实数测试题
- 格式:doc
- 大小:178.00 KB
- 文档页数:2
实 数 单 元 测 验一、选择1. 计算 )A. -2 B.±2 C.2 D.4.2. 下列各数中,不是无理数的是( )A .7B . 0.5C . 2πD . 0.151151115…3. 下列说法正确的是( )A. 有理数只是有限小数B. 无理数是无限小数C. 无限小数是无理数D. 3π是分数 4. 下列各式中,正确的是( ) A. 636±= B.6.06.3-=- C.13)13(2-=- D. 3355-=-5. ()20.7-的平方根是( )A .0.7-B .0.7±C .0.7D .0.496. 若,则a 的值是( ) A .78 B .78- C .78± D .343512- 7. 若225a =,3b =,则a b +=( )A .-8B .±8C .±2D .±8或±2 8. 若a a =-2)3(-3,则a 的取值范围是( )A. a ≥3B. a >3C. a <3D. a ≤39. 如果一个数的立方根等于它本身,那么这个数是( )A .0B .1C .0或1D .0,1 或-110. 若0a ≠,a 、b 互为相反数,则下列各对数中互为相反数的一对是( ) A.b a 与 B.2a 与2b C.3a 与3b D.3a 与()33b -11. 如果一个实数的平方根与它的立方根相等,则这个数是( )A . 1B .正整数C .0和1D . 0 12. 若式子3112x x -+-有意义,则x 的取值范围是 ( ).A. 21≥xB. 1≤xC.121≤≤x D. 以上答案都不对. 13.实数a 、b 在数轴上的位置如图所示:那么2)(b a b a ++-的结果是( )A .2aB .2bC .―2aD . -2b14. 在Rt △ABC 中,∠C =90°,BC =15,AB =17,以AC 为直径作半圆,则此半圆的面积( ).A .16πB .12πC .10πD .8π15. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A 钝角三角形B 锐角三角形C 直角三角形D 等腰三角形.二、填空16. 若x 的立方根是-41,则x =___________ . 17. 1-2的相反数是_________, 32-=18. 比较大小:①-7.1 ② 15+- 22- 19. 一个正数x 的平方根是2a -3与5-a ,则a=20. 若7160.03670.03=,542.1670.33=,则3367=21. 若2)(11y x x x +=-+-,则y x -=22. 正数a 的两个平方根是方程223=+y x 的一组解,则a =23. 一个实数有一个大于2小于3的平方根,那么它的整数位上可能取到的数值为__________ 24. 方程 16461)21(3=-+x 的解x = _________ 25 方程x 2 -12149= 0的解x=_________ 26 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______.27 . 若的大小关系则2a ,a ,a ,,10<<a28 .若03)2(12=-+-+-z y x ,则z y x ++的值是29 = 。
中考数学专题复习《实数的运算》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法中正确的是()A.√25的值是±5B.两个无理数的和仍是无理数C.-3没有立方根.D.√a2−b2是最简二次根式.2.实数m,n在数轴上的对应点的位置如图所示,下列结论中正确的是()A.|m|<|n|B.m+n>0C.m−n<0D.mn>0 3.计算:|−2|+3sin30°−2−1−(2022−π)0等于()A.-2B.−12C.2D.04.观察下列各式:√1+112+122=1+11×2√1+122+132=1+12×3√1+132+142=1+13×4…请利用你所发现的规律计算√1+112+122+√1+122+132+√1+132+142+⋯⋯+√1+192+1102其结果为()A.8910B.9910C.989D.8895.估计√2(√23−√2)的值应在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间.6.秦兵马俑的发现被誉为“世界第八大奇迹” 兵马俑的眼睛到下巴的距离与头顶到下巴的距离之比为√5−12下列各数中最接近于√5−12的是()A.25B.12C.35D.347.若x为实数在“(√3+1)◯ x”的“◯”中添上一种运算符号(在“+-× ÷”中选择)后其运算的结果为有理数则不可能是()A.√3−1B.1−√3C.3√3D.1+√38.计算sin60°⋅tan30°−sin45°⋅cos30°的结果是()A.