双闭环直流调速系统工作原理
- 格式:doc
- 大小:265.50 KB
- 文档页数:7
双闭环直流调速系统特性与原理双闭环直流调速系统是一种用于控制直流电动机转速的调速系统。
它由两个闭环控制回路组成,分别是转速外环和电流内环。
其中,转速外环控制直流电机的转速,通过调节电压来控制直流电机的转矩;而电流内环则控制直流电机的电流,通过调节电压来控制直流电机的转矩。
1.稳定性:双闭环控制系统能够有效地控制直流电动机的转速和电流,使其在运行过程中保持稳定的转矩输出。
通过转速外环对转速进行控制,可以实现精确的转速调节;而电流内环则能够控制电机的电流,防止过载和短路等故障。
2.响应速度:双闭环控制系统的转速外环具有较快的响应速度,能够实现快速的转速调节。
而电流内环的响应速度则相对较慢,主要起到电机保护的作用。
3.鲁棒性:双闭环控制系统具有较好的鲁棒性,能够对外部干扰和参数变化具有一定的抗干扰能力。
通过合理的控制策略和参数调整,可以提高系统的鲁棒性。
1.转速外环控制原理:转速外环将输出电压与给定的转速进行比较,得到转速误差,并通过调节电压反馈回内环控制器中。
转速外环控制器通常采用PI控制器,根据转速误差和积分项来控制输出电压。
通过不断调节输出电压,使得转速误差趋于零,从而实现对直流电机转速的调节。
2.电流内环控制原理:电流内环控制器将输出电压与给定的电流进行比较,得到电流误差,并通过调节输出电压来控制电流。
电流内环控制器通常也采用PI控制器,根据电流误差和积分项来控制输出电压。
通过不断调节输出电压,使得电流误差趋于零,从而实现对直流电机电流的调节。
3.反馈信号处理:双闭环直流调速系统中,转速和电流测量信号需要经过滤波和放大等处理,以便传递给控制器进行计算。
滤波器通常采用低通滤波器,用于去除高频噪声,放大器则用于放大信号强度。
4.控制指令处理:由上位机或人机界面输入的控制指令需要经过处理,包括限幅、线性化等,以确保输入信号符合控制系统的要求。
处理后的指令将送入控制器,进行计算和控制输出电压。
通过双闭环直流调速系统的控制,可以实现对直流电机的转速和电流的精确调节,并具有较好的稳定性、响应速度和鲁棒性,广泛应用于工业自动化领域。
双闭环直流调速系统电路原理
一、双闭环直流调速系统简介
双闭环直流调速系统,通常称为DCS,是一种用于控制和调节电动机
转速的电子系统,它能够准确地检测电机的转速,以调整电机驱动器输出
功率,并为电机提供良好的调节性能、低噪声、低抖动和优异的精度。
它
通常由稳态调节器、反馈传感器、控制器、执行器等组成。
双闭环直流速系统,具有以下几个电路:1.平衡节回路:由半桥变流器、电流变换器、电流放大器、PID控制器、可变阻器等组成,以实现基
于比例环节的节;2.电压控制回路:由可前置增益电路、放大器、变速器、可谐滤波器以及PID控制器组成,以实现节;3.转矩控制回路:由电阻模块、电容模块、放大器和可谐滤波器组成,以实现节;4.转速控制回路:
由反馈传感器、放大器、可谐滤波器和PID控制器组成,以实现节;5.电
流控制回路:由电流放大器和可谐滤波器组成,以实现节;6.位置控制回路:由反馈传感器、放大器,可谐滤波器和专用控制器组成,以实现节;7.整回路:由电位器。
双闭环直流调速系统特性与原理1.双闭环直流调速系统的特性:(1)调速性能优良:双闭环控制可以提高调速性能,使得速度响应更加迅速、稳定。
由于速度闭环控制,系统可以实时检测速度偏差,并根据偏差调整电机的控制信号,从而使电机转速保持恒定。
(2)载荷抗扰性好:双闭环直流调速系统具有良好的抗负载扰动能力。
通过电流闭环控制器对电流进行反馈控制,一旦发生负载变动,系统可以根据反馈信号快速调整电流,以保持电机输出功率稳定。
(3)适应性强:双闭环直流调速系统适应性强,可以适应各种负载条件下的调速要求。
通过速度闭环控制器可以实时检测速度偏差,并根据偏差调整电机的控制信号,以适应不同的负载要求。
(4)技术难度较高:双闭环直流调速系统需要同时进行速度闭环控制和电流闭环控制,涉及到多个反馈环节和控制算法的设计与调试,技术难度相对较高。
2.双闭环直流调速系统的原理:(1)速度闭环控制原理:速度闭环控制器测量电机的速度,并将测量值与期望速度信号进行比较,得到速度偏差。
