第五章 图像分割与边缘检测
- 格式:pdf
- 大小:20.63 MB
- 文档页数:93
【数字图像处理】边缘检测与图像分割原⽂链接:作者:1图像分割原理图像分割的研究多年来⼀直受到⼈们的⾼度重视,⾄今提出了各种类型的分割算法。
Pal把图像分割算法分成了6类:阈值分割,像素分割、深度图像分割、彩⾊图像分割,边缘检测和基于模糊集的⽅法。
但是,该⽅法中,各个类别的内容是有重叠的。
为了涵盖不断涌现的新⽅法,有的研究者将图像分割算法分为以下六类:并⾏边界分割技术、串⾏边界分割技术、并⾏区域分割技术、串⾏区域分割技术、结合特定理论⼯具的分割技术和特殊图像分割技术。
⽽在较近的⼀篇综述中,更有学者将图像分割简单的分割数据驱动的分割和模型驱动的分割两类。
下⾯将图像分割⽅法主要分以下⼏类:基于阈值的分割⽅法、基于区域的分割⽅法、基于边缘的分割⽅法、基于数学形态的分割⽅法以及基于特定理论的分割⽅法等,对其中主要的分别进⾏简要介绍。
1.1灰度阈值分割法是⼀种最常⽤的并⾏区域技术,它是图像分割中应⽤数量最多的⼀类。
阈值分割⽅法实际上是输⼊图像f到输出图像g的如下变换:其中,T为阈值,对于物体的图像元素g(i,j)=l,对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定⼀个合适的阈值就可准确地将图像分割开来。
如果阈值选取过⾼,则过多的⽬标区域将被划分为背景,相反如果阈值选取过低,则过多的背景将被划分到⽬标区[7]。
阈值确定后,将阈值与像素点的灰度值⽐较和像素分割可对各像素并⾏地进⾏,分割的结果直接给出图像区域。
阈值分割必须满⾜⼀个假设条件:图像的直⽅图具有较明显的双峰或多峰,并在⾕底选择闭值。
因此这种⽅法对⽬标和背景反差较⼤的图像进⾏分割的效果⼗分明显,⽽且总能⽤封闭、连通的边界定义不交叠的区域。
阈值分割法主要分为全局和局部两种,⽬前应⽤的闭值分割⽅法都是在此基础上发展起来的,⽐如最⼩误差法、最⼤相关法、最⼤嫡法、矩量保持法、Otsu最⼤类间⽅差法等,⽽应⽤最⼴泛的是Otsu最⼤类间⽅差法。
Matlab中的图像分割与边缘检测方法引言图像处理是一门研究如何对数字图像进行处理、分析、改进和理解的学科。
图像分割与边缘检测在图像处理中占据着重要的地位。
图像分割是将图像划分为多个具有语义意义的区域或对象的过程,而边缘检测则是找到图像中不连续的区域边界。
Matlab作为一种强大的软件工具,提供了丰富的图像处理函数和工具箱,本文将探讨在Matlab中应用的图像分割与边缘检测方法。
一、图像分割方法1. 基于阈值的分割基于阈值的分割是一种简单但有效的方法。
该方法将图像像素的灰度值与预设的阈值进行比较,根据比较结果将像素分配到不同的区域。
在Matlab中,可以使用imbinarize和graythresh函数来实现基于阈值的分割。
2. 区域增长法区域增长法基于像素之间的相似性来进行分割。
该方法从种子像素开始,通过判断邻域像素与种子像素的相似度来不断扩展区域。
在Matlab中,可以使用imsegf和regiongrowing函数来实现区域增长法。
3. 聚类方法聚类方法将图像像素分为多个类别,每个类别代表一个区域。
该方法通常使用聚类算法,比如k-means算法或者模糊c-均值算法。
在Matlab中,可以使用kmeans和fcm函数来实现聚类方法。
4. 模型驱动法模型驱动法基于数学模型来描述图像中的区域。
该方法通过定义一个能够衡量图像中区域特征的能量函数,并通过优化算法来最小化能量函数,从而得到分割结果。
在Matlab中,可以使用activecontour和chanvese函数来实现模型驱动法。
二、边缘检测方法1. Sobel算子Sobel算子是一种经典的边缘检测算子。
其基本思想是通过计算像素与其周围像素之间的差异来检测边缘。
在Matlab中,可以使用imgradient和imgradientxy函数来实现Sobel算子。