−12+√62B.√32+12C.−√32+12D.12−√649.下列运算正确的是()A .√3+√2=√5B .|3.14−π|=π−3.14C .a 2⋅a 3=a 6D .(a −1)2=a 2−2a −110.今年“十一”期间 广州部分公园举行游园活动 据统计 天河公园早晨6时30分有2人进入公园 接下来的第一个30分钟内有4人进去1人出来 第二个30分钟内有8人进去2人出来 第三个30分钟内有16人进去3人出来 第四个30分钟内有32人进去4人出来.按照这种规律进行下去 到上午11时30分公园内的人数是( )A .211−47B .212−57C .213−68D .214−80二 填空题11.(√3−1.732)0+(−14)−2= .12.【中考变形】已知a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2) 则√a +b = .13.计算:|−5|+(3−π)0−6×3−1+√3−1−2sin60°= 。
人教版七年级数学第六章《实数》测试卷一、选择题(每小题3分,共30分)1、若x 是9的算术平方根,则x 是( )A 、3B 、-3C 、9D 、81 2、下列说法不正确的是( ) A 、251的平方根是15± B 、-9是81的一个平方根 C 、0.2的算术平方根是0.04 D 、-27的立方根是-3 3、若a 的算术平方根有意义,则a 的取值范围是( ) A 、一切数 B 、正数 C 、非负数 D 、非零数4、在下列各式中正确的是( )A 、2)2(-=-2 B 、9±=3 C 、16=8 D 、22=25、估计76的值在哪两个整数之间( )A 、75和77B 、6和7C 、7和8D 、8和9 6、下列各组数中,互为相反数的组是( )A 、-2与2)2(- B 、-2和38- C 、-21与2 D 、︱-2︱和2 7、在-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A 、4个 B 、3个 C 、2个 D 、1个 8、下列说法正确的是( )A 、数轴上的点与有理数一一对应B 、数轴上的点与无理数一一对应C 、数轴上的点与整数一一对应D 、数轴上的点与实数一一对应 9.8-的立方根与4的算术平方根的和是 ( )A.0B.4C.2±D.4± 10、 -27的立方根为 ( )A.±3B. 3C.-3D.没有立方根二、填空题(每小题3分,共18分)11、81的平方根是__________,1.44的算术平方根是__________。
12、一个数的算术平方根等于它本身,则这个数应是__________。
13、38-的绝对值是__________。
14、比较大小:27____42。
15、若36.25=5.036,6.253=15.906,则253600=__________。
16、若10的整数部分为a ,小数部分为b ,则a =________,b =_______。
WORD 格式整理版实数单元测试题一、选择题(每题 3 分,共 24 分) 1.(易错易混点) 4 的算术平方根是() A . 2B .2C .2D .22、下列实数中 ,无理数是 ()A.4B.C. 21 3D. 1 23.(易错易混点) 下列运算正确的是()2A 、9 3B 、3 3C 、9 3D 、3 94、3 27 的绝对值是()A .3B . 3C .13D .1 35、若使式子x 2在实数范围内有意.义..,则 x 的取值范围是 ()A . x 2B . x 2C . x 2D . x 22011x6、若 x ,y 为实数,且 x 2y 2 0,则的值为()yA .1B . 1C .2D . 27、有一个数值转换器,原理如图,当输入的x 为 64 时,输出的 y 是()A 、8B 、 2 2C 、 2 3D 、 3 28.设a2 ,2b(3) ,39c,11d( ) ,则 a ,b ,c ,d 按由小到大的顺序排列 2正确的是( )A . c a d bB . b d a cC . a c dbD . b c a d二、填空题(每题 3 分,共 24 分) 9、9的平方根是.学习好帮手WORD格式整理版10、在3,0, 2 , 2 四个数中,最小的数是11、(易错易混点)若 2(a3) 3 a ,则a与3 的大小关系是12、请写出一个比5小的整数.13、计算:03 ( 2 1)。
14、如图2,数轴上表示数 3 的点是.15、化简:3 8 5 32 的结果为。
16 、对于任意不相等的两个数 a ,b ,定义一种运算※如下:a※b=aabb,如3 23※2= 53 2.那么12※4= .三、计算(17-20题每题4分,21题12分)117(1)计算:3 3 16 .3(2)计算:110 2 | 2|(π2) 9 ( 1) 318、将下列各数填入相应的集合内。