根据速度偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得速度偏差减小,并最终稳定在期望速度值上。
(2)电流闭环控制原理:电流闭环控制器测量电机的电流输出值,并将测量值与期望电流信号进行比较,得到电流偏差。
根据电流偏差,通过控制器计算得到电机的控制信号,调整电机的输入电压或者电流,使得电流偏差减小,并最终稳定在期望电流值上。
(3)内环逆变器控制:双闭环直流调速系统通常采用内环逆变器控制方式。
内环逆变器控制主要是通过改变电机的输入电压或者电流来控制其输出转矩和速度。
内环逆变器可以调整直流电动机的极性和大小,以实现对电机力矩和速度的精确控制。
(4)反馈和调节:双闭环直流调速系统中的反馈环节起到了至关重要的作用。
通过测量电机的速度和电流输出值,并与期望值进行比较,得到偏差信号,通过控制器计算得到控制信号,对电机输入电压或者电流进行调节,以实现对速度和电流的闭环控制。
双闭环直流调速系统工作原理1.系统结构:双闭环直流调速系统主要由两个闭环控制组成,即速度内环和电流外环。
速度内环控制器接收速度设定值和速度反馈信号,通过计算得到电流设定值,并发送给电流外环控制器。
电流外环控制器接收电流设定值和电流反馈信号,通过计算得到电压设定值,并输出给电源控制器。
电源控制器接收电压设定值和电源反馈信号,通过调节电源输出电压,以确保电机输出的电压和电流符合控制要求。
2.速度内环控制:速度内环控制器是实现速度调节的关键部分。
它通过比较速度设定值和速度反馈信号,得到速度差,然后根据速度差来调节电流设定值。
控制器根据速度差的大小来调整电流设定值的大小,如果速度差较大,则增大电流设定值;如果速度差较小,则减小电流设定值。
通过不断调整电流设定值,使得速度差逐渐减小,最终达到设定的速度。
3.电流外环控制:电流外环控制器是为了保证电流的稳定性而设置的闭环控制。
它接收电流设定值和电流反馈信号,通过比较二者的差异,计算得到电压设定值。
控制器根据电流设定值和电流反馈信号的差异来调整电压设定值的大小,如果电流差较大,则增大电压设定值;如果电流差较小,则减小电压设定值。
通过不断调整电压设定值,使得电流差逐渐减小,最终达到设定的电流。
4.电源控制:电源控制器是为了保证电机输出的电压和电流符合控制要求而设置的。
它接收电压设定值和电源反馈信号,通过调节电源输出电压来实现电机的调速。
当电压设定值与电源反馈信号存在差异时,控制器会相应地改变电源输出电压,使得电机的电压和电源设定值尽可能接近。
通过不断调整电压输出,最终使得电机的电压和电流稳定在设定值。
5.系统优点:双闭环直流调速系统能够实现对电机的精确调节,具有较高的速度和电流控制精度。
通过速度内环和电流外环的联合控制,可以准确地调节电机的转速,并且能够自动调整输出电流,适应不同负载。
此外,该系统还具有较好的稳定性和抗干扰能力,在外界干扰较大时仍能保持较高的控制精度。
电流转速双闭环直流调速系统的工作原理(吴欢欢)(山东工商学院信息与电子工程学院电气122班山东省烟台 264005 )摘要:在工业生产中,需要高性能速度控制的电力拖动场合,直流调速系统发挥着极为重要的作用。
而采用电流转速双闭环直流调速系统,就可以充分利用电动机的过载能力获得最快的动态过程。
本次设计主要了解电流转速双闭环直流调速系统的工作原理、系统组成、静态几动态特性。
并绘出工作原理图。
关键词:双闭环控制系统、直流调速系统、ASR、直流电动机。
The working principle of current and speed double closed loop DC speed regulatingsystemWuhuanhuan(Shandong Institute of Business and Technology Yan Tai 264005)ABSTRACT:In industrial production, need to electric drive applications where high performance speed control, DC speed control system