这种现象称为各向异性。
多晶体是许多单晶体的集合,如果晶粒数目大且各晶粒的排列是完全无规则的统计均匀分布,即在不同方向上取向几率相同,则这多晶集合体在不同方向上就会宏观地表现出各种性能相同的现象,这叫各向同性。
然而多晶体在其形成过程中,由于受到外界的力、热、电、磁等各种不同条件的影响,或在形成后受到不同的加工工艺的影响,多晶集合体中的各晶粒就会沿着某些方向排列,呈现出或多或少的统计不均匀分布,即出现在某些方向上聚集排列,因而在这些方向上取向几率增大的现象,这种现象叫做择优取向。
这种组织结构及规则聚集排列状态类似于天然纤维或织物的结构和纹理,故称之为织构。
织构测定在材料研究中有重要作用。
2 织构类型为了具体描述织构 (即多晶体的取向分布规律),常把择优取向的晶体学方向 (晶向) 和晶体学平面 (晶面) 跟多晶体宏观参考系相关连起来。
这种宏观参考系一般与多晶体外观相关连,譬如丝状材料一般采用轴向;板状材料多采用轧面及轧向。
多晶体在不同受力情况下,会出现不同类型的织构。
轴向拉拔或压缩的金属或多晶体中,往往以一个或几个结晶学方向平行或近似平行于轴向,这种织构称为丝织构或纤维织构。
理想的丝织构往往沿材料流变方向对称排列。
其织构常用与其平行的晶向指数<UVW>表示。
某些锻压、压缩多晶材料中,晶体往往以某一晶面法线平行于压缩力轴向,此类择优取向称为面织构,常以{HKL}表示。
轧制板材的晶体,既受拉力又受压力,因此除以某些晶体学方向平行轧向外,还以某些晶面平行于轧面,此类织构称为板织构,常以{HKL}<UVW>表示。
3 织构的表示方法择优取向是多晶体在空间中集聚的现象,肉眼难于准确判定其取向,为了直观地表示,必须把这种微观的空间集聚取向的位置、角度、密度分布与材料的宏观外观坐标系 (拉丝及纤维的轴向,轧板的轧向、横向、板面法向) 联系起来。
什么叫织构织构的测定摘自:《X射线衍射技术及设备》(鞍钢钢铁研究所,丘利、胡玉和编著,冶金工业出版社1999年出版)1 织构定义单晶体在不同的晶体学方向上,其力学、电磁、光学、耐腐蚀、磁学甚至核物理等方面的性能会表现出显著差异,这种现象称为各向异性。
多晶体是许多单晶体的集合,如果晶粒数目大且各晶粒的排列是完全无规则的统计均匀分布,即在不同方向上取向几率相同,则这多晶集合体在不同方向上就会宏观地表现出各种性能相同的现象,这叫各向同性。
然而多晶体在其形成过程中,由于受到外界的力、热、电、磁等各种不同条件的影响,或在形成后受到不同的加工工艺的影响,多晶集合体中的各晶粒就会沿着某些方向排列,呈现出或多或少的统计不均匀分布,即出现在某些方向上聚集排列,因而在这些方向上取向几率增大的现象,这种现象叫做择优取向。
这种组织结构及规则聚集排列状态类似于天然纤维或织物的结构和纹理,故称之为织构。
织构测定在材料研究中有重要作用。
2 织构类型为了具体描述织构(即多晶体的取向分布规律),常把择优取向的晶体学方向(晶向) 和晶体学平面(晶面) 跟多晶体宏观参考系相关连起来。
这种宏观参考系一般与多晶体外观相关连,譬如丝状材料一般采用轴向;板状材料多采用轧面及轧向。
多晶体在不同受力情况下,会出现不同类型的织构。
轴向拉拔或压缩的金属或多晶体中,往往以一个或几个结晶学方向平行或近似平行于轴向,这种织构称为丝织构或纤维织构。
理想的丝织构往往沿材料流变方向对称排列。
其织构常用与其平行的晶向指数<UVW>表示。
某些锻压、压缩多晶材料中,晶体往往以某一晶面法线平行于压缩力轴向,此类择优取向称为面织构,常以{HKL}表示。
轧制板材的晶体,既受拉力又受压力,因此除以某些晶体学方向平行轧向外,还以某些晶面平行于轧面,此类织构称为板织构,常以{HKL}<UVW>表示。
3 织构的表示方法择优取向是多晶体在空间中集聚的现象,肉眼难于准确判定其取向,为了直观地表示,必须把这种微观的空间集聚取向的位置、角度、密度分布与材料的宏观外观坐标系(拉丝及纤维的轴向,轧板的轧向、横向、板面法向) 联系起来。