学习好帮手-7,0.32, 13,0,8 ,12,3 125 ,,0.1010010001 ⋯①有理数集合{⋯}②无理数集合{⋯}③负实数集合{⋯}19、求下列各式中的x2 (1)x2 121= 17;(2)x49= 0。
实数测试题及答案一、选择题(每题2分,共10分)1. 实数集R中,最小的正整数是:A. 0B. 1C. 2D. 3答案:B2. 下列哪个数不是实数?A. πB. -√2C. √4D. 0.33333(无限循环)答案:无3. 若a, b, c是实数,且a > b,则下列哪个不等式一定成立?A. a + c > b + cB. a - c > b - cC. a × c > b × cD. a ÷ c > b ÷ c答案:A4. 实数x满足|x - 1| < 2,则x的取值范围是:A. -1 < x < 3B. -2 < x < 0C. 0 < x < 2D. 1 < x < 3答案:A5. 若实数x满足x² - 4x + 4 = 0,则x的值为:A. 2B. -2C. 0D. 4答案:A二、填空题(每题2分,共10分)1. 一个实数的绝对值等于它本身,那么这个实数一定是______。
答案:非负数2. 若实数x满足x² = 1,则x的值是______。
答案:±13. 实数-3的相反数是______。
答案:34. 若实数a和b满足a² + b² = 0,则a和b的值分别是______。
答案:05. 一个实数的平方根是它本身,那么这个实数只能是______。
答案:1或0三、解答题(每题10分,共20分)1. 已知实数a和b满足a² - 4a + 4 = 0,求a的值。
答案:由于(a - 2)² = 0,所以a = 2。
2. 证明:对于任意实数x,x² ≥ 0。
答案:设x² = y,由于平方总是非负的,所以y ≥ 0,即x² ≥0。
四、综合题(每题15分,共30分)1. 已知实数x和y满足x² + y² = 1,求证x + y ≤ √2。
实数基础测试题附答案解析一、选择题1.( )A .3B .3-C .3±D .4.5【答案】A【解析】分析:本题只需要根据算术平方根的定义,求9的算术平方根即可..故选A .点睛:本题考查了算术平方根的运算,比较简单.2.规定用符号[m]表示一个实数m 的整数部分,例如:[23]=0,[3.14]=3.按此规定+1]的值为( )A .3B .4C .5D .6 【答案】B【解析】【分析】【详解】解:根据91016<<,则34<<,即415<<,根据题意可得:14⎤=⎦. 考点:无理数的估算3.在-3.5,227,0,2π,0.161161116…(相邻两个6之间依次多一个1)中,无理数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.【详解】∵-3.5是有限小数,,∴-3.5、 ∵227=22÷7=3.142857&&是循环小数,∴227是有理数; ∵0是整数,∴0是有理数;∵2π,,0.161161116…都是无限不循环小数,∴2π,,0.161161116…都是无理数,∴无理数有3个:2π,,0.161161116…. 故选C .【点睛】 此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.4.设,a b 是不相等的实数,定义W 的一种运算;()()()2a b a b a b a b =+-+-W ,下面给出了关于这种运算的四个结论:①()6318-=-W ;②a b b a =W W ;③若0a b =W ,则0b =或0a b +=;④()a b c a b a c +=+WW W ,其中正确的是 ( ) A .②④B .②③C .①④D .①③ 【答案】D【解析】【分析】先化简()()()2a b a b a b +-+-,然后各式利用题中的新定义化简得到结果,即可作出判断.【详解】解:()()()222222222=+-+-=++-+=+a b a b a b a b a ab b a b ab b W , ①()2632(6)323361818-=⨯-⨯+⨯=-+=-W ,故①正确; ②∵222=+b a ba a W ,当a b ¹时,≠a b b a WW ,故②错误; ③∵0a b =W ,即2222()0+=+=ab b b a b ,∴2b =0或a +b =0,即0b =或0a b +=,故③正确;④∵()2222()2()22242a b c a b c b c ab ac b bc c +=+++=++++W 222222222222+=+++=+++a b a c ab b ac c ab ac b c W W∴()+≠+a b c a b a c W WW ,故④错误; 故选:D .【点睛】本题考查了整式的混合运算和定义新运算,理解定义新运算并根据运算法则进行计算是解题的关键.5.