plays a very important role. While the current speed double loop speed control system, it can make full use of the overload capacity of a motor to obtain the dynamic process of the fastest. The working principle, the design of the main understanding current speed double loop DC motor control system, the static and dynamic characteristics. And draw the operating system diagram.KEYWORDS:The double closed loop control system、DC speed regulating system、ASR、continuous current motor一、引言直流电机调速,在额定转速以下,保持励磁电流恒定,可用改变电枢电压的方法实现恒转矩调速;在额定转速以上,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
双闭环直流调速系统电路原理1.电机模型:首先,我们需要了解电机的基本模型。
直流电机模型可以简化为一个电阻R、电感L和电动势E组成的串联电路,电机的转矩与电流之间的关系为T=Kt*I,其中Kt是电机的转矩常数。
2.外环速度控制环:外环速度控制环主要通过控制电机的转速来实现对电机的调速。
该控制环用于调节内环电流控制环的输入信号。
- 速度指令输入:通过外部输入设定一个期望的电机转速指令N*rpm_ref。
- 速度反馈:通过速度反馈元件,如光电编码器或霍尔元件,测量电机的实际转速 N*rpm_act。
- 速度误差计算:通过将速度指令输入与速度反馈进行比较,可以得到速度误差 e = N*rpm_ref - N*rpm_act。
-速度误差放大器和校正:将速度误差经过一个放大器,得到一个经校正的速度误差信号。
3.内环电流控制环:内环电流控制环通过控制电机的电流来实现对电机的调速。
该控制环用于调节电机的转矩,从而达到所需的转速。
- 电流指令输入:通过外部输入设定一个期望的电机电流指令 I_ref。
- 电流反馈:通过电流反馈元件,如电流传感器,测量电机的实际电流 I_act。
- 电流误差计算:通过将电流指令输入与电流反馈进行比较,可以得到电流误差 e = I_ref - I_act。
- 电流控制器:将电流误差经过一个控制器,得到一个控制信号U_ctrl。
- 电流增益校正:将控制信号经过一个增益校正器,得到一个经校正的控制信号 U_ref。
- 电流放大器:将经校正的控制信号 U_ref 通过一个放大器,得到一个电压信号 U。
-可逆电机驱动器:将电压信号U转换为电机的供电电压。
4.输入信号整合:将输出信号反馈到输入信号中,实现闭环控制。
将经过电压信号 U调制的电流指令输入与速度误差信号 e 相加,得到总的控制信号 U_sum。
将 U_sum 输入给控制器,通过闭环控制来调整电机转速和电流。
最终,通过外环速度控制环和内环电流控制环的协调作用,实现了对电机的精确控制。
摘要直流电动机具有良好的起动、制动性能,宜于在大范围内平滑调速,在许多需要调速或快速正反向的电力拖动领域中得到了广泛的应用。
从控制的角度来看,直流调速还是交流拖动系统的基础。
该系统中设置了电流检测环节、电流调节器以及转速检测环节、转速调节器,构成了电流环和转速环,前者通过电流元件的反馈作用稳定电流,后者通过转速检测元件的反馈作用保持转速稳定,最终消除转速偏差,从而使系统达到调节电流和转速的目的。
该系统起动时,转速外环饱和不起作用,电流内环起主要作用,调节起动电流保持最大值,使转速线性变化,迅速达到给定值;稳态运行时,转速负反馈外环起主要作用,使转速随转速给定电压的变化而变化,电流内环跟随转速外环调节电机的电枢电流以平衡负载电流。
并通过Simulink进行系统的数学建模和系统仿真,分析双闭环直流调速系统的特性。