2. Canny算子Canny算子是一种广泛使用的边缘检测算子。
它利用高斯平滑、梯度计算、非极大值抑制和双阈值法来检测边缘。
医学图像处理中的边缘检测与分割算法边缘检测与分割是医学图像处理中的重要部分,被广泛应用于疾病诊断、医学影像分析和手术辅助等领域。
边缘检测算法用于提取图像中的边缘信息,而分割算法则可以将图像划分为不同的区域,有助于医生对图像进行进一步分析和诊断。
一、边缘检测算法在医学图像处理中,常用的边缘检测算法包括基于梯度的方法、基于模型的方法和基于机器学习的方法。
1. 基于梯度的方法基于梯度的边缘检测算法通过计算图像中像素点的梯度值来确定边缘位置。
常用的算法包括Sobel算子、Prewitt算子和Canny算子。
Sobel算子是一种常用的离散微分算子,通过在图像中对每个像素点应用Sobel算子矩阵,可以得到图像的x方向和y方向的梯度图像。
通过计算梯度幅值和方向,可以得到边缘的位置和方向。
Prewitt算子与Sobel算子类似,也是一种基于梯度的边缘检测算子。
它通过将图像中的每个像素点与Prewitt算子矩阵进行卷积运算,得到图像的x方向和y方向的梯度图像。
进一步计算梯度幅值和方向,可以确定边缘的位置和方向。
Canny算子是一种经典的边缘检测算法,它采用多步骤的方法来检测边缘。
首先,对图像进行高斯滤波来减少噪声。
然后,计算图像的梯度幅值和方向,进一步剔除非最大值的梯度。
最后,通过设置双阈值来确定真正的边缘。
2. 基于模型的方法基于模型的边缘检测算法借助数学模型来描述边缘的形状和特征。
常用的算法包括基于边缘模型的Snake算法和基于边缘模型的Active Contour算法。
Snake算法(也称为活动轮廓模型)是一种基于曲线的边缘检测算法。
它通过将一条初始曲线沿着图像中的边缘移动,使得曲线更好地贴合真实边缘。
Snake算法考虑了边缘的连续性、平滑性和能量最小化,可以获得较为准确的边缘。
Active Contour算法是Snake算法的进一步发展,引入了图像能量函数。
通过最小化能量函数,可以得到最佳的边缘位置。
Active Contour算法可以自动调整曲线的形状和位置,适应复杂的图像边缘。
图像分割和图像边缘检测边缘检测和图像分割的联系:边缘检测是通过图像的梯度变化将图像中梯度变化明显的地方检测出来,针对的是边缘信息。
图像分割是将目标分割出来,针对的是目标对象,边缘检测是空间域图像分割的一种方法,属于包含关系边缘检测后的图像是二值图像,对二值图像可以运用形态学操作来分割目标,所以边缘检测是图像分割的一个前提。
但分割不一定非要用边缘检测。
图像分割:概念:图像分割是将图像划分成若干个互不相交的小区域的过程,所谓小区域是某种意义下具有共同属性的像素的连通集合。
从集合的观点看:它应该是具有如下性质的一种点集,集合R代表整个区域,对R的分割可看作将R分成N个满足以下五个条件的非空子集R1,R2,,RN:目的:无论是图像处理、分析、理解与识别,其基础工作一般都建立在图像分割的基础上;将图像中有意义的特征或者应用所需要的特征信息提取出来;图像分割的最终结果是将图像分解成一些具有某种特征的单元,称为图像的基元;相对于整幅图像来说,这种图像基元更容易被快速处理。
图像分割原理图像分割的研究多年来一直受到人们的高度重视,至今提出了各种类型的分割算法。
Pal把图像分割算法分成了6类:阈值分割,像素分割、深度图像分割、彩色图像分割,边缘检测和基于模糊集的方法。
但是,该方法中,各个类别的内容是有重叠的。
为了涵盖不断涌现的新方法,有的研究者将图像分割算法分为以下六类:并行边界分割技术、串行边界分割技术、并行区域分割技术、串行区域分割技术、结合特定理论工具的分割技术和特殊图像分割技术。
图像分割的特征:分割出来的各区域对某种性质例如灰度,纹理而言具有相似性,区域内部是连通的的且没有过多小孔。
区域边界是明确的。