黄金分割数12是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 【答案】B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.6.下列六个数:01,,0.13π•-中,无理数出现的频数是( ) A .3 B .4 C .5 D .6【答案】A【解析】【分析】根据无理数的定义找出无理数,根据频数的定义可得频数.【详解】因为六个数:01,,0.13π•-π 即:无理数出现的频数是3故选:A【点睛】考核知识点:无理数,频数.理解无理数,频数的定义是关键.7.实数a 、b 在数轴上的位置如图所示,且|a|>|b|a b +的结果为( )A .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|, ∴()2a a b a a b b -+=-++=.故选C . 考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴. 8.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A .3B 7C 11D .无法确定【答案】B【解析】【分析】 【详解】解:根据二次根式的估算可知-2<3-1,27<3,311<4,7.故选B.9.把1a --( ) A a -B .aC .a --D a 【答案】A【解析】【分析】由二次根式1a--a 是负数,根据平方根的定义将a 移到根号内是2a ,再化简根号内的因式即可.【详解】 ∵10a-≥,且0a ≠, ∴a<0,∴-,∴-= 故选:A. 【点睛】此题考查平方根的定义,二次根式的化简,正确理解二次根式的被开方数大于等于0得到a 的取值范围是解题的关键.10.2在哪两个整数之间( )A .4和5B .5和6C .6和7D .7和8【答案】C【解析】【分析】222== 1.414≈,即可解答.【详解】222== 1.414≈,∴2 6.242≈,即介于6和7,故选:C .【点睛】本题考查了二次根式的运算以及无理数的估算,解题的关键是掌握二次根式的运算法则以及 1.414≈.11.设2a =.则a 在两个相邻整数之间,那么这两个整数是( ) A .1和2B .2和3C .3和4D .4和5 【答案】C【解析】【分析】<<56<<,进而可得出a 的范围,即可求得答案.【详解】<<∴56<<∴52262-<<-,即324<<,∴a 在3和4之间,故选:C .此题主要考查了估算无理数的大小,利用完全平方数和算术平方根对无理数的大小进行估算是解题的关键.12.下列说法:①“明天降雨的概率是50%”表示明天有半天都在降雨;②无理数是开方开不尽的数;③若a 为实数,则0a <是不可能事件;④16的平方根是4±4=±;其中正确的个数有( )A .1个B .2个C .3个D .4个【答案】A【解析】【分析】①根据概率的定义即可判断;②根据无理数的概念即可判断;③根据不可能事件的概念即可判断;④根据平方根的表示方法即可判断.【详解】①“明天降雨的概率是50%”表示明天有50%的可能会降雨,而不是半天都在降雨,故错误;②无理数是无限不循环小数,不只包含开方开不尽的数,故错误;③若根据绝对值的非负性可知0a ≥,所以0a <是不可能事件,故正确;④16的平方根是4±,用式子表示是4±,故错误;综上,正确的只有③,故选:A .【点睛】本题主要考查概率,无理数的概念,绝对值的非负性,平方根的形式,掌握概率,无理数的概念,绝对值的非负性,平方根的形式是解题的关键.13.已知3y =,则y x 的值为()n n A .43 B .43- C .34 D .34- 【答案】C由题意得,4−x⩾0,x−4⩾0,解得x=4,则y=3,则yx=34,故选:C.14.下列说法:①36的平方根是6;②±9的平方根是3;③16=4±;④ 0.01是0.1的平方根;⑤24的平方根是4;⑥ 81的算术平方根是±9.其中正确的说法是()A.0 B.1 C.3 D.5【答案】A【解析】【分析】依据平方根、算术平方根的定义解答即可.【详解】①36的平方根是±6;故此说法错误;②-9没有平方根,故此说法错误;③16=4,故16=4±说法错误;④ 0. 1是0. 01的平方根,故原说法错误;⑤24的平方根是±4,故原说法错误;⑥ 81的算术平方根是9,故原说法错误.故选A.15.若x使(x﹣1)2=4成立,则x的值是( )A.3 B.﹣1 C.3或﹣1 D.±2【答案】C【解析】试题解析:∵(x-1)2=4成立,∴x-1=±2,解得:x1=3,x2=-1.故选C.16.如图,数轴的单位长度为1,如果点A表示的数是-1,那么点B表示的数是( ).A.0 B.1 C.2 D.3【答案】D【解析】【分析】直接利用数轴结合,A B 点位置进而得出答案.