自70年代以来,国外在电气传动领域内,大量地采用了“晶闸管直流电动机调速”技术(简称KZ—D调速系统),尽管当今功率半导体变流技术已有了突飞猛进的发展,但在工业生产中KZ—D系统的应用还是占有相当的比重。
在工程设计与理论学习过程中,会接触到大量关于调速控制系统的分析、综合与设计问题。
传统的研究方法主要有解析法,实验法与仿真实验,其中前两种方法在具有各自优点的同时也存在着不同的局限性。
双闭环(电流环、转速环)调速系统是一种当前应用广泛,经济,适用的电力传动系统。
它具有动态响应快、抗干扰能力强等优点。
我们知道反馈闭环控制系统具有良好的抗扰性能,它对于被反馈环的前向通道上的一切扰动作用都能有效的加以抑制。
采用转速负反馈和PI调节器的单闭环的调速系统可以再保证系统稳定的条件下实现转速无静差。
但如果对系统的动态性能要求较高,例如要求起制动、突加负载动态速降小等等,单闭环系统就难以满足要求。
这主要是因为在单闭环系统中不能完全按照需要来控制动态过程的电流或转矩。
在单闭环系统中,只有电流截止至负反馈环节是专门用来控制电流的。
双闭环直流调速系统工作原理双闭环直流调速系统是一种常用的控制系统,用于调节和控制直流电动机的速度。
该系统通过两个闭环来实现目标速度的精确控制,其中一个闭环负责速度检测与控制,另一个闭环负责电流检测与控制。
下面将详细介绍双闭环直流调速系统的工作原理。
1.电机:用于产生机械功的装置,是整个系统的核心部分。
2.传感器:用于检测电机的速度和电流。
3.控制器:根据传感器的反馈信号,计算并控制电机的输入电压和输出扭矩。
4.功率放大器:将控制器输出的电压信号放大后,传递给电机。
5.脉宽调制(PWM)驱动器:将控制器输出的模拟信号转换为数字信号,用于驱动功率放大器。
下面是双闭环直流调速系统的工作过程:1.速度检测与控制环路:该环路用于检测和控制电机的速度,通过传感器测量电机的速度,并将该速度信号反馈给控制器。
控制器根据目标速度和反馈速度之间的误差,计算出控制电压,并将该控制电压传递给功率放大器。
功率放大器将控制电压放大后,通过PWM驱动器将控制信号传递给电机。
电机根据控制信号的大小和频率,调整自身的旋转速度,使得反馈速度与目标速度尽可能接近。
2.电流检测与控制环路:该环路用于检测和控制电机的电流,通过传感器测量电机的电流,并将该电流信号反馈给控制器。
控制器根据反馈电流和目标电流之间的误差,计算出控制电压,并将该控制电压传递给功率放大器。
功率放大器将控制电压放大后,通过PWM驱动器将控制信号传递给电机。
电机根据控制信号的大小和频率,调整自身的输出扭矩,使得反馈电流与目标电流尽可能接近。
通过双闭环控制,系统可以实现对电机速度和电流的高精度控制。
速度检测与控制环路可以保证电机的速度稳定在设定值附近,并可根据需求进行调整。
电流检测与控制环路可以保证电机输出扭矩的精确控制,从而满足不同工作负载下的要求。
总结起来,双闭环直流调速系统通过速度检测与控制环路和电流检测与控制环路,实现了对直流电动机速度和电流的精确控制。
该系统在工业自动化领域具有广泛的应用,可以确保电机在不同工作条件下的稳定运行,并满足不同任务的要求。
双闭环直流可逆调速系统设计
一、实现双闭环直流可逆调速系统的基本原理
双闭环直流可逆调速系统是一种复杂的控制系统,通过控制电机转速
调整和调节,可以实现直流可逆调速系统的功能。
它的工作原理是:当电
机的转速发生变化时,运用程序控制器调整反馈信号。
在反馈信号中,检
测电机转速,并将其作为参考,经过放大器检测调节,将放大器调节的参
数输入给程序控制器,然后根据给定的转速和调节参数,程序控制器根据
相关的算法,调节步进电机的每一步的转速,实现当电机转速发生变化时,程序控制器控制电机转速。
二、双闭环直流可逆调速系统的组成
1.输入信号源:输入信号源主要有可逆调节信号和程序控制参数信号,两者同时作用,确定电机控制的转速范围和精度要求,从而保证可逆调速
系统的精度。
2.程序控制器:程序控制器是可逆调速系统的核心,它根据输入的控
制信号,控制反馈电路,实时获取电机的转速参数,根据算法,按照程序
控制的调节参数调节步进电机,实现调节目标速度。