【详解】解:∵数轴的单位长度为1,如果点A 表示的数是-1,∴点B 表示的数是:2故选:D .【点睛】此题主要考查了实数轴,正确应用数形结合分析是解题关键.17.已知甲、乙、丙三个数,甲2=,乙3=,丙2=-,则甲、乙、丙之间的大小关系,下列表示正确的是( ). A .甲<乙<丙B .丙<甲<乙C .乙<甲<丙D .甲<丙<乙 【答案】C【解析】【分析】由无理数的估算,得到324<<,132<<,425<<,然后进行判断,即可得到答案.【详解】解:∵12<,∴324<<,即3<甲<4,∵45<<,∴132<<,即1<乙<2,∵67<<,∴425<<,即4<丙<5,∴乙<甲<丙;故选:C.【点睛】本题考查了实数比较大小,以及无理数的估算,解题的关键是熟练掌握无理数的估算,以及比较大小的法则.18.下列命题中,真命题的个数有( )①带根号的数都是无理数; ②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根; ④有且只有一条直线与已知直线垂直A .0个B .1个C .2个D .3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和﹣1,则点C 所对应的实数是( )A .3B .3C .3 1D .3 【答案】D【解析】【分析】【详解】 设点C 所对应的实数是x .根据中心对称的性质,对称点到对称中心的距离相等,则有 ()x 3=31-,解得x=23+1.故选D.20.10+1的值应在( )A .3和4之间B .4和5之间C .5和6之间D .6和7之间 【答案】B【解析】解:∵3104<<,∴41015<<.故选B .10 的取值范围是解题关键.。
实数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是实数?A. √2B. √-1C. 0.1010010001…D. 2+3i答案:A2. 以下哪个选项是正确的?A. 0是最小的实数B. 没有最大的实数C. 所有实数都是有理数D. 所有有理数都是实数答案:D3. 计算下列哪个表达式的结果是一个正实数?A. (-3)^2B. -(-2)^3C. √(-4)D. 1/0答案:A4. 以下哪个数是无理数?A. 1/3B. √4C. πD. 0.5答案:C5. 以下哪个数是实数集合的元素?A. 2B. √2C. 2+3iD. 1/0答案:B6. 以下哪个数是虚数?A. 3B. √2C. 2+3iD. -5答案:C7. 以下哪个数是纯虚数?A. 3+iB. -iC. √(-1)D. 2i答案:D8. 以下哪个数是复数?A. 3B. √2C. 2+3iD. -5答案:C9. 以下哪个数是实数?A. √9B. √(-9)C. 0.33333…D. 2/3答案:A10. 以下哪个数是实数?A. 3.14B. √3C. 2+3iD. 0.1010010001…答案:A二、填空题(每题4分,共20分)1. √9 = ________。
答案:32. √(-1) = ________。
答案:i3. 2π是实数集合中的一个元素,其值为 ________。
答案:6.284. 如果x是实数,那么x^2 ________ 0。
答案:≥5. 一个数的绝对值总是 ________。
答案:非负三、解答题(每题10分,共50分)1. 计算:(√3 + √2)^2。
答案:7 + 4√62. 证明:√2是一个无理数。
答案:假设√2是有理数,设√2 = a/b,其中a和b是互质的整数。
那么2 = a^2 / b^2,即2b^2 = a^2。
这意味着a^2是偶数,所以a必须是偶数。
设a = 2k,则2b^2 = (2k)^2,所以b^2 = 2k^2,这意味着b也是偶数。
七年级实数单元测试题一、选择题(每题2分,共20分)1. 实数-3的相反数是:A. -3B. 3C. 0D. 12. 下列哪个数不是实数:A. πB. √2C. -1D. i3. 若a是一个无理数,b是一个有理数,那么a+b是:A. 有理数B. 无理数C. 实数D. 无法确定4. 以下哪个数是实数的平方根:A. 4B. -4C. 2D. -25. 绝对值|-5|等于:A. -5B. 5C. 0D. 106. 两个实数相除,结果为实数,那么这两个实数:A. 必须都是有理数B. 必须都是无理数C. 至少有一个是有理数D. 可以是任意实数7. 实数集合中,最小的数是:A. 0B. -∞C. 1D. 没有最小数8. 以下哪个数是实数的立方根:A. 1B. -1C. 0D. 89. 两个负实数相加,结果为:A. 正实数B. 负实数C. 零D. 实数10. 如果x是实数,那么x²的值:A. 总是正数B. 总是非负数C. 总是非正数D. 可以是任意实数二、填空题(每题2分,共20分)11. 无理数 ________ 的平方是2。
12. 绝对值是5的数有两个,分别是 ________ 和 ________ 。
13. 两个相反数的和是 ________ 。
14. 立方根是它本身的数有 ________ 个。
15. 一个数的相反数等于它本身,这个数是 ________ 。
16. 一个数的绝对值是非负数,最小的绝对值是 ________ 。
17. 一个数的平方根有两个,它们互为 ________ 。
18. 两个数的乘积为正数,那么这两个数 ________ 。
19. 一个数的立方根是它本身,这个数可以是 ________ 或________ 。
20. 一个数的绝对值等于它本身,这个数是非负数,也可以是________ 。
三、计算题(每题5分,共30分)21. 计算 |-7| + √9 - 3²。
22. 求 (-2)³ + √4 - (-3)。
实数基础测试题含解析一、选择题1.下列说法中,正确的是()A.-2是-4的平方根B.1的立方根是1和-1C.-2是(-2)2的算术平方根D.2是(-2)2的算术平方根【答案】D【解析】【分析】根据平方根、算术平方根、立方根的定义进行解答即可.【详解】A.-4没有平方根,故A错误;B. 1的立方根是1,故B错误;C. (-2)2的算术平方根是2,故C错误;D. 2是(-2)2的算术平方根,故D正确故选:D【点睛】本题主要考查的是算术平方根与平方根\立方根,掌握算术平方根与平方根\立方根的定义是解题的关键.2.估计56﹣24的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【答案】C【解析】【分析】先化简二次根式,合并后,再根据无理数的估计解答即可.【详解】56﹣24=562636=54-=,∵49<54<64,∴7<54<8,∴56﹣24的值应在7和8之间,故选C.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.-+的结果为()3.实数a、b在数轴上的位置如图所示,且|a|>|b|,则化简2a a bA .2a+bB .-2a+bC .bD .2a-b【答案】C【解析】 试题分析:利用数轴得出a+b 的符号,进而利用绝对值和二次根式的性质得出即可: ∵由数轴可知,b >0>a ,且 |a|>|b|, ∴()2a a b a a b b -+=-++=. 故选C .考点:1.绝对值;2.二次根式的性质与化简;3.实数与数轴.4.如图,数轴上的点P 表示的数可能是( )A 5B .5C .-3.8D .10-【答案】B【解析】【分析】 【详解】5 2.2≈,所以P 点表示的数是5-5.给出下列说法:①﹣0.064的立方根是±0.4;②﹣9的平方根是±3;3a -=﹣3a ;④0.01的立方根是0.00001,其中正确的个数是( )A .1个B .2个C .3个D .4个 【答案】A【解析】【分析】利用平方根和立方根的定义解答即可.【详解】①﹣0.064的立方根是﹣0.4,故原说法错误;②﹣9没有平方根,故原说法错误;3a -3a④0.000001的立方根是0.01,故原说法错误,其中正确的个数是1个,故选:A .【点睛】此题考查平方根和立方根的定义,熟记定义是解题的关键.6.25的平方根是( )A .±5B .5C .﹣5D .±25【答案】A【解析】【分析】如果一个数 x的平方是a,则x是a的平方根,根据此定义求解即可.【详解】∵(±5)2=25,∴25的立方根是±5,故选A.【点睛】本题考查了求一个数的平方根,解题的关键是掌握一个正数的平方根有两个,这两个互为相反数.7.下列说法正确的是()A.任何数的平方根有两个B.只有正数才有平方根C.负数既没有平方根,也没有立方根D.一个非负数的平方根的平方就是它本身【答案】D【解析】A、O的平方根只有一个即0,故A错误;B、0也有平方根,故B错误;C、负数是有立方根的,比如-1的立方根为-1,故C错误;D、非负数的平方根的平方即为本身,故D正确;故选D.8.若x2=16,则5-x的算术平方根是()A.±1 B.±3 C.1或9 D.1或3【答案】D【解析】【分析】根据平方根和算术平方根的定义求解即可.【详解】∵x2=16,∴x=±4,∴5-x=1或5-x=9,∴5-x的算术平方根是1或3,故答案为:D.【点睛】本题考查了平方根和算术平方根的定义,解题的关键是要弄清楚算术平方根的概念与平方根的概念的区别.9.下列说法正确的是()A.﹣81的平方根是±9 B.7C.127的立方根是±13D.(﹣1)2的立方根是﹣1【答案】B【解析】【分析】由平方根、算术平方根及立方根的定义依次判定各项即可解答.【详解】选项A,﹣81没有平方根,选项A错误;选项B,7B正确;选项C,127的立方根是13,选项C错误;选项D,(﹣1)2的立方根是1,选项D错误.故选B.【点睛】本题考查了平方根、算术平方根及立方根的应用,熟知平方根、算术平方根及立方根的定义是解决问题的关键.10.下列运算正确的是()A =-2 B.|﹣3|=3 C=± 2 D【答案】B【解析】【分析】A、根据算术平方根的定义即可判定;B、根据绝对值的定义即可判定;C、根据算术平方根的定义即可判定;D、根据立方根的定义即可判定.【详解】解:A、C2=,故选项错误;B、|﹣3|=3,故选项正确;D、9开三次方不等于3,故选项错误.故选B.【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.11.若a=3,则估计a的值所在的范围是()A.1<a<2 B.2<a<3 C.3<a<4 D.4<a<5【答案】B【解析】【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围即可求解.【详解】∵25<30<36,∴56,∴5−33<6−3,即23<3,∴a 的值所在的范围是2<a <3.故选:B .【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.12.若225a =,3b =,且a >b ,则a b +=( )A .±8或±2B .±8C .±2D .8或2【答案】D【解析】【分析】结合已知条件,根据平方根、绝对值的含义,求出a ,b 的值,又因为a >b ,可以分为两种情况:①a=5,b=3;②a=5,b=-3,分别将a 、b 的值代入代数式求出两种情况下的值即可.【详解】∵225a =,|b|=3,∴a=±5,b=±3,∵a >b ,∴a=5,a=-5(舍去) ,当a=5,b=3时,a+b=8;当a=5,b=-3时,a+b=2,故选:D .【点睛】本题主要考查了代数式的求值,本题用到了分类讨论的思想,关键在于熟练掌握平方根、绝对值的含义.13.已知下列结论:①在数轴上的点只能表示无理数;②任何一个无理数都能用数轴上的点表示;③实数与数轴上的点一一对应;④有理数有无限个,无理数有有限个.其中正确的结论是() A.①②B.②③C.③④D.②③④【答案】B【解析】【分析】根据实数与数轴的关系,有理数是无限循环小数或有限小数,无理数是无限不循环小数,可得答案.【详解】解:①数轴上的点表示实数,故①错误;②任何一个无理数都能用数轴上的点表示,故②正确;③实数与数轴上的点一一对应,故③正确;④有理数有无限个,无理数有无限个,故④错误;故选:B.【点睛】本题考查了实数与数轴,实数与数轴上的点一一对应,掌握实数与数轴的关系是解题的关键.14.实数a,b,c,d在数轴上的对应点的位置如图所示,则下列结论正确的是()A.|a|>|b| B.a>﹣3 C.a>﹣d D.11 c<【答案】A【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义,可得答案.【详解】由数轴可知,﹣4<a<﹣3,b=﹣1,0<c<1,d=3,∴|a|>|b|,A正确;a<﹣3,B错误;a<﹣d,C错误;11c>,D错误,故选A.【点睛】本题考查了实数与数轴,利用数轴上的点表示的数右边的总比左边的大,有理数的运算,绝对值的意义等,熟练掌握是解题的关键.15.下列说法正确的是( )A .a 的平方根是±aB .a 的立方根是3aC .0.01的平方根是0.1D .2(3)3-=-【答案】B【解析】试题解析:A 、当a≥0时,a 的平方根为±a ,故A 错误;B 、a 的立方根为3a ,本B 正确;C 、0.01=0.1,0.1的平方根为±0.1,故C 错误;D 、()23-=|-3|=3,故D 错误,故选B .16.实数,a b 在数轴上对应点的位置如图所示,则下列结论正确的是( )A .a b <B .a b <C .0a b +>D .0a b -> 【答案】A【解析】【分析】根据数轴得a<0<b ,且a b >,再根据实数的加法法则,减法法则依次判断即可.【详解】由数轴得a<0<b ,且a b >,∴a+b<0,a-b<0,故A 正确,B 、C 、D 错误,故选:A.【点睛】此题考查数轴,实数的大小比较,实数的绝对值的性质,加法法则,减法法则.17.在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④【答案】C【解析】试题分析:2.62=6.76;2.72=7.29;2.82=7.84;2.92=8.41.∵ 7.84<8<8.41,∴2.82<8<2.92,∴2.8<8<2.9,所以8应在③段上.故选C考点:实数与数轴的关系18.下列命题中,真命题的个数有()①带根号的数都是无理数;②立方根等于它本身的数有两个,是0和1;③0.01是0.1的算术平方根;④有且只有一条直线与已知直线垂直A.0个B.1个C.2个D.3个【答案】A【解析】【分析】开方开不尽的数为无理数;立方根等于本身的有±1和0;算术平方根指的是正数;在同一平面内,过定点有且只有一条直线与已知直线垂直.【详解】仅当开方开不尽时,这个数才是无理数,①错误;立方根等于本身的有:±1和0,②错误;19.如图,表示8的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A【解析】【分析】确定出88的范围,即可得到结果.【详解】解:∵6.25<8<9,∴2.583<<8的点在数轴上表示时,所在C和D两个字母之间.故选:A.【点睛】此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.20.3127,?0,?-,?16,?,?0.10100100013π⋅⋅⋅(相邻两个1之间依次多一个0),其中无理数是()个.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据无理数的定义(无理数是指无限不循环小数)判断即可.无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,因此,【详解】4==,013是有理数.∴无理数有:﹣π,0.1010010001….共有2个.故选B.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…等有这样规律的数.。
实数单元测试题
一、选择
1、在下列各数中是无理数的有( ) 有1个0,)76.0123456…(小数部分由相继的正整数组成)。
A 、3个
B 、4个
C 、5个
D 、6个 2、下列说法正确的是( )
A 、有理数只是有限小数
B 、无理数是无限小数
C 、无限小数是无理数
D 、 2
π
-是分数
3、下列说法错误的是( )
A 、1的平方根是1
B 、-1的立方根是-1
C 、2 是2的平方根
D 、-3是2)3(-的平方根 4、若规定误差小于1,那么60的估算值为( )
A 、3
B 、7
C 、8
D 、7或8 5、64-的立方根是( )
A .-8 B. -4 C. -2 D. 8- 6、若163=-m ,则m 的值为( )
A .-16 B. -64 C. 64 D. 3
16- 7、若2)2(2
-=--x x 成立,则x 的取值范围是( )
A .2≥x B. 2≤x C.20≤≤x D. 任意实数 8、若a<0,则a
a 22
等于( ) A 、 B 、 C 、± D 、0
9、若a 为任意实数,下列等式中成立的是( ) A
.
2
a = B
.
2
a =- C
a = D
||a =
10、已知
,a b
均为有理数,且(2
3a +=-,则( )
A .9,12a b ==
B .11,6a b ==-
C .11,0a b ==
D .9,6a b == 二、填空
11、-36的绝对值是______。
12、若3125
a =-______=
13、若||3a ==,且0ab <,则____b a -=
14、一个正数的平方根是21a -和3a -,则这个正数是________ 15、若144-m 的一个平方根为2,则m 的值为____.
16、已知b a ,为与80最接近的整数且b a <,则b a +3=___. 17、若122-=
-x ,则=x _____.
18、使代数式321
2x x x -+--有意义的x 的取值范围是____.
19、已知444-=--++-x x y y x ,则=y
x 2___.
20、已知a a a =-+-43,那么=a ___.
三、解答题
21、
(1
(2)计算)2352()2255(2---
22
-21
b
22、(1)解方程()2
37x += (2)解方程27000
)101.0(3
-=+x
23(1)若的平方根是那么0017201.0,147.4201.17,311.17201.1==_ . (2)若====x x 时那么4858.0,858.46.23,536.136.2___. (3)若===3335250,744.35.52,738.125.5那么___. 24、如果1+a 的算术平方根是3,求112+a 的立方根.
25、已知等腰三角形两边长b a ,满足0)1332(5322
=-+++-b a b a ,求此等腰三角形的周长.
26、已知实数115+的小数部分为m ,实数25.67-的小数部分为n ,求n m +的值.
27、已知实数c b a ,,
试化简222)(2a a b c b c b a --+-+-+
28
(1)2+1=2, S 1= 2
1;
(2)2+1=3, S 2=2
2 ;
(3)2+1=4, S 3=
2
3; ……
(1)请用含有n (n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;
(3)推算出S 12+ S 2 2+ S 32+…+S 102 的值。